Properties

Label 409.2.a.b.1.8
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.210883\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.210883 q^{2} -0.465479 q^{3} -1.95553 q^{4} +3.93021 q^{5} +0.0981616 q^{6} +3.14994 q^{7} +0.834154 q^{8} -2.78333 q^{9} -0.828815 q^{10} -1.62625 q^{11} +0.910257 q^{12} -0.227937 q^{13} -0.664268 q^{14} -1.82943 q^{15} +3.73515 q^{16} +3.43456 q^{17} +0.586957 q^{18} -1.46643 q^{19} -7.68564 q^{20} -1.46623 q^{21} +0.342949 q^{22} +8.43301 q^{23} -0.388281 q^{24} +10.4466 q^{25} +0.0480681 q^{26} +2.69202 q^{27} -6.15979 q^{28} -4.57096 q^{29} +0.385796 q^{30} +7.83221 q^{31} -2.45599 q^{32} +0.756986 q^{33} -0.724290 q^{34} +12.3799 q^{35} +5.44288 q^{36} +4.91791 q^{37} +0.309244 q^{38} +0.106100 q^{39} +3.27840 q^{40} -11.6975 q^{41} +0.309203 q^{42} -0.0242311 q^{43} +3.18018 q^{44} -10.9391 q^{45} -1.77838 q^{46} +13.2179 q^{47} -1.73863 q^{48} +2.92211 q^{49} -2.20300 q^{50} -1.59871 q^{51} +0.445738 q^{52} -9.86106 q^{53} -0.567701 q^{54} -6.39151 q^{55} +2.62753 q^{56} +0.682590 q^{57} +0.963938 q^{58} -8.69395 q^{59} +3.57750 q^{60} -8.81199 q^{61} -1.65168 q^{62} -8.76732 q^{63} -6.95237 q^{64} -0.895841 q^{65} -0.159636 q^{66} -4.79208 q^{67} -6.71638 q^{68} -3.92539 q^{69} -2.61071 q^{70} -1.78500 q^{71} -2.32172 q^{72} +5.16567 q^{73} -1.03710 q^{74} -4.86265 q^{75} +2.86764 q^{76} -5.12259 q^{77} -0.0223747 q^{78} -15.4468 q^{79} +14.6799 q^{80} +7.09691 q^{81} +2.46681 q^{82} +10.7852 q^{83} +2.86725 q^{84} +13.4985 q^{85} +0.00510993 q^{86} +2.12768 q^{87} -1.35654 q^{88} +9.64179 q^{89} +2.30686 q^{90} -0.717988 q^{91} -16.4910 q^{92} -3.64573 q^{93} -2.78742 q^{94} -5.76336 q^{95} +1.14321 q^{96} -0.0996286 q^{97} -0.616223 q^{98} +4.52639 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.210883 −0.149117 −0.0745584 0.997217i \(-0.523755\pi\)
−0.0745584 + 0.997217i \(0.523755\pi\)
\(3\) −0.465479 −0.268744 −0.134372 0.990931i \(-0.542902\pi\)
−0.134372 + 0.990931i \(0.542902\pi\)
\(4\) −1.95553 −0.977764
\(5\) 3.93021 1.75764 0.878822 0.477150i \(-0.158330\pi\)
0.878822 + 0.477150i \(0.158330\pi\)
\(6\) 0.0981616 0.0400743
\(7\) 3.14994 1.19056 0.595282 0.803517i \(-0.297040\pi\)
0.595282 + 0.803517i \(0.297040\pi\)
\(8\) 0.834154 0.294918
\(9\) −2.78333 −0.927776
\(10\) −0.828815 −0.262094
\(11\) −1.62625 −0.490333 −0.245167 0.969481i \(-0.578843\pi\)
−0.245167 + 0.969481i \(0.578843\pi\)
\(12\) 0.910257 0.262769
\(13\) −0.227937 −0.0632184 −0.0316092 0.999500i \(-0.510063\pi\)
−0.0316092 + 0.999500i \(0.510063\pi\)
\(14\) −0.664268 −0.177533
\(15\) −1.82943 −0.472357
\(16\) 3.73515 0.933787
\(17\) 3.43456 0.833003 0.416501 0.909135i \(-0.363256\pi\)
0.416501 + 0.909135i \(0.363256\pi\)
\(18\) 0.586957 0.138347
\(19\) −1.46643 −0.336421 −0.168211 0.985751i \(-0.553799\pi\)
−0.168211 + 0.985751i \(0.553799\pi\)
\(20\) −7.68564 −1.71856
\(21\) −1.46623 −0.319958
\(22\) 0.342949 0.0731170
\(23\) 8.43301 1.75840 0.879202 0.476449i \(-0.158076\pi\)
0.879202 + 0.476449i \(0.158076\pi\)
\(24\) −0.388281 −0.0792575
\(25\) 10.4466 2.08931
\(26\) 0.0480681 0.00942693
\(27\) 2.69202 0.518079
\(28\) −6.15979 −1.16409
\(29\) −4.57096 −0.848806 −0.424403 0.905473i \(-0.639516\pi\)
−0.424403 + 0.905473i \(0.639516\pi\)
\(30\) 0.385796 0.0704363
\(31\) 7.83221 1.40671 0.703354 0.710840i \(-0.251685\pi\)
0.703354 + 0.710840i \(0.251685\pi\)
\(32\) −2.45599 −0.434161
\(33\) 0.756986 0.131774
\(34\) −0.724290 −0.124215
\(35\) 12.3799 2.09259
\(36\) 5.44288 0.907147
\(37\) 4.91791 0.808500 0.404250 0.914649i \(-0.367533\pi\)
0.404250 + 0.914649i \(0.367533\pi\)
\(38\) 0.309244 0.0501660
\(39\) 0.106100 0.0169896
\(40\) 3.27840 0.518361
\(41\) −11.6975 −1.82684 −0.913422 0.407013i \(-0.866570\pi\)
−0.913422 + 0.407013i \(0.866570\pi\)
\(42\) 0.309203 0.0477111
\(43\) −0.0242311 −0.00369521 −0.00184761 0.999998i \(-0.500588\pi\)
−0.00184761 + 0.999998i \(0.500588\pi\)
\(44\) 3.18018 0.479430
\(45\) −10.9391 −1.63070
\(46\) −1.77838 −0.262208
\(47\) 13.2179 1.92802 0.964011 0.265861i \(-0.0856561\pi\)
0.964011 + 0.265861i \(0.0856561\pi\)
\(48\) −1.73863 −0.250950
\(49\) 2.92211 0.417444
\(50\) −2.20300 −0.311551
\(51\) −1.59871 −0.223865
\(52\) 0.445738 0.0618127
\(53\) −9.86106 −1.35452 −0.677260 0.735743i \(-0.736833\pi\)
−0.677260 + 0.735743i \(0.736833\pi\)
\(54\) −0.567701 −0.0772543
\(55\) −6.39151 −0.861831
\(56\) 2.62753 0.351119
\(57\) 0.682590 0.0904113
\(58\) 0.963938 0.126571
\(59\) −8.69395 −1.13186 −0.565928 0.824455i \(-0.691482\pi\)
−0.565928 + 0.824455i \(0.691482\pi\)
\(60\) 3.57750 0.461854
\(61\) −8.81199 −1.12826 −0.564130 0.825686i \(-0.690788\pi\)
−0.564130 + 0.825686i \(0.690788\pi\)
\(62\) −1.65168 −0.209764
\(63\) −8.76732 −1.10458
\(64\) −6.95237 −0.869046
\(65\) −0.895841 −0.111115
\(66\) −0.159636 −0.0196498
\(67\) −4.79208 −0.585446 −0.292723 0.956197i \(-0.594561\pi\)
−0.292723 + 0.956197i \(0.594561\pi\)
\(68\) −6.71638 −0.814480
\(69\) −3.92539 −0.472561
\(70\) −2.61071 −0.312040
\(71\) −1.78500 −0.211841 −0.105920 0.994375i \(-0.533779\pi\)
−0.105920 + 0.994375i \(0.533779\pi\)
\(72\) −2.32172 −0.273618
