gp: [N,k,chi] = [409,2,Mod(49,409)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(409, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([7]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("409.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [132]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{132} - 95 T_{2}^{130} + 4746 T_{2}^{128} - 36 T_{2}^{127} - 163305 T_{2}^{126} + 3210 T_{2}^{125} + \cdots + 38775529 \)
T2^132 - 95*T2^130 + 4746*T2^128 - 36*T2^127 - 163305*T2^126 + 3210*T2^125 + 4310290*T2^124 - 150906*T2^123 - 92426168*T2^122 + 4890714*T2^121 + 1668276107*T2^120 - 121618596*T2^119 - 25959714820*T2^118 + 2456788344*T2^117 + 354242342737*T2^116 - 41760795906*T2^115 - 4293230688430*T2^114 + 611640417690*T2^113 + 46664016555123*T2^112 - 7850477258796*T2^111 - 458368061150382*T2^110 + 89419086593214*T2^109 + 4093840334495134*T2^108 - 912606824282448*T2^107 - 33409739418187707*T2^106 + 8408819107478562*T2^105 + 250141646457938725*T2^104 - 70371194659501716*T2^103 - 1723847872731193314*T2^102 + 537485559770380314*T2^101 + 10964385842630310192*T2^100 - 3761473868570523942*T2^99 - 64506233809445337483*T2^98 + 24196904132074474686*T2^97 + 351666662362048684525*T2^96 - 143451562037822204016*T2^95 - 1779095566180105997000*T2^94 + 785440515538978383684*T2^93 + 8361778834205140688673*T2^92 - 3978517872812433068790*T2^91 - 36543002512406096855978*T2^90 + 18668559297529184731344*T2^89 + 148588542487737584971625*T2^88 - 81231979842125049007734*T2^87 - 562361896408842629402306*T2^86 + 328015656875982068893296*T2^85 + 1981446835532205335942696*T2^84 - 1229785950311525096130618*T2^83 - 6499659050584606263523033*T2^82 + 4282026277089232022879730*T2^81 + 19845889416669887710617473*T2^80 - 13847791652515367804806680*T2^79 - 56387372660944111446913141*T2^78 + 41587709216031819464868978*T2^77 + 149010647310807478077455182*T2^76 - 115948465226661580795934472*T2^75 - 366021899207156896254119253*T2^74 + 299962600005493816703488026*T2^73 + 835069695940558237517411993*T2^72 - 719590422929465400010668744*T2^71 - 1767997785601565097002071269*T2^70 + 1599424742421407828827245858*T2^69 + 3470186613966805420590891815*T2^68 - 3290623987676442050405605554*T2^67 - 6307583896100518744710607423*T2^66 + 6259472906303948520459240318*T2^65 + 10604897408962764084360936122*T2^64 - 10994753305273214930946897864*T2^63 - 16472377116466375167587938800*T2^62 + 17807345453354771871114227982*T2^61 + 23609139126803821517941982677*T2^60 - 26551629163251956036588391528*T2^59 - 31186047455834230137841765030*T2^58 + 36383767326155212059917696472*T2^57 + 37924368623353736029873586114*T2^56 - 45732726074764573788292862208*T2^55 - 42417365814886959761462020081*T2^54 + 52620710617581032982782577774*T2^53 + 43603721746083314729366347060*T2^52 - 55300176951820574319147126822*T2^51 - 41178189576928398879757493052*T2^50 + 52951522602179247884247260460*T2^49 + 35720210719359558285705473897*T2^48 - 46073213042691790099494405408*T2^47 - 28464750187409473753194555146*T2^46 + 36319312108541940272727418128*T2^45 + 20840957579463959253999155685*T2^44 - 25850382113933691111818025882*T2^43 - 14018372270146721798387660146*T2^42 + 16546638055512299312581534908*T2^41 + 8655184925209296767955736432*T2^40 - 9479633024002694675418333672*T2^39 - 4894630794804414297840448122*T2^38 + 4832157521059859597685063432*T2^37 + 2525314694886034535918515362*T2^36 - 2175036443915213618612862162*T2^35 - 1181477708988109939493232335*T2^34 + 855835881707316777115783872*T2^33 + 497093048285432705600134681*T2^32 - 290271312297116905453135050*T2^31 - 186107064716521264207750804*T2^30 + 83090331594154098659932188*T2^29 + 61209442183160558636219806*T2^28 - 19374606481695462838189800*T2^27 - 17412622821093831030228571*T2^26 + 3421178414198915928054936*T2^25 + 4203517439669165080841221*T2^24 - 363663568465296194909556*T2^23 - 840072497855188711344828*T2^22 - 12635697370543267083474*T2^21 + 134337867305653892761499*T2^20 + 15095363502212900814180*T2^19 - 16307063146047522926488*T2^18 - 3491579353599058991364*T2^17 + 1372909980267247265946*T2^16 + 475624649075882922384*T2^15 - 63372270902562658284*T2^14 - 40468323469982609856*T2^13 + 114808394134922181*T2^12 + 2249191273227861444*T2^11 + 225383697772521357*T2^10 - 59817887876111682*T2^9 - 10885350796948587*T2^8 + 895794432788454*T2^7 + 333838081624976*T2^6 + 16276600037598*T2^5 - 1973720620547*T2^4 - 151707552552*T2^3 + 11617732621*T2^2 + 1361620728*T2 + 38775529
acting on \(S_{2}^{\mathrm{new}}(409, [\chi])\).