Properties

Label 409.2.a.b.1.4
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.84704\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84704 q^{2} +2.27493 q^{3} +1.41156 q^{4} +0.866439 q^{5} -4.20189 q^{6} +4.45724 q^{7} +1.08688 q^{8} +2.17533 q^{9} -1.60035 q^{10} +0.938829 q^{11} +3.21120 q^{12} -4.86713 q^{13} -8.23270 q^{14} +1.97109 q^{15} -4.83062 q^{16} +5.33791 q^{17} -4.01792 q^{18} -2.46577 q^{19} +1.22303 q^{20} +10.1399 q^{21} -1.73406 q^{22} +3.66124 q^{23} +2.47258 q^{24} -4.24928 q^{25} +8.98978 q^{26} -1.87608 q^{27} +6.29165 q^{28} -1.09032 q^{29} -3.64068 q^{30} -7.99217 q^{31} +6.74859 q^{32} +2.13578 q^{33} -9.85934 q^{34} +3.86192 q^{35} +3.07060 q^{36} +9.64459 q^{37} +4.55438 q^{38} -11.0724 q^{39} +0.941713 q^{40} -1.26932 q^{41} -18.7288 q^{42} +3.56408 q^{43} +1.32521 q^{44} +1.88479 q^{45} -6.76245 q^{46} -2.87779 q^{47} -10.9893 q^{48} +12.8670 q^{49} +7.84860 q^{50} +12.1434 q^{51} -6.87023 q^{52} +9.88144 q^{53} +3.46519 q^{54} +0.813438 q^{55} +4.84448 q^{56} -5.60946 q^{57} +2.01387 q^{58} +7.19174 q^{59} +2.78231 q^{60} -7.34223 q^{61} +14.7619 q^{62} +9.69595 q^{63} -2.80368 q^{64} -4.21707 q^{65} -3.94486 q^{66} -12.3049 q^{67} +7.53477 q^{68} +8.32907 q^{69} -7.13313 q^{70} -1.89104 q^{71} +2.36432 q^{72} +5.02515 q^{73} -17.8139 q^{74} -9.66684 q^{75} -3.48057 q^{76} +4.18459 q^{77} +20.4512 q^{78} +6.32284 q^{79} -4.18544 q^{80} -10.7939 q^{81} +2.34449 q^{82} -15.2910 q^{83} +14.3131 q^{84} +4.62498 q^{85} -6.58300 q^{86} -2.48041 q^{87} +1.02039 q^{88} -5.43146 q^{89} -3.48128 q^{90} -21.6940 q^{91} +5.16804 q^{92} -18.1817 q^{93} +5.31540 q^{94} -2.13644 q^{95} +15.3526 q^{96} -2.27190 q^{97} -23.7658 q^{98} +2.04226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84704 −1.30605 −0.653027 0.757334i \(-0.726501\pi\)
−0.653027 + 0.757334i \(0.726501\pi\)
\(3\) 2.27493 1.31343 0.656717 0.754137i \(-0.271945\pi\)
0.656717 + 0.754137i \(0.271945\pi\)
\(4\) 1.41156 0.705778
\(5\) 0.866439 0.387483 0.193742 0.981053i \(-0.437938\pi\)
0.193742 + 0.981053i \(0.437938\pi\)
\(6\) −4.20189 −1.71542
\(7\) 4.45724 1.68468 0.842339 0.538948i \(-0.181178\pi\)
0.842339 + 0.538948i \(0.181178\pi\)
\(8\) 1.08688 0.384270
\(9\) 2.17533 0.725109
\(10\) −1.60035 −0.506074
\(11\) 0.938829 0.283068 0.141534 0.989933i \(-0.454797\pi\)
0.141534 + 0.989933i \(0.454797\pi\)
\(12\) 3.21120 0.926993
\(13\) −4.86713 −1.34990 −0.674949 0.737864i \(-0.735835\pi\)
−0.674949 + 0.737864i \(0.735835\pi\)
\(14\) −8.23270 −2.20028
\(15\) 1.97109 0.508934
\(16\) −4.83062 −1.20766
\(17\) 5.33791 1.29463 0.647317 0.762221i \(-0.275891\pi\)
0.647317 + 0.762221i \(0.275891\pi\)
\(18\) −4.01792 −0.947032
\(19\) −2.46577 −0.565686 −0.282843 0.959166i \(-0.591278\pi\)
−0.282843 + 0.959166i \(0.591278\pi\)
\(20\) 1.22303 0.273477
\(21\) 10.1399 2.21271
\(22\) −1.73406 −0.369702
\(23\) 3.66124 0.763421 0.381710 0.924282i \(-0.375335\pi\)
0.381710 + 0.924282i \(0.375335\pi\)
\(24\) 2.47258 0.504713
\(25\) −4.24928 −0.849857
\(26\) 8.98978 1.76304
\(27\) −1.87608 −0.361051
\(28\) 6.29165 1.18901
\(29\) −1.09032 −0.202468 −0.101234 0.994863i \(-0.532279\pi\)
−0.101234 + 0.994863i \(0.532279\pi\)
\(30\) −3.64068 −0.664695
\(31\) −7.99217 −1.43544 −0.717718 0.696334i \(-0.754813\pi\)
−0.717718 + 0.696334i \(0.754813\pi\)
\(32\) 6.74859 1.19299
\(33\) 2.13578 0.371791
\(34\) −9.85934 −1.69086
\(35\) 3.86192 0.652784
\(36\) 3.07060 0.511766
\(37\) 9.64459 1.58556 0.792780 0.609508i \(-0.208633\pi\)
0.792780 + 0.609508i \(0.208633\pi\)
\(38\) 4.55438 0.738817
\(39\) −11.0724 −1.77300
\(40\) 0.941713 0.148898
\(41\) −1.26932 −0.198235 −0.0991175 0.995076i \(-0.531602\pi\)
−0.0991175 + 0.995076i \(0.531602\pi\)
\(42\) −18.7288 −2.88992
\(43\) 3.56408 0.543518 0.271759 0.962365i \(-0.412395\pi\)
0.271759 + 0.962365i \(0.412395\pi\)
\(44\) 1.32521 0.199783
\(45\) 1.88479 0.280967
\(46\) −6.76245 −0.997069
\(47\) −2.87779 −0.419769 −0.209885 0.977726i \(-0.567309\pi\)
−0.209885 + 0.977726i \(0.567309\pi\)
\(48\) −10.9893 −1.58618
\(49\) 12.8670 1.83814
\(50\) 7.84860 1.10996
\(51\) 12.1434 1.70042
\(52\) −6.87023 −0.952729
\(53\) 9.88144 1.35732 0.678660 0.734452i \(-0.262561\pi\)
