Newspace parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.h (of order \(17\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.26588144267\) |
Analytic rank: | \(0\) |
Dimension: | \(512\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{17})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{17}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −2.29352 | + | 1.42009i | −1.84651 | − | 0.345172i | 2.35210 | − | 4.72365i | 0.488755 | + | 1.71780i | 4.72517 | − | 1.83054i | 1.48483 | 0.815610 | + | 8.80184i | 0.493031 | + | 0.191001i | −3.56039 | − | 3.24572i | ||
5.2 | −2.13981 | + | 1.32491i | 2.58288 | + | 0.482823i | 1.93191 | − | 3.87980i | 0.0170437 | + | 0.0599023i | −6.16656 | + | 2.38894i | 2.84476 | 0.542040 | + | 5.84955i | 3.64071 | + | 1.41042i | −0.115836 | − | 0.105598i | ||
5.3 | −1.99154 | + | 1.23311i | −0.753952 | − | 0.140938i | 1.55419 | − | 3.12123i | −0.455844 | − | 1.60212i | 1.67532 | − | 0.649021i | −2.82620 | 0.321333 | + | 3.46774i | −2.24884 | − | 0.871204i | 2.88342 | + | 2.62859i | ||
5.4 | −1.70588 | + | 1.05624i | 0.418329 | + | 0.0781992i | 0.902915 | − | 1.81330i | 1.04145 | + | 3.66033i | −0.796215 | + | 0.308455i | −1.26503 | 0.00475048 | + | 0.0512659i | −2.62853 | − | 1.01830i | −5.64277 | − | 5.14406i | ||
5.5 | −1.69947 | + | 1.05227i | −2.80321 | − | 0.524011i | 0.889465 | − | 1.78629i | −0.597121 | − | 2.09866i | 5.31538 | − | 2.05919i | 1.00255 | −0.000832348 | − | 0.00898247i | 4.78598 | + | 1.85410i | 3.22315 | + | 2.93829i | ||
5.6 | −1.68467 | + | 1.04310i | 0.805609 | + | 0.150594i | 0.858567 | − | 1.72424i | 0.381398 | + | 1.34047i | −1.51427 | + | 0.586631i | 3.86107 | −0.0134983 | − | 0.145670i | −2.17109 | − | 0.841085i | −2.04078 | − | 1.86042i | ||
5.7 | −1.65031 | + | 1.02183i | 2.36246 | + | 0.441621i | 0.787920 | − | 1.58236i | −0.853653 | − | 3.00028i | −4.35007 | + | 1.68522i | −2.90115 | −0.0416089 | − | 0.449032i | 2.58878 | + | 1.00290i | 4.47458 | + | 4.07911i | ||
5.8 | −1.19429 | + | 0.739476i | 2.36313 | + | 0.441746i | −0.0119617 | + | 0.0240224i | −0.166845 | − | 0.586399i | −3.14893 | + | 1.21990i | −0.333050 | −0.262696 | − | 2.83494i | 2.59183 | + | 1.00408i | 0.632890 | + | 0.576955i | ||
5.9 | −1.16780 | + | 0.723072i | −1.09147 | − | 0.204032i | −0.0505488 | + | 0.101516i | 0.226710 | + | 0.796803i | 1.42216 | − | 0.550946i | −2.47979 | −0.267840 | − | 2.89045i | −1.64773 | − | 0.638333i | −0.840898 | − | 0.766580i | ||
5.10 | −1.00350 | + | 0.621340i | −2.45047 | − | 0.458072i | −0.270531 | + | 0.543299i | 0.896577 | + | 3.15114i | 2.74366 | − | 1.06290i | 4.86474 | −0.283902 | − | 3.06379i | 2.99754 | + | 1.16125i | −2.85764 | − | 2.60509i | ||