\(73\) 5.16567 0.604597 0.302298 0.953213i \(-0.402246\pi\)
0.302298 + 0.953213i \(0.402246\pi\)
\(74\) −1.03710 −0.120561
\(75\) −4.86265 −0.561490
\(76\) 2.86764 0.328940
\(77\) −5.12259 −0.583774
\(78\) −0.0223747 −0.00253343
\(79\) −15.4468 −1.73790 −0.868951 0.494899i \(-0.835205\pi\)
−0.868951 + 0.494899i \(0.835205\pi\)
\(80\) 14.6799 1.64126
\(81\) 7.09691 0.788546
\(82\) 2.46681 0.272413
\(83\) 10.7852 1.18383 0.591913 0.806002i \(-0.298373\pi\)
0.591913 + 0.806002i \(0.298373\pi\)
\(84\) 2.86725 0.312843
\(85\) 13.4985 1.46412
\(86\) 0.00510993 0.000551018 0
\(87\) 2.12768 0.228112
\(88\) −1.35654 −0.144608
\(89\) 9.64179 1.02203 0.511014 0.859572i \(-0.329270\pi\)
0.511014 + 0.859572i \(0.329270\pi\)
\(90\) 2.30686 0.243165
\(91\) −0.717988 −0.0752656
\(92\) −16.4910 −1.71930
\(93\) −3.64573 −0.378045
\(94\) −2.78742 −0.287501
\(95\) −5.76336 −0.591308
\(96\) 1.14321 0.116678
\(97\) −0.0996286 −0.0101158 −0.00505788 0.999987i \(-0.501610\pi\)
−0.00505788 + 0.999987i \(0.501610\pi\)
\(98\) −0.616223 −0.0622480
\(99\) 4.52639 0.454920
\(100\) −20.4285 −2.04285
\(101\) 3.10440 0.308899 0.154450 0.988001i \(-0.450640\pi\)
0.154450 + 0.988001i \(0.450640\pi\)
\(102\) 0.337142 0.0333820
\(103\) −3.96285 −0.390472 −0.195236 0.980756i \(-0.562547\pi\)
−0.195236 + 0.980756i \(0.562547\pi\)
\(104\) −0.190135 −0.0186442
\(105\) −5.76259 −0.562371
\(106\) 2.07953 0.201982
\(107\) 0.0231899 0.00224185 0.00112093 0.999999i \(-0.499643\pi\)
0.00112093 + 0.999999i \(0.499643\pi\)
\(108\) −5.26432 −0.506559
\(109\) −20.0715 −1.92250 −0.961249 0.275681i \(-0.911097\pi\)
−0.961249 + 0.275681i \(0.911097\pi\)
\(110\) 1.34786 0.128514
\(111\) −2.28919 −0.217280
\(112\) 11.7655 1.11173
\(113\) −1.37218 −0.129084 −0.0645419 0.997915i \(-0.520559\pi\)
−0.0645419 + 0.997915i \(0.520559\pi\)
\(114\) −0.143947 −0.0134818
\(115\) 33.1435 3.09065
\(116\) 8.93864 0.829932
\(117\) 0.634424 0.0586526
\(118\) 1.83341 0.168779
\(119\) 10.8186 0.991744
\(120\) −1.52603 −0.139306
\(121\) −8.35530 −0.759573
\(122\) 1.85830 0.168242
\(123\) 5.44495 0.490954
\(124\) −15.3161 −1.37543
\(125\) 21.4061 1.91462
\(126\) 1.84888 0.164711
\(127\) −6.36447 −0.564755 −0.282378 0.959303i \(-0.591123\pi\)
−0.282378 + 0.959303i \(0.591123\pi\)
\(128\) 6.37811 0.563751
\(129\) 0.0112791 0.000993067 0
\(130\) 0.188918 0.0165692
\(131\) 1.24267 0.108572 0.0542861 0.998525i \(-0.482712\pi\)
0.0542861 + 0.998525i \(0.482712\pi\)
\(132\) −1.48031 −0.128844
\(133\) −4.61915 −0.400531
\(134\) 1.01057 0.0872998
\(135\) 10.5802 0.910598
\(136\) 2.86495 0.245667
\(137\) −14.0313 −1.19877 −0.599386 0.800460i \(-0.704588\pi\)
−0.599386 + 0.800460i \(0.704588\pi\)
\(138\) 0.827798 0.0704668
\(139\) 2.08333 0.176706 0.0883530 0.996089i \(-0.471840\pi\)
0.0883530 + 0.996089i \(0.471840\pi\)
\(140\) −24.2093 −2.04606
\(141\) −6.15264 −0.518145
\(142\) 0.376426 0.0315890
\(143\) 0.370683 0.0309981
\(144\) −10.3961 −0.866346
\(145\) −17.9648 −1.49190
\(146\) −1.08935 −0.0901555
\(147\) −1.36018 −0.112186
\(148\) −9.61712 −0.790522
\(149\) −6.12739 −0.501975 −0.250988 0.967990i \(-0.580755\pi\)
−0.250988 + 0.967990i \(0.580755\pi\)
\(150\) 1.02545 0.0837277
\(151\) −5.90580 −0.480607 −0.240303 0.970698i \(-0.577247\pi\)
−0.240303 + 0.970698i \(0.577247\pi\)
\(152\) −1.22322 −0.0992166
\(153\) −9.55951 −0.772840
\(154\) 1.08027 0.0870505
\(155\) 30.7822 2.47249
\(156\) −0.207482 −0.0166118
\(157\) 16.6845 1.33157 0.665783 0.746145i \(-0.268098\pi\)
0.665783 + 0.746145i \(0.268098\pi\)
\(158\) 3.25747 0.259150
\(159\) 4.59012 0.364020
\(160\) −9.65254 −0.763101
\(161\) 26.5635 2.09349
\(162\) −1.49662 −0.117585
\(163\) −16.8844 −1.32249 −0.661245 0.750170i \(-0.729972\pi\)
−0.661245 + 0.750170i \(0.729972\pi\)
\(164\) 22.8748 1.78622
\(165\) 2.97511 0.231612
\(166\) −2.27441 −0.176528
\(167\) −10.6104 −0.821061 −0.410530 0.911847i \(-0.634656\pi\)
−0.410530 + 0.911847i \(0.634656\pi\)
\(168\) −1.22306 −0.0943612
\(169\) −12.9480 −0.996003
\(170\) −2.84661 −0.218325
\(171\) 4.08155 0.312124
\(172\) 0.0473846 0.00361304
\(173\) −20.2866 −1.54237 −0.771183 0.636614i \(-0.780335\pi\)
−0.771183 + 0.636614i \(0.780335\pi\)
\(174\) −0.448693 −0.0340153
\(175\) 32.9060 2.48746
\(176\) −6.07429 −0.457867
\(177\) 4.04685 0.304180
\(178\) −2.03329 −0.152402
\(179\) 19.8818 1.48604 0.743019 0.669270i \(-0.233393\pi\)
0.743019 + 0.669270i \(0.233393\pi\)
\(180\) 21.3917 1.59444
\(181\) −8.92116 −0.663104 −0.331552 0.943437i \(-0.607572\pi\)
−0.331552 + 0.943437i \(0.607572\pi\)
\(182\) 0.151412 0.0112234
\(183\) 4.10179 0.303213
\(184\) 7.03443 0.518585
\(185\) 19.3284 1.42105
\(186\) 0.768823 0.0563728
\(187\) −5.58546 −0.408449
\(188\) −25.8479 −1.88515
\(189\) 8.47969 0.616807
\(190\) 1.21539 0.0881740
\(191\) 14.0469 1.01640 0.508199 0.861240i \(-0.330311\pi\)
0.508199 + 0.861240i \(0.330311\pi\)
\(192\) 3.23618 0.233551
\(193\) −2.56573 −0.184685 −0.0923425 0.995727i \(-0.529435\pi\)
−0.0923425 + 0.995727i \(0.529435\pi\)
\(194\) 0.0210100 0.00150843
\(195\) 0.416995 0.0298616
\(196\) −5.71427 −0.408162
\(197\) 14.2539 1.01555 0.507776 0.861489i \(-0.330468\pi\)