0.678660 + 0.734452i \(0.262561\pi\)
\(54\) 3.46519 0.471553
\(55\) 0.813438 0.109684
\(56\) 4.84448 0.647370
\(57\) −5.60946 −0.742992
\(58\) 2.01387 0.264434
\(59\) 7.19174 0.936285 0.468142 0.883653i \(-0.344923\pi\)
0.468142 + 0.883653i \(0.344923\pi\)
\(60\) 2.78231 0.359194
\(61\) −7.34223 −0.940076 −0.470038 0.882646i \(-0.655760\pi\)
−0.470038 + 0.882646i \(0.655760\pi\)
\(62\) 14.7619 1.87476
\(63\) 9.69595 1.22157
\(64\) −2.80368 −0.350460
\(65\) −4.21707 −0.523063
\(66\) −3.94486 −0.485579
\(67\) −12.3049 −1.50328 −0.751641 0.659573i \(-0.770737\pi\)
−0.751641 + 0.659573i \(0.770737\pi\)
\(68\) 7.53477 0.913725
\(69\) 8.32907 1.00270
\(70\) −7.13313 −0.852572
\(71\) −1.89104 −0.224425 −0.112213 0.993684i \(-0.535794\pi\)
−0.112213 + 0.993684i \(0.535794\pi\)
\(72\) 2.36432 0.278637
\(73\) 5.02515 0.588149 0.294074 0.955783i \(-0.404989\pi\)
0.294074 + 0.955783i \(0.404989\pi\)
\(74\) −17.8139 −2.07083
\(75\) −9.66684 −1.11623
\(76\) −3.48057 −0.399249
\(77\) 4.18459 0.476878
\(78\) 20.4512 2.31564
\(79\) 6.32284 0.711375 0.355688 0.934605i \(-0.384247\pi\)
0.355688 + 0.934605i \(0.384247\pi\)
\(80\) −4.18544 −0.467946
\(81\) −10.7939 −1.19933
\(82\) 2.34449 0.258906
\(83\) −15.2910 −1.67841 −0.839203 0.543819i \(-0.816978\pi\)
−0.839203 + 0.543819i \(0.816978\pi\)
\(84\) 14.3131 1.56169
\(85\) 4.62498 0.501649
\(86\) −6.58300 −0.709864
\(87\) −2.48041 −0.265928
\(88\) 1.02039 0.108774
\(89\) −5.43146 −0.575734 −0.287867 0.957670i \(-0.592946\pi\)
−0.287867 + 0.957670i \(0.592946\pi\)
\(90\) −3.48128 −0.366959
\(91\) −21.6940 −2.27415
\(92\) 5.16804 0.538806
\(93\) −18.1817 −1.88535
\(94\) 5.31540 0.548241
\(95\) −2.13644 −0.219194
\(96\) 15.3526 1.56692
\(97\) −2.27190 −0.230676 −0.115338 0.993326i \(-0.536795\pi\)
−0.115338 + 0.993326i \(0.536795\pi\)
\(98\) −23.7658 −2.40071
\(99\) 2.04226 0.205255
\(100\) −5.99811 −0.599811
\(101\) −16.2815 −1.62007 −0.810036 0.586380i \(-0.800552\pi\)
−0.810036 + 0.586380i \(0.800552\pi\)
\(102\) −22.4294 −2.22084
\(103\) 11.3321 1.11658 0.558292 0.829645i \(-0.311457\pi\)
0.558292 + 0.829645i \(0.311457\pi\)
\(104\) −5.28998 −0.518725
\(105\) 8.78562 0.857389
\(106\) −18.2514 −1.77273
\(107\) 0.767827 0.0742287 0.0371143 0.999311i \(-0.488183\pi\)
0.0371143 + 0.999311i \(0.488183\pi\)
\(108\) −2.64819 −0.254822
\(109\) −6.85306 −0.656404 −0.328202 0.944608i \(-0.606443\pi\)
−0.328202 + 0.944608i \(0.606443\pi\)
\(110\) −1.50245 −0.143253
\(111\) 21.9408 2.08253
\(112\) −21.5312 −2.03451
\(113\) 11.3449 1.06724 0.533619 0.845725i \(-0.320832\pi\)
0.533619 + 0.845725i \(0.320832\pi\)
\(114\) 10.3609 0.970388
\(115\) 3.17224 0.295813
\(116\) −1.53905 −0.142897
\(117\) −10.5876 −0.978824
\(118\) −13.2834 −1.22284
\(119\) 23.7924 2.18104
\(120\) 2.14234 0.195568
\(121\) −10.1186 −0.919873
\(122\) 13.5614 1.22779
\(123\) −2.88763 −0.260369
\(124\) −11.2814 −1.01310
\(125\) −8.01394 −0.716788
\(126\) −17.9088 −1.59544
\(127\) −15.5441 −1.37932 −0.689660 0.724133i \(-0.742240\pi\)
−0.689660 + 0.724133i \(0.742240\pi\)
\(128\) −8.31868 −0.735274
\(129\) 8.10806 0.713875
\(130\) 7.78910 0.683149
\(131\) −18.0098 −1.57352 −0.786761 0.617257i \(-0.788244\pi\)
−0.786761 + 0.617257i \(0.788244\pi\)
\(132\) 3.01477 0.262402
\(133\) −10.9905 −0.952999
\(134\) 22.7276 1.96337
\(135\) −1.62551 −0.139901
\(136\) 5.80166 0.497489
\(137\) 9.39001 0.802243 0.401121 0.916025i \(-0.368621\pi\)
0.401121 + 0.916025i \(0.368621\pi\)
\(138\) −15.3841 −1.30958
\(139\) 4.54500 0.385502 0.192751 0.981248i \(-0.438259\pi\)
0.192751 + 0.981248i \(0.438259\pi\)
\(140\) 5.45132 0.460721
\(141\) −6.54679 −0.551339
\(142\) 3.49283 0.293112
\(143\) −4.56941 −0.382113
\(144\) −10.5082 −0.875682
\(145\) −0.944698 −0.0784529
\(146\) −9.28165 −0.768155
\(147\) 29.2715 2.41428
\(148\) 13.6139 1.11905
\(149\) 18.0061 1.47512 0.737560 0.675282i \(-0.235978\pi\)
0.737560 + 0.675282i \(0.235978\pi\)
\(150\) 17.8550 1.45786
\(151\) 7.22938 0.588319 0.294159 0.955756i \(-0.404960\pi\)
0.294159 + 0.955756i \(0.404960\pi\)
\(152\) −2.67999 −0.217376
\(153\) 11.6117 0.938751
\(154\) −7.72910 −0.622829
\(155\) −6.92473 −0.556208