5.11 | −1.00100 | + | 0.619792i | 0.241764 | + | 0.0451934i | −0.273621 | + | 0.549506i | −0.624145 | − | 2.19364i | −0.270015 | + | 0.104605i | 3.32282 | −0.283948 | − | 3.06429i | −2.74101 | − | 1.06187i | 1.98437 | + | 1.80899i | ||
5.12 | −0.923108 | + | 0.571564i | 3.17385 | + | 0.593295i | −0.366034 | + | 0.735095i | 1.08870 | + | 3.82638i | −3.26891 | + | 1.26638i | −1.16207 | −0.282623 | − | 3.04999i | 6.92391 | + | 2.68234i | −3.19201 | − | 2.90990i | ||
5.13 | −0.524017 | + | 0.324458i | 0.552299 | + | 0.103242i | −0.722155 | + | 1.45028i | 0.0445750 | + | 0.156665i | −0.322912 | + | 0.125097i | −2.28728 | −0.205870 | − | 2.22169i | −2.50304 | − | 0.969684i | −0.0741892 | − | 0.0676324i | ||
5.14 | −0.345026 | + | 0.213631i | 1.17349 | + | 0.219364i | −0.818072 | + | 1.64291i | −1.04892 | − | 3.68657i | −0.451748 | + | 0.175008i | 0.828287 | −0.143607 | − | 1.54977i | −1.46845 | − | 0.568881i | 1.14947 | + | 1.04788i | ||
5.15 | −0.334195 | + | 0.206925i | −1.94971 | − | 0.364465i | −0.822608 | + | 1.65202i | −0.677315 | − | 2.38052i | 0.727001 | − | 0.281642i | 1.15113 | −0.139468 | − | 1.50510i | 0.871130 | + | 0.337478i | 0.718943 | + | 0.655403i | ||
5.16 | −0.174924 | + | 0.108308i | −1.80189 | − | 0.336831i | −0.872609 | + | 1.75244i | 0.986873 | + | 3.46850i | 0.351675 | − | 0.136239i | −0.978877 | −0.0751298 | − | 0.810779i | 0.335919 | + | 0.130136i | −0.548295 | − | 0.499837i | ||
5.17 | 0.0870788 | − | 0.0539169i | −2.95487 | − | 0.552360i | −0.886801 | + | 1.78094i | −0.0489916 | − | 0.172188i | −0.287088 | + | 0.111218i | −3.21583 | 0.0377012 | + | 0.406860i | 5.62872 | + | 2.18058i | −0.0135500 | − | 0.0123524i | ||
5.18 | 0.131697 | − | 0.0815436i | 1.39847 | + | 0.261420i | −0.880782 | + | 1.76885i | 0.609236 | + | 2.14124i | 0.205492 | − | 0.0796081i | 3.07712 | 0.0568260 | + | 0.613251i | −0.910036 | − | 0.352550i | 0.254840 | + | 0.232317i | ||
5.19 | 0.396783 | − | 0.245678i | 3.05158 | + | 0.570439i | −0.794398 | + | 1.59537i | −0.230067 | − | 0.808601i | 1.35096 | − | 0.523364i | 0.0434321 | 0.162862 | + | 1.75757i | 6.18931 | + | 2.39775i | −0.289942 | − | 0.264317i | ||
5.20 | 0.640153 | − | 0.396366i | −2.17173 | − | 0.405966i | −0.638787 | + | 1.28286i | −0.494266 | − | 1.73716i | −1.55115 | + | 0.600918i | 4.02178 | 0.238502 | + | 2.57385i | 1.75417 | + | 0.679568i | −1.00496 | − | 0.916140i | ||
See next 80 embeddings (of 512 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
409.h | even | 17 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 409.2.h.a | ✓ | 512 |
409.h | even | 17 | 1 | inner | 409.2.h.a | ✓ | 512 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
409.2.h.a | ✓ | 512 | 1.a | even | 1 | 1 | trivial |
409.2.h.a | ✓ | 512 | 409.h | even | 17 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(409, [\chi])\).