0.507776 + 0.861489i \(0.330468\pi\)
\(198\) −0.954540 −0.0678362
\(199\) −2.78595 −0.197491 −0.0987454 0.995113i \(-0.531483\pi\)
−0.0987454 + 0.995113i \(0.531483\pi\)
\(200\) 8.71403 0.616175
\(201\) 2.23061 0.157335
\(202\) −0.654666 −0.0460621
\(203\) −14.3982 −1.01056
\(204\) 3.12633 0.218887
\(205\) −45.9737 −3.21094
\(206\) 0.835699 0.0582259
\(207\) −23.4718 −1.63141
\(208\) −0.851379 −0.0590325
\(209\) 2.38478 0.164958
\(210\) 1.21523 0.0838590
\(211\) −10.8396 −0.746231 −0.373115 0.927785i \(-0.621710\pi\)
−0.373115 + 0.927785i \(0.621710\pi\)
\(212\) 19.2836 1.32440
\(213\) 0.830880 0.0569310
\(214\) −0.00489035 −0.000334298 0
\(215\) −0.0952334 −0.00649486
\(216\) 2.24556 0.152791
\(217\) 24.6710 1.67478
\(218\) 4.23273 0.286677
\(219\) −2.40451 −0.162482
\(220\) 12.4988 0.842668
\(221\) −0.782864 −0.0526611
\(222\) 0.482750 0.0324001
\(223\) 4.20807 0.281793 0.140897 0.990024i \(-0.455002\pi\)
0.140897 + 0.990024i \(0.455002\pi\)
\(224\) −7.73621 −0.516897
\(225\) −29.0762 −1.93841
\(226\) 0.289369 0.0192486
\(227\) 18.1139 1.20226 0.601130 0.799151i \(-0.294717\pi\)
0.601130 + 0.799151i \(0.294717\pi\)
\(228\) −1.33482 −0.0884009
\(229\) −10.3201 −0.681972 −0.340986 0.940068i \(-0.610761\pi\)
−0.340986 + 0.940068i \(0.610761\pi\)
\(230\) −6.98940 −0.460868
\(231\) 2.38446 0.156886
\(232\) −3.81288 −0.250328
\(233\) 9.57148 0.627048 0.313524 0.949580i \(-0.398490\pi\)
0.313524 + 0.949580i \(0.398490\pi\)
\(234\) −0.133789 −0.00874608
\(235\) 51.9490 3.38878
\(236\) 17.0013 1.10669
\(237\) 7.19016 0.467051
\(238\) −2.28147 −0.147886
\(239\) 22.1946 1.43565 0.717824 0.696225i \(-0.245138\pi\)
0.717824 + 0.696225i \(0.245138\pi\)
\(240\) −6.83319 −0.441081
\(241\) 21.1582 1.36292 0.681461 0.731855i \(-0.261345\pi\)
0.681461 + 0.731855i \(0.261345\pi\)
\(242\) 1.76199 0.113265
\(243\) −11.3795 −0.729996
\(244\) 17.2321 1.10317
\(245\) 11.4845 0.733718
\(246\) −1.14825 −0.0732095
\(247\) 0.334253 0.0212680
\(248\) 6.53327 0.414863
\(249\) −5.02027 −0.318147
\(250\) −4.51418 −0.285502
\(251\) −16.6302 −1.04969 −0.524844 0.851199i \(-0.675876\pi\)
−0.524844 + 0.851199i \(0.675876\pi\)
\(252\) 17.1447 1.08002
\(253\) −13.7142 −0.862204
\(254\) 1.34216 0.0842145
\(255\) −6.28328 −0.393475
\(256\) 12.5597 0.784982
\(257\) 13.7086 0.855117 0.427559 0.903988i \(-0.359374\pi\)
0.427559 + 0.903988i \(0.359374\pi\)
\(258\) −0.00237857 −0.000148083 0
\(259\) 15.4911 0.962572
\(260\) 1.75184 0.108645
\(261\) 12.7225 0.787502
\(262\) −0.262057 −0.0161899
\(263\) −9.13520 −0.563301 −0.281650 0.959517i \(-0.590882\pi\)
−0.281650 + 0.959517i \(0.590882\pi\)
\(264\) 0.631443 0.0388626
\(265\) −38.7560 −2.38076
\(266\) 0.974100 0.0597259
\(267\) −4.48805 −0.274664
\(268\) 9.37105 0.572428
\(269\) 21.3210 1.29997 0.649983 0.759949i \(-0.274776\pi\)
0.649983 + 0.759949i \(0.274776\pi\)
\(270\) −2.23118 −0.135786
\(271\) −11.7560 −0.714125 −0.357062 0.934081i \(-0.616222\pi\)
−0.357062 + 0.934081i \(0.616222\pi\)
\(272\) 12.8286 0.777847
\(273\) 0.334208 0.0202272
\(274\) 2.95895 0.178757
\(275\) −16.9887 −1.02446
\(276\) 7.67621 0.462054
\(277\) −30.9171 −1.85763 −0.928814 0.370546i \(-0.879171\pi\)
−0.928814 + 0.370546i \(0.879171\pi\)
\(278\) −0.439340 −0.0263498
\(279\) −21.7996 −1.30511
\(280\) 10.3268 0.617142
\(281\) 6.30130 0.375904 0.187952 0.982178i \(-0.439815\pi\)
0.187952 + 0.982178i \(0.439815\pi\)
\(282\) 1.29749 0.0772642
\(283\) 18.2263 1.08344 0.541722 0.840558i \(-0.317773\pi\)
0.541722 + 0.840558i \(0.317773\pi\)
\(284\) 3.49062 0.207130
\(285\) 2.68272 0.158911
\(286\) −0.0781708 −0.00462234
\(287\) −36.8464 −2.17498
\(288\) 6.83582 0.402805
\(289\) −5.20381 −0.306106
\(290\) 3.78848 0.222467
\(291\) 0.0463750 0.00271855
\(292\) −10.1016 −0.591153
\(293\) 10.9586 0.640209 0.320104 0.947382i \(-0.396282\pi\)
0.320104 + 0.947382i \(0.396282\pi\)
\(294\) 0.286839 0.0167288
\(295\) −34.1690 −1.98940
\(296\) 4.10230 0.238441
\(297\) −4.37790 −0.254031
\(298\) 1.29216 0.0748529
\(299\) −1.92220 −0.111164
\(300\) 9.50905 0.549005
\(301\) −0.0763265 −0.00439939
\(302\) 1.24543 0.0716666
\(303\) −1.44503 −0.0830150
\(304\) −5.47732 −0.314146
\(305\) −34.6330 −1.98308
\(306\) 2.01594 0.115243
\(307\) 18.7053 1.06757 0.533784 0.845621i \(-0.320770\pi\)
0.533784 + 0.845621i \(0.320770\pi\)
\(308\) 10.0174 0.570793
\(309\) 1.84463 0.104937
\(310\) −6.49145 −0.368690
\(311\) −1.19994 −0.0680426 −0.0340213 0.999421i \(-0.510831\pi\)
−0.0340213 + 0.999421i \(0.510831\pi\)
\(312\) 0.0885037 0.00501054
\(313\) −5.53314 −0.312752 −0.156376 0.987698i \(-0.549981\pi\)
−0.156376 + 0.987698i \(0.549981\pi\)
\(314\) −3.51847 −0.198559
\(315\) −34.4574 −1.94145
\(316\) 30.2067 1.69926
\(317\) −28.3479 −1.59217 −0.796087 0.605182i \(-0.793100\pi\)
−0.796087 + 0.605182i \(0.793100\pi\)
\(318\) −0.967977 −0.0542815
\(319\) 7.43353 0.416198
\(320\) −27.3243 −1.52747
\(321\) −0.0107944 −0.000602485 0
\(322\) −5.60178 −0.312175
\(323\) −5.03652 −0.280240
\(324\) −13.8782 −0.771012
\(325\) −2.38116 −0.132083
\(326\) 3.56064 0.197205
\(327\) 9.34285 0.516661
\(328\) −9.75753 −0.538769
\(329\) 41.6354 2.29544