\(156\) −15.6293 −1.25135
\(157\) −21.0164 −1.67729 −0.838647 0.544676i \(-0.816653\pi\)
−0.838647 + 0.544676i \(0.816653\pi\)
\(158\) −11.6785 −0.929095
\(159\) 22.4796 1.78275
\(160\) 5.84724 0.462265
\(161\) 16.3190 1.28612
\(162\) 19.9368 1.56639
\(163\) 12.0619 0.944762 0.472381 0.881394i \(-0.343395\pi\)
0.472381 + 0.881394i \(0.343395\pi\)
\(164\) −1.79172 −0.139910
\(165\) 1.85052 0.144063
\(166\) 28.2431 2.19209
\(167\) −5.06681 −0.392082 −0.196041 0.980596i \(-0.562809\pi\)
−0.196041 + 0.980596i \(0.562809\pi\)
\(168\) 11.0209 0.850278
\(169\) 10.6890 0.822227
\(170\) −8.54251 −0.655181
\(171\) −5.36385 −0.410184
\(172\) 5.03091 0.383603
\(173\) −14.2589 −1.08409 −0.542043 0.840351i \(-0.682349\pi\)
−0.542043 + 0.840351i \(0.682349\pi\)
\(174\) 4.58142 0.347317
\(175\) −18.9401 −1.43174
\(176\) −4.53513 −0.341848
\(177\) 16.3607 1.22975
\(178\) 10.0321 0.751940
\(179\) 1.09536 0.0818709 0.0409354 0.999162i \(-0.486966\pi\)
0.0409354 + 0.999162i \(0.486966\pi\)
\(180\) 2.66048 0.198301
\(181\) −10.2107 −0.758959 −0.379480 0.925200i \(-0.623897\pi\)
−0.379480 + 0.925200i \(0.623897\pi\)
\(182\) 40.0696 2.97016
\(183\) −16.7031 −1.23473
\(184\) 3.97932 0.293359
\(185\) 8.35644 0.614378
\(186\) 33.5823 2.46237
\(187\) 5.01139 0.366469
\(188\) −4.06217 −0.296264
\(189\) −8.36213 −0.608255
\(190\) 3.94609 0.286279
\(191\) 12.5330 0.906858 0.453429 0.891292i \(-0.350201\pi\)
0.453429 + 0.891292i \(0.350201\pi\)
\(192\) −6.37819 −0.460306
\(193\) −14.1538 −1.01881 −0.509406 0.860527i \(-0.670135\pi\)
−0.509406 + 0.860527i \(0.670135\pi\)
\(194\) 4.19628 0.301276
\(195\) −9.59356 −0.687009
\(196\) 18.1625 1.29732
\(197\) 25.8579 1.84230 0.921150 0.389208i \(-0.127251\pi\)
0.921150 + 0.389208i \(0.127251\pi\)
\(198\) −3.77214 −0.268074
\(199\) −14.1260 −1.00137 −0.500683 0.865631i \(-0.666918\pi\)
−0.500683 + 0.865631i \(0.666918\pi\)
\(200\) −4.61845 −0.326574
\(201\) −27.9928 −1.97446
\(202\) 30.0726 2.11590
\(203\) −4.85983 −0.341093
\(204\) 17.1411 1.20012
\(205\) −1.09979 −0.0768127
\(206\) −20.9308 −1.45832
\(207\) 7.96439 0.553563
\(208\) 23.5113 1.63021
\(209\) −2.31494 −0.160128
\(210\) −16.2274 −1.11980
\(211\) 11.5656 0.796209 0.398105 0.917340i \(-0.369668\pi\)
0.398105 + 0.917340i \(0.369668\pi\)
\(212\) 13.9482 0.957968
\(213\) −4.30200 −0.294768
\(214\) −1.41821 −0.0969467
\(215\) 3.08806 0.210604
\(216\) −2.03907 −0.138741
\(217\) −35.6230 −2.41825
\(218\) 12.6579 0.857300
\(219\) 11.4319 0.772495
\(220\) 1.14821 0.0774126
\(221\) −25.9803 −1.74763
\(222\) −40.5255 −2.71990
\(223\) 14.9415 1.00056 0.500278 0.865865i \(-0.333231\pi\)
0.500278 + 0.865865i \(0.333231\pi\)
\(224\) 30.0801 2.00981
\(225\) −9.24358 −0.616239
\(226\) −20.9545 −1.39387
\(227\) −24.2298 −1.60819 −0.804094 0.594502i \(-0.797349\pi\)
−0.804094 + 0.594502i \(0.797349\pi\)
\(228\) −7.91808 −0.524387
\(229\) 29.3018 1.93632 0.968158 0.250340i \(-0.0805424\pi\)
0.968158 + 0.250340i \(0.0805424\pi\)
\(230\) −5.85925 −0.386347
\(231\) 9.51966 0.626348
\(232\) −1.18505 −0.0778022
\(233\) 1.98456 0.130013 0.0650065 0.997885i \(-0.479293\pi\)
0.0650065 + 0.997885i \(0.479293\pi\)
\(234\) 19.5557 1.27840
\(235\) −2.49343 −0.162653
\(236\) 10.1515 0.660809
\(237\) 14.3841 0.934345
\(238\) −43.9454 −2.84856
\(239\) 15.4918 1.00208 0.501041 0.865424i \(-0.332951\pi\)
0.501041 + 0.865424i \(0.332951\pi\)
\(240\) −9.52159 −0.614616
\(241\) −19.3640 −1.24734 −0.623672 0.781687i \(-0.714360\pi\)
−0.623672 + 0.781687i \(0.714360\pi\)
\(242\) 18.6895 1.20140
\(243\) −18.9273 −1.21418
\(244\) −10.3640 −0.663485
\(245\) 11.1484 0.712248
\(246\) 5.33356 0.340056
\(247\) 12.0012 0.763619
\(248\) −8.68652 −0.551595
\(249\) −34.7860 −2.20447
\(250\) 14.8021 0.936165
\(251\) 18.5739 1.17238 0.586188 0.810175i \(-0.300628\pi\)
0.586188 + 0.810175i \(0.300628\pi\)
\(252\) 13.6864 0.862161
\(253\) 3.43728 0.216100
\(254\) 28.7107 1.80147
\(255\) 10.5215 0.658883
\(256\) 20.9723 1.31077
\(257\) 9.19948 0.573848 0.286924 0.957953i \(-0.407367\pi\)
0.286924 + 0.957953i \(0.407367\pi\)
\(258\) −14.9759 −0.932359
\(259\) 42.9882 2.67116
\(260\) −5.95263 −0.369167
\(261\) −2.37181 −0.146811