\(330\) −0.627401 −0.0345373
\(331\) 26.6467 1.46463 0.732317 0.680964i \(-0.238439\pi\)
0.732317 + 0.680964i \(0.238439\pi\)
\(332\) −21.0907 −1.15750
\(333\) −13.6882 −0.750107
\(334\) 2.23756 0.122434
\(335\) −18.8339 −1.02900
\(336\) −5.47659 −0.298772
\(337\) 9.19382 0.500820 0.250410 0.968140i \(-0.419435\pi\)
0.250410 + 0.968140i \(0.419435\pi\)
\(338\) 2.73052 0.148521
\(339\) 0.638721 0.0346905
\(340\) −26.3968 −1.43157
\(341\) −12.7372 −0.689755
\(342\) −0.860729 −0.0465429
\(343\) −12.8451 −0.693570
\(344\) −0.0202125 −0.00108978
\(345\) −15.4276 −0.830594
\(346\) 4.27811 0.229993
\(347\) 16.3109 0.875614 0.437807 0.899069i \(-0.355755\pi\)
0.437807 + 0.899069i \(0.355755\pi\)
\(348\) −4.16075 −0.223040
\(349\) −2.37467 −0.127113 −0.0635566 0.997978i \(-0.520244\pi\)
−0.0635566 + 0.997978i \(0.520244\pi\)
\(350\) −6.93932 −0.370922
\(351\) −0.613611 −0.0327521
\(352\) 3.99405 0.212884
\(353\) −4.14047 −0.220375 −0.110187 0.993911i \(-0.535145\pi\)
−0.110187 + 0.993911i \(0.535145\pi\)
\(354\) −0.853412 −0.0453583
\(355\) −7.01543 −0.372340
\(356\) −18.8548 −0.999302
\(357\) −5.03585 −0.266526
\(358\) −4.19274 −0.221593
\(359\) −2.76532 −0.145948 −0.0729740 0.997334i \(-0.523249\pi\)
−0.0729740 + 0.997334i \(0.523249\pi\)
\(360\) −9.12487 −0.480923
\(361\) −16.8496 −0.886821
\(362\) 1.88132 0.0988800
\(363\) 3.88922 0.204131
\(364\) 1.40405 0.0735920
\(365\) 20.3022 1.06267
\(366\) −0.864999 −0.0452142
\(367\) 16.0284 0.836674 0.418337 0.908292i \(-0.362613\pi\)
0.418337 + 0.908292i \(0.362613\pi\)
\(368\) 31.4985 1.64198
\(369\) 32.5580 1.69490
\(370\) −4.07604 −0.211903
\(371\) −31.0617 −1.61264
\(372\) 7.12933 0.369639
\(373\) 8.14927 0.421953 0.210976 0.977491i \(-0.432336\pi\)
0.210976 + 0.977491i \(0.432336\pi\)
\(374\) 1.17788 0.0609066
\(375\) −9.96409 −0.514543
\(376\) 11.0257 0.568608
\(377\) 1.04189 0.0536601
\(378\) −1.78822 −0.0919763
\(379\) −4.81160 −0.247155 −0.123578 0.992335i \(-0.539437\pi\)
−0.123578 + 0.992335i \(0.539437\pi\)
\(380\) 11.2704 0.578160
\(381\) 2.96253 0.151775
\(382\) −2.96225 −0.151562
\(383\) −8.13904 −0.415886 −0.207943 0.978141i \(-0.566677\pi\)
−0.207943 + 0.978141i \(0.566677\pi\)
\(384\) −2.96888 −0.151505
\(385\) −20.1329 −1.02607
\(386\) 0.541068 0.0275396
\(387\) 0.0674432 0.00342833
\(388\) 0.194827 0.00989082
\(389\) 20.0557 1.01686 0.508431 0.861103i \(-0.330226\pi\)
0.508431 + 0.861103i \(0.330226\pi\)
\(390\) −0.0879372 −0.00445287
\(391\) 28.9637 1.46476
\(392\) 2.43749 0.123112
\(393\) −0.578435 −0.0291782
\(394\) −3.00591 −0.151436
\(395\) −60.7092 −3.05461
\(396\) −8.85149 −0.444804
\(397\) −6.19867 −0.311102 −0.155551 0.987828i \(-0.549715\pi\)
−0.155551 + 0.987828i \(0.549715\pi\)
\(398\) 0.587510 0.0294492
\(399\) 2.15012 0.107640
\(400\) 39.0194 1.95097
\(401\) −32.1589 −1.60594 −0.802970 0.596020i \(-0.796748\pi\)
−0.802970 + 0.596020i \(0.796748\pi\)
\(402\) −0.470398 −0.0234613
\(403\) −1.78525 −0.0889298
\(404\) −6.07074 −0.302031
\(405\) 27.8923 1.38598
\(406\) 3.03634 0.150691
\(407\) −7.99777 −0.396435
\(408\) −1.33357 −0.0660217
\(409\) 1.00000 0.0494468
\(410\) 9.69507 0.478805
\(411\) 6.53126 0.322163
\(412\) 7.74947 0.381789
\(413\) −27.3854 −1.34755
\(414\) 4.94981 0.243270
\(415\) 42.3880 2.08074
\(416\) 0.559811 0.0274470
\(417\) −0.969748 −0.0474888
\(418\) −0.502909 −0.0245981
\(419\) 15.4478 0.754674 0.377337 0.926076i \(-0.376840\pi\)
0.377337 + 0.926076i \(0.376840\pi\)
\(420\) 11.2689 0.549867
\(421\) 17.5930 0.857428 0.428714 0.903440i \(-0.358967\pi\)
0.428714 + 0.903440i \(0.358967\pi\)
\(422\) 2.28589 0.111276
\(423\) −36.7897 −1.78877
\(424\) −8.22564 −0.399472
\(425\) 35.8793 1.74040
\(426\) −0.175219 −0.00848937
\(427\) −27.7572 −1.34327
\(428\) −0.0453485 −0.00219200
\(429\) −0.172545 −0.00833057
\(430\) 0.0200831 0.000968493 0
\(431\) 40.0514 1.92921 0.964603 0.263706i \(-0.0849448\pi\)
0.964603 + 0.263706i \(0.0849448\pi\)
\(432\) 10.0551 0.483776
\(433\) 16.1485 0.776049 0.388025 0.921649i \(-0.373158\pi\)
0.388025 + 0.921649i \(0.373158\pi\)
\(434\) −5.20269 −0.249737
\(435\) 8.36225 0.400939
\(436\) 39.2503 1.87975
\(437\) −12.3664 −0.591564
\(438\) 0.507071 0.0242288
\(439\) −18.1075 −0.864226 −0.432113 0.901819i \(-0.642232\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(440\) −5.33150 −0.254169
\(441\) −8.13320 −0.387295
\(442\) 0.165093 0.00785266
\(443\) −23.9859 −1.13960 −0.569802 0.821782i \(-0.692980\pi\)
−0.569802 + 0.821782i \(0.692980\pi\)
\(444\) 4.47657 0.212448
\(445\) 37.8943 1.79636
\(446\) −0.887410 −0.0420201
\(447\) 2.85217 0.134903
\(448\) −21.8995 −1.03466
\(449\) −0.573472 −0.0270638 −0.0135319 0.999908i \(-0.504307\pi\)
−0.0135319 + 0.999908i \(0.504307\pi\)
\(450\) 6.13168 0.289050
\(451\) 19.0231 0.895763
\(452\) 2.68334 0.126213
\(453\) 2.74902 0.129160
\(454\) −3.81991 −0.179277
\(455\) −2.82184 −0.132290
\(456\) 0.569385 0.0266639
\(457\) −7.96285 −0.372486 −0.186243 0.982504i \(-0.559631\pi\)
−0.186243 + 0.982504i \(0.559631\pi\)
\(458\) 2.17634 0.101694
\(459\) 9.24589 0.431561
\(460\) −64.8131 −3.02193
\(461\) −14.3699 −0.669275 −0.334637 0.942347i \(-0.608614\pi\)