\(262\) 33.2648 2.05511
\(263\) 8.98787 0.554216 0.277108 0.960839i \(-0.410624\pi\)
0.277108 + 0.960839i \(0.410624\pi\)
\(264\) 2.32133 0.142868
\(265\) 8.56167 0.525939
\(266\) 20.2999 1.24467
\(267\) −12.3562 −0.756189
\(268\) −17.3690 −1.06098
\(269\) 11.9084 0.726067 0.363033 0.931776i \(-0.381741\pi\)
0.363033 + 0.931776i \(0.381741\pi\)
\(270\) 3.00238 0.182719
\(271\) 12.2528 0.744304 0.372152 0.928172i \(-0.378620\pi\)
0.372152 + 0.928172i \(0.378620\pi\)
\(272\) −25.7854 −1.56347
\(273\) −49.3523 −2.98694
\(274\) −17.3437 −1.04777
\(275\) −3.98935 −0.240567
\(276\) 11.7570 0.707686
\(277\) 2.76906 0.166377 0.0831884 0.996534i \(-0.473490\pi\)
0.0831884 + 0.996534i \(0.473490\pi\)
\(278\) −8.39481 −0.503487
\(279\) −17.3856 −1.04085
\(280\) 4.19744 0.250845
\(281\) 16.3524 0.975505 0.487752 0.872982i \(-0.337817\pi\)
0.487752 + 0.872982i \(0.337817\pi\)
\(282\) 12.0922 0.720079
\(283\) −14.2886 −0.849370 −0.424685 0.905341i \(-0.639615\pi\)
−0.424685 + 0.905341i \(0.639615\pi\)
\(284\) −2.66931 −0.158395
\(285\) −4.86026 −0.287897
\(286\) 8.43987 0.499060
\(287\) −5.65768 −0.333962
\(288\) 14.6804 0.865051
\(289\) 11.4933 0.676078
\(290\) 1.74489 0.102464
\(291\) −5.16841 −0.302978
\(292\) 7.09328 0.415103
\(293\) −17.4789 −1.02113 −0.510564 0.859840i \(-0.670563\pi\)
−0.510564 + 0.859840i \(0.670563\pi\)
\(294\) −54.0657 −3.15318
\(295\) 6.23120 0.362795
\(296\) 10.4825 0.609283
\(297\) −1.76132 −0.102202
\(298\) −33.2580 −1.92659
\(299\) −17.8197 −1.03054
\(300\) −13.6453 −0.787812
\(301\) 15.8860 0.915652
\(302\) −13.3530 −0.768376
\(303\) −37.0394 −2.12786
\(304\) 11.9112 0.683154
\(305\) −6.36159 −0.364264
\(306\) −21.4473 −1.22606
\(307\) −23.4803 −1.34009 −0.670047 0.742319i \(-0.733726\pi\)
−0.670047 + 0.742319i \(0.733726\pi\)
\(308\) 5.90678 0.336570
\(309\) 25.7798 1.46656
\(310\) 12.7902 0.726437
\(311\) 2.47003 0.140063 0.0700313 0.997545i \(-0.477690\pi\)
0.0700313 + 0.997545i \(0.477690\pi\)
\(312\) −12.0344 −0.681311
\(313\) −21.8998 −1.23785 −0.618924 0.785451i \(-0.712431\pi\)
−0.618924 + 0.785451i \(0.712431\pi\)
\(314\) 38.8182 2.19064
\(315\) 8.40095 0.473340
\(316\) 8.92505 0.502073
\(317\) −17.0485 −0.957542 −0.478771 0.877940i \(-0.658918\pi\)
−0.478771 + 0.877940i \(0.658918\pi\)
\(318\) −41.5208 −2.32837
\(319\) −1.02363 −0.0573121
\(320\) −2.42922 −0.135797
\(321\) 1.74676 0.0974944
\(322\) −30.1419 −1.67974
\(323\) −13.1621 −0.732357
\(324\) −15.2362 −0.846458
\(325\) 20.6818 1.14722
\(326\) −22.2788 −1.23391
\(327\) −15.5903 −0.862144
\(328\) −1.37960 −0.0761757
\(329\) −12.8270 −0.707176
\(330\) −3.41798 −0.188154
\(331\) 3.12807 0.171934 0.0859671 0.996298i \(-0.472602\pi\)
0.0859671 + 0.996298i \(0.472602\pi\)
\(332\) −21.5841 −1.18458
\(333\) 20.9801 1.14970
\(334\) 9.35860 0.512080
\(335\) −10.6614 −0.582496
\(336\) −48.9821 −2.67219
\(337\) −21.3553 −1.16330 −0.581650 0.813439i \(-0.697593\pi\)
−0.581650 + 0.813439i \(0.697593\pi\)
\(338\) −19.7429 −1.07387
\(339\) 25.8089 1.40175
\(340\) 6.52841 0.354053
\(341\) −7.50329 −0.406326
\(342\) 9.90725 0.535723
\(343\) 26.1505 1.41200
\(344\) 3.87373 0.208857
\(345\) 7.21663 0.388530
\(346\) 26.3368 1.41587
\(347\) −13.1040 −0.703460 −0.351730 0.936102i \(-0.614406\pi\)
−0.351730 + 0.936102i \(0.614406\pi\)
\(348\) −3.50124 −0.187686
\(349\) −2.76530 −0.148023 −0.0740117 0.997257i \(-0.523580\pi\)
−0.0740117 + 0.997257i \(0.523580\pi\)
\(350\) 34.9831 1.86992
\(351\) 9.13112 0.487383
\(352\) 6.33578 0.337698
\(353\) 23.4166 1.24634 0.623171 0.782086i \(-0.285844\pi\)
0.623171 + 0.782086i \(0.285844\pi\)
\(354\) −30.2189 −1.60612
\(355\) −1.63847 −0.0869611
\(356\) −7.66682 −0.406341
\(357\) 54.1261 2.86465
\(358\) −2.02317 −0.106928
\(359\) −9.02335 −0.476234 −0.238117 0.971236i \(-0.576530\pi\)
−0.238117 + 0.971236i \(0.576530\pi\)
\(360\) 2.04853 0.107967
\(361\) −12.9200 −0.679999
\(362\) 18.8597 0.991242
\(363\) −23.0191 −1.20819
\(364\) −30.6223 −1.60504
\(365\) 4.35398 0.227898
\(366\) 30.8513 1.61262
\(367\) 25.4984 1.33101 0.665504 0.746394i \(-0.268217\pi\)
0.665504 + 0.746394i \(0.268217\pi\)
\(368\) −17.6860 −0.921949
\(369\) −2.76119 −0.143742