−0.334637 + 0.942347i \(0.608614\pi\)
\(462\) −0.502842 −0.0233943
\(463\) −12.1041 −0.562524 −0.281262 0.959631i \(-0.590753\pi\)
−0.281262 + 0.959631i \(0.590753\pi\)
\(464\) −17.0732 −0.792604
\(465\) −14.3285 −0.664468
\(466\) −2.01846 −0.0935035
\(467\) 22.2189 1.02817 0.514085 0.857740i \(-0.328132\pi\)
0.514085 + 0.857740i \(0.328132\pi\)
\(468\) −1.24063 −0.0573484
\(469\) −15.0948 −0.697011
\(470\) −10.9552 −0.505324
\(471\) −7.76627 −0.357851
\(472\) −7.25209 −0.333805
\(473\) 0.0394059 0.00181188
\(474\) −1.51628 −0.0696452
\(475\) −15.3191 −0.702888
\(476\) −21.1562 −0.969691
\(477\) 27.4466 1.25669
\(478\) −4.68046 −0.214079
\(479\) −24.9655 −1.14070 −0.570352 0.821401i \(-0.693193\pi\)
−0.570352 + 0.821401i \(0.693193\pi\)
\(480\) 4.49306 0.205079
\(481\) −1.12098 −0.0511121
\(482\) −4.46191 −0.203234
\(483\) −12.3647 −0.562615
\(484\) 16.3390 0.742683
\(485\) −0.391561 −0.0177799
\(486\) 2.39975 0.108855
\(487\) 13.7316 0.622237 0.311119 0.950371i \(-0.399296\pi\)
0.311119 + 0.950371i \(0.399296\pi\)
\(488\) −7.35055 −0.332744
\(489\) 7.85934 0.355412
\(490\) −2.42189 −0.109410
\(491\) −28.0957 −1.26794 −0.633971 0.773357i \(-0.718576\pi\)
−0.633971 + 0.773357i \(0.718576\pi\)
\(492\) −10.6477 −0.480038
\(493\) −15.6992 −0.707057
\(494\) −0.0704883 −0.00317142
\(495\) 17.7897 0.799587
\(496\) 29.2545 1.31356
\(497\) −5.62264 −0.252210
\(498\) 1.05869 0.0474410
\(499\) −5.81559 −0.260341 −0.130171 0.991492i \(-0.541553\pi\)
−0.130171 + 0.991492i \(0.541553\pi\)
\(500\) −41.8602 −1.87205
\(501\) 4.93894 0.220655
\(502\) 3.50702 0.156526
\(503\) −10.5757 −0.471545 −0.235773 0.971808i \(-0.575762\pi\)
−0.235773 + 0.971808i \(0.575762\pi\)
\(504\) −7.31329 −0.325760
\(505\) 12.2010 0.542935
\(506\) 2.89209 0.128569
\(507\) 6.02704 0.267670
\(508\) 12.4459 0.552198
\(509\) −8.60097 −0.381231 −0.190616 0.981665i \(-0.561048\pi\)
−0.190616 + 0.981665i \(0.561048\pi\)
\(510\) 1.32504 0.0586737
\(511\) 16.2716 0.719811
\(512\) −15.4048 −0.680805
\(513\) −3.94764 −0.174293
\(514\) −2.89091 −0.127512
\(515\) −15.5748 −0.686310
\(516\) −0.0220565 −0.000970985 0
\(517\) −21.4956 −0.945374
\(518\) −3.26681 −0.143536
\(519\) 9.44301 0.414502
\(520\) −0.747269 −0.0327699
\(521\) 17.4050 0.762527 0.381263 0.924466i \(-0.375489\pi\)
0.381263 + 0.924466i \(0.375489\pi\)
\(522\) −2.68296 −0.117430
\(523\) 14.8430 0.649037 0.324519 0.945879i \(-0.394798\pi\)
0.324519 + 0.945879i \(0.394798\pi\)
\(524\) −2.43007 −0.106158
\(525\) −15.3170 −0.668491
\(526\) 1.92646 0.0839976
\(527\) 26.9002 1.17179
\(528\) 2.82745 0.123049
\(529\) 48.1157 2.09199
\(530\) 8.17299 0.355012
\(531\) 24.1981 1.05011
\(532\) 9.03288 0.391625
\(533\) 2.66630 0.115490
\(534\) 0.946454 0.0409571
\(535\) 0.0911411 0.00394038
\(536\) −3.99733 −0.172658
\(537\) −9.25458 −0.399364
\(538\) −4.49624 −0.193847
\(539\) −4.75209 −0.204687
\(540\) −20.6899 −0.890350
\(541\) 14.0776 0.605242 0.302621 0.953111i \(-0.402138\pi\)
0.302621 + 0.953111i \(0.402138\pi\)
\(542\) 2.47914 0.106488
\(543\) 4.15261 0.178206
\(544\) −8.43523 −0.361658
\(545\) −78.8851 −3.37907
\(546\) −0.0704789 −0.00301622
\(547\) 1.12385 0.0480522 0.0240261 0.999711i \(-0.492352\pi\)
0.0240261 + 0.999711i \(0.492352\pi\)
\(548\) 27.4385 1.17212
\(549\) 24.5267 1.04677
\(550\) 3.58263 0.152764
\(551\) 6.70297 0.285556
\(552\) −3.27438 −0.139367
\(553\) −48.6565 −2.06908
\(554\) 6.51989 0.277004
\(555\) −8.99698 −0.381900
\(556\) −4.07402 −0.172777
\(557\) −32.8052 −1.39000 −0.695001 0.719009i \(-0.744596\pi\)
−0.695001 + 0.719009i \(0.744596\pi\)
\(558\) 4.59717 0.194614
\(559\) 0.00552317 0.000233605 0
\(560\) 46.2408 1.95403
\(561\) 2.59991 0.109768
\(562\) −1.32884 −0.0560536
\(563\) −3.10850 −0.131008 −0.0655038 0.997852i \(-0.520865\pi\)
−0.0655038 + 0.997852i \(0.520865\pi\)
\(564\) 12.0317 0.506624
\(565\) −5.39295 −0.226883
\(566\) −3.84362 −0.161560
\(567\) 22.3548 0.938815
\(568\) −1.48897 −0.0624756
\(569\) 6.98241 0.292718 0.146359 0.989232i \(-0.453245\pi\)
0.146359 + 0.989232i \(0.453245\pi\)
\(570\) −0.565741 −0.0236963
\(571\) −23.2019 −0.970968 −0.485484 0.874246i \(-0.661357\pi\)
−0.485484 + 0.874246i \(0.661357\pi\)
\(572\) −0.724882 −0.0303088
\(573\) −6.53853 −0.273151
\(574\) 7.77029 0.324326
\(575\) 88.0959 3.67385
\(576\) 19.3507 0.806281
\(577\) 12.8872 0.536500 0.268250 0.963349i \(-0.413555\pi\)
0.268250 + 0.963349i \(0.413555\pi\)
\(578\) 1.09739 0.0456456
\(579\) 1.19429 0.0496330
\(580\) 35.1307 1.45872
\(581\) 33.9726 1.40942
\(582\) −0.00977970 −0.000405382 0
\(583\) 16.0366 0.664167
\(584\) 4.30897 0.178306
\(585\) 2.49342 0.103090
\(586\) −2.31098 −0.0954659
\(587\) −42.5802 −1.75747 −0.878736 0.477308i \(-0.841613\pi\)
−0.878736 + 0.477308i \(0.841613\pi\)
\(588\) 2.65987 0.109691
\(589\) −11.4854 −0.473246
\(590\) 7.20567 0.296653
\(591\) −6.63491 −0.272924
\(592\) 18.3691 0.754967
\(593\) 31.4923 1.29323 0.646617 0.762815i \(-0.276183\pi\)
0.646617 + 0.762815i \(0.276183\pi\)
\(594\) 0.923225 0.0378804
\(595\) 42.5196 1.74313
\(596\) 11.9823 0.490813
\(597\) 1.29680 0.0530745
\(598\) 0.405359 0.0165764