\(370\) −15.4347 −0.802411
\(371\) 44.0440 2.28665
\(372\) −25.6645 −1.33064
\(373\) −10.7580 −0.557027 −0.278513 0.960432i \(-0.589842\pi\)
−0.278513 + 0.960432i \(0.589842\pi\)
\(374\) −9.25624 −0.478629
\(375\) −18.2312 −0.941454
\(376\) −3.12781 −0.161305
\(377\) 5.30674 0.273311
\(378\) 15.4452 0.794415
\(379\) 4.85291 0.249277 0.124639 0.992202i \(-0.460223\pi\)
0.124639 + 0.992202i \(0.460223\pi\)
\(380\) −3.01570 −0.154702
\(381\) −35.3619 −1.81165
\(382\) −23.1490 −1.18441
\(383\) −3.85060 −0.196757 −0.0983783 0.995149i \(-0.531366\pi\)
−0.0983783 + 0.995149i \(0.531366\pi\)
\(384\) −18.9244 −0.965734
\(385\) 3.62569 0.184782
\(386\) 26.1426 1.33062
\(387\) 7.75305 0.394109
\(388\) −3.20691 −0.162806
\(389\) −27.1136 −1.37471 −0.687357 0.726320i \(-0.741229\pi\)
−0.687357 + 0.726320i \(0.741229\pi\)
\(390\) 17.7197 0.897271
\(391\) 19.5434 0.988351
\(392\) 13.9848 0.706341
\(393\) −40.9711 −2.06672
\(394\) −47.7606 −2.40614
\(395\) 5.47836 0.275646
\(396\) 2.88277 0.144864
\(397\) 6.22911 0.312630 0.156315 0.987707i \(-0.450038\pi\)
0.156315 + 0.987707i \(0.450038\pi\)
\(398\) 26.0913 1.30784
\(399\) −25.0027 −1.25170
\(400\) 20.5267 1.02633
\(401\) −17.4167 −0.869749 −0.434874 0.900491i \(-0.643207\pi\)
−0.434874 + 0.900491i \(0.643207\pi\)
\(402\) 51.7038 2.57875
\(403\) 38.8989 1.93769
\(404\) −22.9823 −1.14341
\(405\) −9.35228 −0.464719
\(406\) 8.97630 0.445486
\(407\) 9.05462 0.448821
\(408\) 13.1984 0.653418
\(409\) 1.00000 0.0494468
\(410\) 2.03136 0.100322
\(411\) 21.3617 1.05369
\(412\) 15.9959 0.788061
\(413\) 32.0553 1.57734
\(414\) −14.7105 −0.722984
\(415\) −13.2487 −0.650354
\(416\) −32.8463 −1.61042
\(417\) 10.3396 0.506332
\(418\) 4.27578 0.209135
\(419\) 17.9232 0.875604 0.437802 0.899071i \(-0.355757\pi\)
0.437802 + 0.899071i \(0.355757\pi\)
\(420\) 12.4014 0.605127
\(421\) 25.4335 1.23955 0.619777 0.784778i \(-0.287223\pi\)
0.619777 + 0.784778i \(0.287223\pi\)
\(422\) −21.3621 −1.03989
\(423\) −6.26014 −0.304378
\(424\) 10.7399 0.521577
\(425\) −22.6823 −1.10025
\(426\) 7.94596 0.384983
\(427\) −32.7261 −1.58373
\(428\) 1.08383 0.0523890
\(429\) −10.3951 −0.501880
\(430\) −5.70377 −0.275060
\(431\) 17.2801 0.832355 0.416177 0.909283i \(-0.363370\pi\)
0.416177 + 0.909283i \(0.363370\pi\)
\(432\) 9.06262 0.436026
\(433\) 33.1324 1.59224 0.796120 0.605139i \(-0.206883\pi\)
0.796120 + 0.605139i \(0.206883\pi\)
\(434\) 65.7972 3.15836
\(435\) −2.14912 −0.103043
\(436\) −9.67349 −0.463276
\(437\) −9.02777 −0.431857
\(438\) −21.1151 −1.00892
\(439\) 20.8425 0.994757 0.497379 0.867534i \(-0.334296\pi\)
0.497379 + 0.867534i \(0.334296\pi\)
\(440\) 0.884108 0.0421482
\(441\) 27.9899 1.33285
\(442\) 47.9867 2.28249
\(443\) −41.5223 −1.97279 −0.986393 0.164406i \(-0.947429\pi\)
−0.986393 + 0.164406i \(0.947429\pi\)
\(444\) 30.9707 1.46980
\(445\) −4.70603 −0.223087
\(446\) −27.5975 −1.30678
\(447\) 40.9628 1.93747
\(448\) −12.4967 −0.590412
\(449\) −29.6564 −1.39957 −0.699785 0.714353i \(-0.746721\pi\)
−0.699785 + 0.714353i \(0.746721\pi\)
\(450\) 17.0733 0.804841
\(451\) −1.19168 −0.0561140
\(452\) 16.0140 0.753234
\(453\) 16.4464 0.772718
\(454\) 44.7534 2.10038
\(455\) −18.7965 −0.881193
\(456\) −6.09681 −0.285509
\(457\) −2.44867 −0.114544 −0.0572719 0.998359i \(-0.518240\pi\)
−0.0572719 + 0.998359i \(0.518240\pi\)
\(458\) −54.1216 −2.52893
\(459\) −10.0143 −0.467430
\(460\) 4.47779 0.208778
\(461\) 6.58791 0.306830 0.153415 0.988162i \(-0.450973\pi\)
0.153415 + 0.988162i \(0.450973\pi\)
\(462\) −17.5832 −0.818044
\(463\) 20.8134 0.967280 0.483640 0.875267i \(-0.339314\pi\)
0.483640 + 0.875267i \(0.339314\pi\)
\(464\) 5.26693 0.244511
\(465\) −15.7533 −0.730542
\(466\) −3.66557 −0.169804
\(467\) 17.6134 0.815050 0.407525 0.913194i \(-0.366392\pi\)
0.407525 + 0.913194i \(0.366392\pi\)
\(468\) −14.9450 −0.690833
\(469\) −54.8458 −2.53255
\(470\) 4.60547 0.212434
\(471\) −47.8110 −2.20301
\(472\) 7.81655 0.359786
\(473\) 3.34607 0.153852
\(474\) −26.5679 −1.22030
\(475\) 10.4778 0.480752
\(476\) 33.5843 1.53933
\(477\) 21.4954 0.984205
\(478\) −28.6140 −1.30877
\(479\) 31.6259 1.44503 0.722513 0.691357i \(-0.242987\pi\)
0.722513 + 0.691357i \(0.242987\pi\)