\(599\) 5.46454 0.223275 0.111637 0.993749i \(-0.464390\pi\)
0.111637 + 0.993749i \(0.464390\pi\)
\(600\) −4.05620 −0.165594
\(601\) −40.9777 −1.67152 −0.835758 0.549098i \(-0.814971\pi\)
−0.835758 + 0.549098i \(0.814971\pi\)
\(602\) 0.0160960 0.000656023 0
\(603\) 13.3379 0.543163
\(604\) 11.5490 0.469920
\(605\) −32.8381 −1.33506
\(606\) 0.304733 0.0123789
\(607\) 29.4394 1.19491 0.597453 0.801904i \(-0.296179\pi\)
0.597453 + 0.801904i \(0.296179\pi\)
\(608\) 3.60152 0.146061
\(609\) 6.70208 0.271582
\(610\) 7.30350 0.295710
\(611\) −3.01284 −0.121887
\(612\) 18.6939 0.755656
\(613\) 37.2544 1.50469 0.752346 0.658768i \(-0.228922\pi\)
0.752346 + 0.658768i \(0.228922\pi\)
\(614\) −3.94463 −0.159192
\(615\) 21.3998 0.862923
\(616\) −4.27303 −0.172165
\(617\) 37.4244 1.50665 0.753326 0.657648i \(-0.228448\pi\)
0.753326 + 0.657648i \(0.228448\pi\)
\(618\) −0.389000 −0.0156479
\(619\) 3.61457 0.145282 0.0726408 0.997358i \(-0.476857\pi\)
0.0726408 + 0.997358i \(0.476857\pi\)
\(620\) −60.1956 −2.41751
\(621\) 22.7018 0.910993
\(622\) 0.253048 0.0101463
\(623\) 30.3711 1.21679
\(624\) 0.396299 0.0158647
\(625\) 31.8977 1.27591
\(626\) 1.16685 0.0466365
\(627\) −1.11006 −0.0443317
\(628\) −32.6270 −1.30196
\(629\) 16.8909 0.673483
\(630\) 7.26648 0.289503
\(631\) −37.8129 −1.50531 −0.752654 0.658416i \(-0.771227\pi\)
−0.752654 + 0.658416i \(0.771227\pi\)
\(632\) −12.8850 −0.512538
\(633\) 5.04562 0.200545
\(634\) 5.97808 0.237420
\(635\) −25.0137 −0.992638
\(636\) −8.97610 −0.355926
\(637\) −0.666058 −0.0263902
\(638\) −1.56761 −0.0620621
\(639\) 4.96825 0.196541
\(640\) 25.0673 0.990873
\(641\) 22.4458 0.886558 0.443279 0.896384i \(-0.353815\pi\)
0.443279 + 0.896384i \(0.353815\pi\)
\(642\) 0.00227636 8.98406e−5 0
\(643\) −13.7064 −0.540528 −0.270264 0.962786i \(-0.587111\pi\)
−0.270264 + 0.962786i \(0.587111\pi\)
\(644\) −51.9456 −2.04694
\(645\) 0.0443291 0.00174546
\(646\) 1.06212 0.0417885
\(647\) 46.4281 1.82528 0.912638 0.408768i \(-0.134042\pi\)
0.912638 + 0.408768i \(0.134042\pi\)
\(648\) 5.91991 0.232556
\(649\) 14.1386 0.554987
\(650\) 0.502146 0.0196958
\(651\) −11.4838 −0.450087
\(652\) 33.0180 1.29308
\(653\) 8.77512 0.343397 0.171698 0.985150i \(-0.445075\pi\)
0.171698 + 0.985150i \(0.445075\pi\)
\(654\) −1.97025 −0.0770428
\(655\) 4.88394 0.190831
\(656\) −43.6919 −1.70588
\(657\) −14.3778 −0.560930
\(658\) −8.78021 −0.342288
\(659\) −41.7359 −1.62580 −0.812900 0.582403i \(-0.802113\pi\)
−0.812900 + 0.582403i \(0.802113\pi\)
\(660\) −5.81792 −0.226462
\(661\) −27.6636 −1.07599 −0.537995 0.842948i \(-0.680818\pi\)
−0.537995 + 0.842948i \(0.680818\pi\)
\(662\) −5.61933 −0.218402
\(663\) 0.364407 0.0141524
\(664\) 8.99649 0.349132
\(665\) −18.1542 −0.703991
\(666\) 2.88660 0.111854
\(667\) −38.5469 −1.49254
\(668\) 20.7490 0.802804
\(669\) −1.95877 −0.0757303
\(670\) 3.97175 0.153442
\(671\) 14.3305 0.553223
\(672\) 3.60104 0.138913
\(673\) −2.37413 −0.0915161 −0.0457581 0.998953i \(-0.514570\pi\)
−0.0457581 + 0.998953i \(0.514570\pi\)
\(674\) −1.93882 −0.0746806
\(675\) 28.1223 1.08243
\(676\) 25.3203 0.973856
\(677\) −10.6760 −0.410312 −0.205156 0.978729i \(-0.565770\pi\)
−0.205156 + 0.978729i \(0.565770\pi\)
\(678\) −0.134695 −0.00517294
\(679\) −0.313824 −0.0120435
\(680\) 11.2599 0.431796
\(681\) −8.43162 −0.323101
\(682\) 2.68605 0.102854
\(683\) 29.1410 1.11505 0.557525 0.830160i \(-0.311751\pi\)
0.557525 + 0.830160i \(0.311751\pi\)
\(684\) −7.98158 −0.305183
\(685\) −55.1458 −2.10701
\(686\) 2.70881 0.103423
\(687\) 4.80379 0.183276
\(688\) −0.0905068 −0.00345054
\(689\) 2.24770 0.0856306
\(690\) 3.25342 0.123856
\(691\) 4.39099 0.167041 0.0835205 0.996506i \(-0.473384\pi\)
0.0835205 + 0.996506i \(0.473384\pi\)
\(692\) 39.6711 1.50807
\(693\) 14.2579 0.541611
\(694\) −3.43969 −0.130569
\(695\) 8.18794 0.310586
\(696\) 1.77482 0.0672742
\(697\) −40.1758 −1.52177
\(698\) 0.500777 0.0189547
\(699\) −4.45532 −0.168516
\(700\) −64.3486 −2.43215
\(701\) 38.3125 1.44704 0.723522 0.690301i \(-0.242522\pi\)
0.723522 + 0.690301i \(0.242522\pi\)
\(702\) 0.129400 0.00488389
\(703\) −7.21175 −0.271996
\(704\) 11.3063 0.426122
\(705\) −24.1811 −0.910715
\(706\) 0.873154 0.0328616
\(707\) 9.77867 0.367765
\(708\) −7.91373 −0.297416
\(709\) −39.1970 −1.47207 −0.736037 0.676942i \(-0.763305\pi\)
−0.736037 + 0.676942i \(0.763305\pi\)
\(710\) 1.47944 0.0555222
\(711\) 42.9935 1.61238
\(712\) 8.04274 0.301414
\(713\) 66.0492 2.47356
\(714\) 1.06198 0.0397434
\(715\) 1.45686 0.0544836
\(716\) −38.8795 −1.45300
\(717\) −10.3311 −0.385822
\(718\) 0.583159 0.0217633
\(719\) 23.9975 0.894954 0.447477 0.894295i \(-0.352323\pi\)
0.447477 + 0.894295i \(0.352323\pi\)
\(720\) −40.8590 −1.52273
\(721\) −12.4827 −0.464882
\(722\) 3.55329 0.132240
\(723\) −9.84871 −0.366277
\(724\) 17.4456 0.648360
\(725\) −47.7508 −1.77342
\(726\) −0.820170 −0.0304394
\(727\) −6.12887 −0.227307 −0.113654 0.993520i \(-0.536255\pi\)
−0.113654 + 0.993520i \(0.536255\pi\)
\(728\) −0.598913 −0.0221972
\(729\) −15.9938 −0.592363
\(730\) −4.28139 −0.158461
\(731\) −0.0832232 −0.00307812
\(732\) −8.02118 −0.296471
\(733\) 33.1518 1.22449 0.612244 0.790669i \(-0.290267\pi\)
0.612244 + 0.790669i \(0.290267\pi\)
\(734\) −3.38011 −0.124762
\(735\) −5.34580 −0.197183
\(736\) −20.7114 −0.763431
\(737\) 7.79313 0.287064
\(738\) −6.86594 −0.252739
\(739\) 18.4020 0.676929 0.338465 0.940979i \(-0.390092\pi\)
0.338465 + 0.940979i \(0.390092\pi\)
\(740\) −37.7973 −1.38946
\(741\) −0.155588 −0.00571566
\(742\) 6.55039 0.240472
\(743\) 6.26452 0.229823 0.114911 0.993376i \(-0.463342\pi\)
0.114911 + 0.993376i \(0.463342\pi\)
\(744\) −3.04110 −0.111492
\(745\) −24.0819 −0.882293
\(746\) −1.71854 −0.0629203
\(747\) −30.0187 −1.09833
\(748\) 10.9225 0.399367
\(749\) 0.0730467 0.00266907
\(750\) 2.10126 0.0767270
\(751\) 15.4802 0.564879 0.282440 0.959285i \(-0.408856\pi\)
0.282440 + 0.959285i \(0.408856\pi\)
\(752\) 49.3707 1.80036
\(753\) 7.74099 0.282098
\(754\) −0.219717 −0.00800163
\(755\) −23.2110 −0.844736
\(756\) −16.5823 −0.603091
\(757\) −1.63473 −0.0594151 −0.0297076 0.999559i \(-0.509458\pi\)
−0.0297076 + 0.999559i \(0.509458\pi\)
\(758\) 1.01468 0.0368550
\(759\) 6.38367 0.231713
\(760\) −4.80753 −0.174387
\(761\) −45.6149 −1.65354 −0.826769 0.562541i \(-0.809824\pi\)
−0.826769 + 0.562541i \(0.809824\pi\)
\(762\) −0.624747 −0.0226322
\(763\) −63.2239 −2.28886
\(764\) −27.4691 −0.993797
\(765\) −37.5709 −1.35838
\(766\) 1.71639 0.0620155
\(767\) 1.98167 0.0715541
\(768\) −5.84628 −0.210959
\(769\) −17.7146 −0.638803 −0.319402 0.947619i \(-0.603482\pi\)
−0.319402 + 0.947619i \(0.603482\pi\)
\(770\) 4.24568 0.153004
\(771\) −6.38105 −0.229808
\(772\) 5.01735 0.180578
\(773\) −2.72077 −0.0978595 −0.0489297 0.998802i \(-0.515581\pi\)
−0.0489297 + 0.998802i \(0.515581\pi\)
\(774\) −0.0142226 −0.000511222 0
\(775\) 81.8196 2.93905
\(776\) −0.0831056 −0.00298332
\(777\) −7.21079 −0.258686
\(778\) −4.22940 −0.151631
\(779\) 17.1535 0.614589
\(780\) −0.815446 −0.0291976
\(781\) 2.90286 0.103873
\(782\) −6.10795 −0.218420
\(783\) −12.3051 −0.439748
\(784\) 10.9145 0.389804
\(785\) 65.5735 2.34042
\(786\) 0.121982 0.00435095
\(787\) −40.4764 −1.44283 −0.721414 0.692504i \(-0.756507\pi\)
−0.721414 + 0.692504i \(0.756507\pi\)
\(788\) −27.8740 −0.992969
\(789\) 4.25224 0.151384
\(790\) 12.8025 0.455494
\(791\) −4.32228 −0.153683
\(792\) 3.77571 0.134164
\(793\) 2.00858 0.0713268
\(794\) 1.30719 0.0463906
\(795\) 18.0401 0.639817
\(796\) 5.44801 0.193099
\(797\) −21.9576 −0.777779 −0.388890 0.921284i \(-0.627141\pi\)
−0.388890 + 0.921284i \(0.627141\pi\)
\(798\) −0.453423 −0.0160510
\(799\) 45.3975 1.60605
\(800\) −25.6566 −0.907098
\(801\) −26.8363 −0.948214
\(802\) 6.78177 0.239473
\(803\) −8.40069 −0.296454
\(804\) −4.36202 −0.153837
\(805\) 104.400 3.67962
\(806\) 0.376480 0.0132609
\(807\) −9.92449 −0.349359
\(808\) 2.58955 0.0911000
\(809\) −4.43284 −0.155850 −0.0779252 0.996959i \(-0.524830\pi\)
−0.0779252 + 0.996959i \(0.524830\pi\)
\(810\) −5.88202 −0.206673
\(811\) −6.94412 −0.243841 −0.121921 0.992540i \(-0.538905\pi\)
−0.121921 + 0.992540i \(0.538905\pi\)
\(812\) 28.1562 0.988087
\(813\) 5.47216 0.191917
\(814\) 1.68659 0.0591151
\(815\) −66.3593 −2.32447
\(816\) −5.97144 −0.209042
\(817\) 0.0355331 0.00124315
\(818\) −0.210883 −0.00737335
\(819\) 1.99840 0.0698297
\(820\) 89.9029 3.13954
\(821\) −16.2448 −0.566948 −0.283474 0.958980i \(-0.591487\pi\)
−0.283474 + 0.958980i \(0.591487\pi\)
\(822\) −1.37733 −0.0480399
\(823\) −30.5558 −1.06511 −0.532554 0.846396i \(-0.678768\pi\)
−0.532554 + 0.846396i \(0.678768\pi\)
\(824\) −3.30563 −0.115157
\(825\) 7.90789 0.275318
\(826\) 5.77512 0.200942
\(827\) 15.0576 0.523605 0.261802 0.965121i \(-0.415683\pi\)
0.261802 + 0.965121i \(0.415683\pi\)
\(828\) 45.8999 1.59513
\(829\) −45.5012 −1.58032 −0.790161 0.612900i \(-0.790003\pi\)
−0.790161 + 0.612900i \(0.790003\pi\)
\(830\) −8.93891 −0.310274
\(831\) 14.3913 0.499227
\(832\) 1.58470 0.0549397
\(833\) 10.0362 0.347732
\(834\) 0.204503 0.00708137
\(835\) −41.7013 −1.44313
\(836\) −4.66350 −0.161291
\(837\) 21.0845 0.728786
\(838\) −3.25768 −0.112535
\(839\) 5.93023 0.204734 0.102367 0.994747i \(-0.467358\pi\)
0.102367 + 0.994747i \(0.467358\pi\)
\(840\) −4.80689 −0.165853
\(841\) −8.10634 −0.279529
\(842\) −3.71006 −0.127857
\(843\) −2.93312 −0.101022
\(844\) 21.1972 0.729638
\(845\) −50.8885 −1.75062
\(846\) 7.75831 0.266736
\(847\) −26.3187 −0.904321
\(848\) −36.8325 −1.26483
\(849\) −8.48397 −0.291169
\(850\) −7.56633 −0.259523
\(851\) 41.4728 1.42167
\(852\) −1.62481 −0.0556651
\(853\) 39.1926 1.34193 0.670964 0.741490i \(-0.265880\pi\)
0.670964 + 0.741490i \(0.265880\pi\)
\(854\) 5.85353 0.200304
\(855\) 16.0413 0.548602
\(856\) 0.0193439 0.000661162 0
\(857\) 13.5917 0.464284 0.232142 0.972682i \(-0.425427\pi\)
0.232142 + 0.972682i \(0.425427\pi\)
\(858\) 0.0363869 0.00124223
\(859\) 15.3820 0.524826 0.262413 0.964956i \(-0.415482\pi\)
0.262413 + 0.964956i \(0.415482\pi\)
\(860\) 0.186232 0.00635044
\(861\) 17.1512 0.584513
\(862\) −8.44615 −0.287677
\(863\) 33.6795 1.14646 0.573232 0.819393i \(-0.305689\pi\)
0.573232 + 0.819393i \(0.305689\pi\)
\(864\) −6.61156 −0.224930
\(865\) −79.7308 −2.71093
\(866\) −3.40545 −0.115722