\(480\) 13.3021 0.607155
\(481\) −46.9415 −2.14035
\(482\) 35.7660 1.62910
\(483\) 37.1247 1.68923
\(484\) −14.2830 −0.649226
\(485\) −1.96846 −0.0893831
\(486\) 34.9594 1.58579
\(487\) 23.3900 1.05990 0.529951 0.848028i \(-0.322210\pi\)
0.529951 + 0.848028i \(0.322210\pi\)
\(488\) −7.98011 −0.361243
\(489\) 27.4401 1.24088
\(490\) −20.5916 −0.930235
\(491\) −11.4607 −0.517216 −0.258608 0.965982i \(-0.583264\pi\)
−0.258608 + 0.965982i \(0.583264\pi\)
\(492\) −4.07605 −0.183763
\(493\) −5.82005 −0.262122
\(494\) −22.1667 −0.997329
\(495\) 1.76949 0.0795328
\(496\) 38.6072 1.73351
\(497\) −8.42883 −0.378085
\(498\) 64.2512 2.87916
\(499\) 11.2619 0.504150 0.252075 0.967708i \(-0.418887\pi\)
0.252075 + 0.967708i \(0.418887\pi\)
\(500\) −11.3121 −0.505894
\(501\) −11.5267 −0.514973
\(502\) −34.3068 −1.53119
\(503\) 2.88287 0.128541 0.0642703 0.997933i \(-0.479528\pi\)
0.0642703 + 0.997933i \(0.479528\pi\)
\(504\) 10.5383 0.469414
\(505\) −14.1069 −0.627751
\(506\) −6.34879 −0.282238
\(507\) 24.3167 1.07994
\(508\) −21.9414 −0.973494
\(509\) −1.17239 −0.0519654 −0.0259827 0.999662i \(-0.508271\pi\)
−0.0259827 + 0.999662i \(0.508271\pi\)
\(510\) −19.4337 −0.860537
\(511\) 22.3983 0.990842
\(512\) −22.0993 −0.976660
\(513\) 4.62598 0.204242
\(514\) −16.9918 −0.749477
\(515\) 9.81856 0.432657
\(516\) 11.4450 0.503837
\(517\) −2.70176 −0.118823
\(518\) −79.4010 −3.48868
\(519\) −32.4381 −1.42387
\(520\) −4.58344 −0.200997
\(521\) −33.0757 −1.44907 −0.724537 0.689236i \(-0.757946\pi\)
−0.724537 + 0.689236i \(0.757946\pi\)
\(522\) 4.38082 0.191743
\(523\) 27.0778 1.18403 0.592014 0.805928i \(-0.298333\pi\)
0.592014 + 0.805928i \(0.298333\pi\)
\(524\) −25.4218 −1.11056
\(525\) −43.0874 −1.88049
\(526\) −16.6010 −0.723836
\(527\) −42.6615 −1.85837
\(528\) −10.3171 −0.448995
\(529\) −9.59534 −0.417189
\(530\) −15.8137 −0.686905
\(531\) 15.6444 0.678908
\(532\) −15.5137 −0.672606
\(533\) 6.17796 0.267597
\(534\) 22.8224 0.987623
\(535\) 0.665275 0.0287624
\(536\) −13.3739 −0.577665
\(537\) 2.49187 0.107532
\(538\) −21.9952 −0.948283
\(539\) 12.0799 0.520318
\(540\) −2.29449 −0.0987393
\(541\) 26.8275 1.15341 0.576703 0.816954i \(-0.304339\pi\)
0.576703 + 0.816954i \(0.304339\pi\)
\(542\) −22.6314 −0.972102
\(543\) −23.2288 −0.996843
\(544\) 36.0234 1.54449
\(545\) −5.93776 −0.254346
\(546\) 91.1557 3.90111
\(547\) −9.25166 −0.395572 −0.197786 0.980245i \(-0.563375\pi\)
−0.197786 + 0.980245i \(0.563375\pi\)
\(548\) 13.2545 0.566206
\(549\) −15.9717 −0.681658
\(550\) 7.36849 0.314194
\(551\) 2.68848 0.114533
\(552\) 9.05269 0.385308
\(553\) 28.1824 1.19844
\(554\) −5.11457 −0.217297
\(555\) 19.0104 0.806945
\(556\) 6.41553 0.272079
\(557\) −3.09487 −0.131134 −0.0655669 0.997848i \(-0.520886\pi\)
−0.0655669 + 0.997848i \(0.520886\pi\)
\(558\) 32.1119 1.35940
\(559\) −17.3469 −0.733694
\(560\) −18.6555 −0.788338
\(561\) 11.4006 0.481333
\(562\) −30.2036 −1.27406
\(563\) −32.4478 −1.36751 −0.683755 0.729712i \(-0.739654\pi\)
−0.683755 + 0.729712i \(0.739654\pi\)
\(564\) −9.24116 −0.389123
\(565\) 9.82966 0.413537
\(566\) 26.3916 1.10932
\(567\) −48.1111 −2.02048
\(568\) −2.05533 −0.0862398
\(569\) −7.93403 −0.332612 −0.166306 0.986074i \(-0.553184\pi\)
−0.166306 + 0.986074i \(0.553184\pi\)
\(570\) 8.97709 0.376009
\(571\) −7.49748 −0.313760 −0.156880 0.987618i \(-0.550144\pi\)
−0.156880 + 0.987618i \(0.550144\pi\)
\(572\) −6.44997 −0.269687
\(573\) 28.5118 1.19110
\(574\) 10.4500 0.436173
\(575\) −15.5576 −0.648798
\(576\) −6.09892 −0.254122
\(577\) 33.2185 1.38291 0.691453 0.722421i \(-0.256971\pi\)
0.691453 + 0.722421i \(0.256971\pi\)
\(578\) −21.2286 −0.882995
\(579\) −32.1989 −1.33814
\(580\) −1.33349 −0.0553703
\(581\) −68.1557 −2.82757
\(582\) 9.54627 0.395706
\(583\) 9.27699 0.384214
\(584\) 5.46172 0.226008
\(585\) −9.17350 −0.379278
\(586\) 32.2842 1.33365
\(587\) 41.5823 1.71629 0.858143 0.513411i \(-0.171618\pi\)
0.858143 + 0.513411i \(0.171618\pi\)
\(588\) 41.3184 1.70394
\(589\) 19.7069 0.812007
\(590\) −11.5093 −0.473829
\(591\) 58.8250 2.41974
\(592\) −46.5894 −1.91481
\(593\) 19.7111 0.809438 0.404719 0.914441i \(-0.367369\pi\)
0.404719 + 0.914441i \(0.367369\pi\)
\(594\) 3.25322 0.133481
\(595\) 20.6146 0.845117
\(596\) 25.4167 1.04111
\(597\) −32.1357 −1.31523
\(598\) 32.9137 1.34594
\(599\) 16.9989 0.694558 0.347279 0.937762i \(-0.387106\pi\)
0.347279 + 0.937762i \(0.387106\pi\)
\(600\) −10.5067 −0.428933
\(601\) −33.7387 −1.37623 −0.688115 0.725602i \(-0.741562\pi\)
−0.688115 + 0.725602i \(0.741562\pi\)
\(602\) −29.3420 −1.19589
\(603\) −26.7672 −1.09004
\(604\) 10.2047 0.415223
\(605\) −8.76715 −0.356435
\(606\) 68.4132 2.77910
\(607\) −12.1806 −0.494396 −0.247198 0.968965i \(-0.579510\pi\)
−0.247198 + 0.968965i \(0.579510\pi\)
\(608\) −16.6405 −0.674861
\(609\) −11.0558 −0.448003
\(610\) 11.7501 0.475748
\(611\) 14.0066 0.566646
\(612\) 16.3906 0.662550
\(613\) −14.4438 −0.583379 −0.291690 0.956513i \(-0.594217\pi\)
−0.291690 + 0.956513i \(0.594217\pi\)
\(614\) 43.3691 1.75024
\(615\) −2.50195 −0.100888
\(616\) 4.54814 0.183250
\(617\) 8.77290 0.353183 0.176592 0.984284i \(-0.443493\pi\)
0.176592 + 0.984284i \(0.443493\pi\)
\(618\) −47.6162 −1.91541
\(619\) 19.9600 0.802260 0.401130 0.916021i \(-0.368618\pi\)
0.401130 + 0.916021i \(0.368618\pi\)
\(620\) −9.77465 −0.392559
\(621\) −6.86877 −0.275634
\(622\) −4.56225 −0.182929
\(623\) −24.2093 −0.969926
\(624\) 53.4866 2.14118
\(625\) 14.3028 0.572113
\(626\) 40.4497 1.61670
\(627\) −5.26633 −0.210317
\(628\) −29.6659 −1.18380
\(629\) 51.4820 2.05272
\(630\) −15.5169 −0.618207
\(631\) 12.2024 0.485770 0.242885 0.970055i \(-0.421906\pi\)
0.242885 + 0.970055i \(0.421906\pi\)
\(632\) 6.87216 0.273360
\(633\) 26.3110 1.04577
\(634\) 31.4893 1.25060
\(635\) −13.4681 −0.534463
\(636\) 31.7313 1.25823
\(637\) −62.6253 −2.48130
\(638\) 1.89068 0.0748527
\(639\) −4.11363 −0.162733
\(640\) −7.20762 −0.284906
\(641\) 7.53030 0.297429 0.148715 0.988880i \(-0.452486\pi\)
0.148715 + 0.988880i \(0.452486\pi\)
\(642\) −3.22633 −0.127333
\(643\) 32.3440 1.27552 0.637761 0.770234i \(-0.279861\pi\)
0.637761 + 0.770234i \(0.279861\pi\)
\(644\) 23.0352 0.907714
\(645\) 7.02513 0.276614
\(646\) 24.3109 0.956498
\(647\) 46.0306 1.80965 0.904825 0.425784i \(-0.140002\pi\)
0.904825 + 0.425784i \(0.140002\pi\)
\(648\) −11.7317 −0.460864
\(649\) 6.75182 0.265032
\(650\) −38.2001 −1.49833
\(651\) −81.0400 −3.17621
\(652\) 17.0261 0.666793
\(653\) 16.0341 0.627463 0.313731 0.949512i \(-0.398421\pi\)
0.313731 + 0.949512i \(0.398421\pi\)
\(654\) 28.7958 1.12601
\(655\) −15.6044 −0.609714
\(656\) 6.13162 0.239400
\(657\) 10.9313 0.426472
\(658\) 23.6920 0.923610
\(659\) 17.3962 0.677659 0.338829 0.940848i \(-0.389969\pi\)
0.338829 + 0.940848i \(0.389969\pi\)
\(660\) 2.61211 0.101676
\(661\) −26.6419 −1.03625 −0.518124 0.855305i \(-0.673370\pi\)
−0.518124 + 0.855305i \(0.673370\pi\)
\(662\) −5.77767 −0.224555
\(663\) −59.1035 −2.29539
\(664\) −16.6195 −0.644960
\(665\) −9.52262 −0.369271
\(666\) −38.7511 −1.50158
\(667\) −3.99193 −0.154568
\(668\) −7.15209 −0.276723
\(669\) 33.9909 1.31416
\(670\) 19.6921 0.760772
\(671\) −6.89310 −0.266105
\(672\) 68.4302 2.63975
\(673\) −4.96395 −0.191346 −0.0956732 0.995413i \(-0.530500\pi\)
−0.0956732 + 0.995413i \(0.530500\pi\)
\(674\) 39.4442 1.51933
\(675\) 7.97199 0.306842
\(676\) 15.0881 0.580310
\(677\) −4.27993 −0.164491 −0.0822456 0.996612i \(-0.526209\pi\)
−0.0822456 + 0.996612i \(0.526209\pi\)
\(678\) −47.6701 −1.83076
\(679\) −10.1264 −0.388615
\(680\) 5.02679 0.192768
\(681\) −55.1212 −2.11225
\(682\) 13.8589 0.530684
\(683\) 42.2433 1.61640 0.808198 0.588911i \(-0.200443\pi\)
0.808198 + 0.588911i \(0.200443\pi\)
\(684\) −7.57138 −0.289499
\(685\) 8.13587 0.310856
\(686\) −48.3011 −1.84414
\(687\) 66.6596 2.54322
\(688\) −17.2167 −0.656382
\(689\) −48.0943 −1.83225
\(690\) −13.3294 −0.507442
\(691\) −48.1303 −1.83096 −0.915482 0.402359i \(-0.868190\pi\)
−0.915482 + 0.402359i \(0.868190\pi\)
\(692\) −20.1273 −0.765124
\(693\) 9.10284 0.345788
\(694\) 24.2036 0.918757
\(695\) 3.93797 0.149376
\(696\) −2.69591 −0.102188
\(697\) −6.77554 −0.256642
\(698\) 5.10763 0.193327
\(699\) 4.51475 0.170764
\(700\) −26.7350 −1.01049
\(701\) 51.2784 1.93676 0.968378 0.249486i \(-0.0802618\pi\)
0.968378 + 0.249486i \(0.0802618\pi\)