\(867\) 2.42226 0.0822644
\(868\) −48.2448 −1.63754
\(869\) 25.1204 0.852151
\(870\) −1.76346 −0.0597868
\(871\) 1.09229 0.0370109
\(872\) −16.7427 −0.566979
\(873\) 0.277299 0.00938516
\(874\) 2.60786 0.0882122
\(875\) 67.4279 2.27948
\(876\) 4.70209 0.158869
\(877\) −6.38799 −0.215707 −0.107854 0.994167i \(-0.534398\pi\)
−0.107854 + 0.994167i \(0.534398\pi\)
\(878\) 3.81857 0.128871
\(879\) −5.10100 −0.172053
\(880\) −23.8732 −0.804767
\(881\) 44.1449 1.48728 0.743640 0.668580i \(-0.233097\pi\)
0.743640 + 0.668580i \(0.233097\pi\)
\(882\) 1.71515 0.0577522
\(883\) −54.6120 −1.83784 −0.918921 0.394443i \(-0.870938\pi\)
−0.918921 + 0.394443i \(0.870938\pi\)
\(884\) 1.53091 0.0514901
\(885\) 15.9050 0.534640
\(886\) 5.05821 0.169934
\(887\) 40.0445 1.34456 0.672282 0.740295i \(-0.265314\pi\)
0.672282 + 0.740295i \(0.265314\pi\)
\(888\) −1.90953 −0.0640797
\(889\) −20.0477 −0.672378
\(890\) −7.99126 −0.267868
\(891\) −11.5414 −0.386650
\(892\) −8.22900 −0.275527
\(893\) −19.3830 −0.648628
\(894\) −0.601474 −0.0201163
\(895\) 78.1398 2.61193
\(896\) 20.0907 0.671182
\(897\) 0.894742 0.0298746
\(898\) 0.120935 0.00403567
\(899\) −35.8007 −1.19402
\(900\) 56.8593 1.89531
\(901\) −33.8684 −1.12832
\(902\) −4.01165 −0.133573
\(903\) 0.0355284 0.00118231
\(904\) −1.14461 −0.0380691
\(905\) −35.0620 −1.16550
\(906\) −0.579723 −0.0192600
\(907\) 8.32073 0.276285 0.138143 0.990412i \(-0.455887\pi\)
0.138143 + 0.990412i \(0.455887\pi\)
\(908\) −35.4222 −1.17553
\(909\) −8.64057 −0.286590
\(910\) 0.595079 0.0197267
\(911\) 39.5875 1.31159 0.655796 0.754938i \(-0.272333\pi\)
0.655796 + 0.754938i \(0.272333\pi\)
\(912\) 2.54958 0.0844249
\(913\) −17.5394 −0.580470
\(914\) 1.67923 0.0555440
\(915\) 16.1209 0.532941
\(916\) 20.1813 0.666808
\(917\) 3.91432 0.129262
\(918\) −1.94980 −0.0643531
\(919\) −44.1664 −1.45691 −0.728457 0.685091i \(-0.759762\pi\)
−0.728457 + 0.685091i \(0.759762\pi\)
\(920\) 27.6468 0.911487
\(921\) −8.70692 −0.286903
\(922\) 3.03038 0.0998001
\(923\) 0.406868 0.0133922
\(924\) −4.66288 −0.153397
\(925\) 51.3752 1.68921
\(926\) 2.55254 0.0838817
\(927\) 11.0299 0.362270
\(928\) 11.2262 0.368519
\(929\) −8.41670 −0.276143 −0.138071 0.990422i \(-0.544090\pi\)
−0.138071 + 0.990422i \(0.544090\pi\)
\(930\) 3.02163 0.0990833
\(931\) −4.28506 −0.140437
\(932\) −18.7173 −0.613105
\(933\) 0.558549 0.0182861
\(934\) −4.68559 −0.153317
\(935\) −21.9520 −0.717908
\(936\) 0.529208 0.0172977
\(937\) −17.8263 −0.582359 −0.291179 0.956668i \(-0.594048\pi\)
−0.291179 + 0.956668i \(0.594048\pi\)
\(938\) 3.18323 0.103936
\(939\) 2.57556 0.0840503
\(940\) −101.588 −3.31342
\(941\) −17.4626 −0.569263 −0.284632 0.958637i \(-0.591871\pi\)
−0.284632 + 0.958637i \(0.591871\pi\)
\(942\) 1.63778 0.0533616
\(943\) −98.6453 −3.21233
\(944\) −32.4732 −1.05691
\(945\) 33.3270 1.08413
\(946\) −0.00831003 −0.000270183 0
\(947\) −17.2483 −0.560495 −0.280247 0.959928i \(-0.590417\pi\)
−0.280247 + 0.959928i \(0.590417\pi\)
\(948\) −14.0606 −0.456666
\(949\) −1.17745 −0.0382216
\(950\) 3.23054 0.104812
\(951\) 13.1953 0.427888
\(952\) 9.02442 0.292483
\(953\) 40.9211 1.32556 0.662782 0.748812i \(-0.269375\pi\)
0.662782 + 0.748812i \(0.269375\pi\)
\(954\) −5.78802 −0.187394
\(955\) 55.2073 1.78646
\(956\) −43.4021 −1.40373
\(957\) −3.46015 −0.111851
\(958\) 5.26480 0.170098
\(959\) −44.1976 −1.42721
\(960\) 12.7189 0.410500
\(961\) 30.3436 0.978825
\(962\) 0.236395 0.00762167
\(963\) −0.0645451 −0.00207994
\(964\) −41.3755 −1.33262
\(965\) −10.0838 −0.324610
\(966\) 2.60751 0.0838953
\(967\) −30.6822 −0.986672 −0.493336 0.869839i \(-0.664223\pi\)
−0.493336 + 0.869839i \(0.664223\pi\)
\(968\) −6.96961 −0.224012
\(969\) 2.34440 0.0753128
\(970\) 0.0825736 0.00265128
\(971\) 32.9595 1.05772 0.528860 0.848709i \(-0.322620\pi\)
0.528860 + 0.848709i \(0.322620\pi\)
\(972\) 22.2530 0.713764
\(973\) 6.56237 0.210380
\(974\) −2.89576 −0.0927860
\(975\) 1.10838 0.0354965
\(976\) −32.9141 −1.05355
\(977\) −30.9423 −0.989933 −0.494967 0.868912i \(-0.664820\pi\)
−0.494967 + 0.868912i \(0.664820\pi\)
\(978\) −1.65740 −0.0529979
\(979\) −15.6800 −0.501135
\(980\) −22.4583 −0.717403
\(981\) 55.8655 1.78365
\(982\) 5.92491 0.189071
\(983\) −22.0276 −0.702571 −0.351286 0.936268i \(-0.614255\pi\)
−0.351286 + 0.936268i \(0.614255\pi\)
\(984\) 4.54192 0.144791
\(985\) 56.0210 1.78498
\(986\) 3.31070 0.105434
\(987\) −19.3804 −0.616886
\(988\) −0.653641 −0.0207951
\(989\) −0.204341 −0.00649767
\(990\) −3.75154 −0.119232
\(991\) −17.4230 −0.553461 −0.276730 0.960948i \(-0.589251\pi\)
−0.276730 + 0.960948i \(0.589251\pi\)
\(992\) −19.2358 −0.610738
\(993\) −12.4035 −0.393612
\(994\) 1.18572 0.0376088
\(995\) −10.9494 −0.347118
\(996\) 9.81728 0.311072
\(997\) 42.5229 1.34671 0.673356 0.739318i \(-0.264852\pi\)
0.673356 + 0.739318i \(0.264852\pi\)
\(998\) 1.22641 0.0388213
\(999\) 13.2391 0.418867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.8 20
3.2 odd 2 3681.2.a.i.1.13 20
4.3 odd 2 6544.2.a.i.1.11 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.8 20 1.1 even 1 trivial
3681.2.a.i.1.13 20 3.2 odd 2
6544.2.a.i.1.11 20 4.3 odd 2