\(702\) −16.8655 −0.636549
\(703\) −23.7813 −0.896930
\(704\) −2.63218 −0.0992039
\(705\) −5.67239 −0.213635
\(706\) −43.2514 −1.62779
\(707\) −72.5706 −2.72930
\(708\) 23.0941 0.867930
\(709\) −17.0289 −0.639532 −0.319766 0.947497i \(-0.603604\pi\)
−0.319766 + 0.947497i \(0.603604\pi\)
\(710\) 3.02632 0.113576
\(711\) 13.7542 0.515825
\(712\) −5.90334 −0.221237
\(713\) −29.2612 −1.09584
\(714\) −99.9730 −3.74140
\(715\) −3.95911 −0.148062
\(716\) 1.54616 0.0577827
\(717\) 35.2428 1.31617
\(718\) 16.6665 0.621988
\(719\) 22.4148 0.835930 0.417965 0.908463i \(-0.362744\pi\)
0.417965 + 0.908463i \(0.362744\pi\)
\(720\) −9.10469 −0.339312
\(721\) 50.5098 1.88108
\(722\) 23.8637 0.888116
\(723\) −44.0518 −1.63830
\(724\) −14.4131 −0.535657
\(725\) 4.63309 0.172069
\(726\) 42.5173 1.57796
\(727\) 43.7327 1.62196 0.810978 0.585076i \(-0.198935\pi\)
0.810978 + 0.585076i \(0.198935\pi\)
\(728\) −23.5787 −0.873885
\(729\) −10.6765 −0.395425
\(730\) −8.04198 −0.297647
\(731\) 19.0248 0.703657
\(732\) −23.5774 −0.871444
\(733\) 0.746662 0.0275786 0.0137893 0.999905i \(-0.495611\pi\)
0.0137893 + 0.999905i \(0.495611\pi\)
\(734\) −47.0966 −1.73837
\(735\) 25.3620 0.935491
\(736\) 24.7082 0.910756
\(737\) −11.5522 −0.425530
\(738\) 5.10004 0.187735
\(739\) −13.1420 −0.483438 −0.241719 0.970346i \(-0.577711\pi\)
−0.241719 + 0.970346i \(0.577711\pi\)
\(740\) 11.7956 0.433615
\(741\) 27.3020 1.00296
\(742\) −81.3510 −2.98649
\(743\) 34.0373 1.24871 0.624354 0.781141i \(-0.285362\pi\)
0.624354 + 0.781141i \(0.285362\pi\)
\(744\) −19.7613 −0.724483
\(745\) 15.6012 0.571584
\(746\) 19.8704 0.727507
\(747\) −33.2629 −1.21703
\(748\) 7.07386 0.258646
\(749\) 3.42239 0.125051
\(750\) 33.6737 1.22959
\(751\) −4.82573 −0.176093 −0.0880466 0.996116i \(-0.528062\pi\)
−0.0880466 + 0.996116i \(0.528062\pi\)
\(752\) 13.9015 0.506936
\(753\) 42.2545 1.53984
\(754\) −9.80176 −0.356959
\(755\) 6.26382 0.227964
\(756\) −11.8036 −0.429293
\(757\) 53.9676 1.96148 0.980742 0.195307i \(-0.0625705\pi\)
0.980742 + 0.195307i \(0.0625705\pi\)
\(758\) −8.96351 −0.325569
\(759\) 7.81958 0.283833
\(760\) −2.32205 −0.0842296
\(761\) 21.9954 0.797333 0.398667 0.917096i \(-0.369473\pi\)
0.398667 + 0.917096i \(0.369473\pi\)
\(762\) 65.3149 2.36611
\(763\) −30.5457 −1.10583
\(764\) 17.6911 0.640041
\(765\) 10.0608 0.363750
\(766\) 7.11221 0.256975
\(767\) −35.0031 −1.26389
\(768\) 47.7106 1.72161
\(769\) 8.32640 0.300258 0.150129 0.988666i \(-0.452031\pi\)
0.150129 + 0.988666i \(0.452031\pi\)
\(770\) −6.69679 −0.241336
\(771\) 20.9282 0.753712
\(772\) −19.9789 −0.719055
\(773\) −13.2469 −0.476459 −0.238230 0.971209i \(-0.576567\pi\)
−0.238230 + 0.971209i \(0.576567\pi\)
\(774\) −14.3202 −0.514728
\(775\) 33.9610 1.21992
\(776\) −2.46927 −0.0886418
\(777\) 97.7954 3.50839
\(778\) 50.0799 1.79545
\(779\) 3.12986 0.112139
\(780\) −13.5418 −0.484876
\(781\) −1.77537 −0.0635276
\(782\) −36.0974 −1.29084
\(783\) 2.04553 0.0731013
\(784\) −62.1555 −2.21984
\(785\) −18.2094 −0.649923
\(786\) 75.6752 2.69925
\(787\) −22.6644 −0.807897 −0.403948 0.914782i \(-0.632362\pi\)
−0.403948 + 0.914782i \(0.632362\pi\)
\(788\) 36.4999 1.30026
\(789\) 20.4468 0.727926
\(790\) −10.1187 −0.360009
\(791\) 50.5669 1.79795
\(792\) 2.21969 0.0788732
\(793\) 35.7356 1.26901
\(794\) −11.5054 −0.408312
\(795\) 19.4772 0.690786
\(796\) −19.9397 −0.706742
\(797\) −42.3239 −1.49919 −0.749595 0.661897i \(-0.769751\pi\)
−0.749595 + 0.661897i \(0.769751\pi\)
\(798\) 46.1810 1.63479
\(799\) −15.3614 −0.543448
\(800\) −28.6767 −1.01387
\(801\) −11.8152 −0.417470
\(802\) 32.1694 1.13594
\(803\) 4.71776 0.166486
\(804\) −39.5134 −1.39353
\(805\) 14.1394 0.498349
\(806\) −71.8479 −2.53073
\(807\) 27.0908 0.953641
\(808\) −17.6960 −0.622544
\(809\) −1.26438 −0.0444532 −0.0222266 0.999753i \(-0.507076\pi\)
−0.0222266 + 0.999753i \(0.507076\pi\)
\(810\) 17.2740 0.606948
\(811\) −17.5652 −0.616798 −0.308399 0.951257i \(-0.599793\pi\)
−0.308399 + 0.951257i \(0.599793\pi\)
\(812\) −6.85992 −0.240736
\(813\) 27.8743 0.977594
\(814\) −16.7243 −0.586185
\(815\) 10.4509 0.366080
\(816\) −58.6602 −2.05352
\(817\) −8.78821 −0.307461
\(818\) −1.84704 −0.0645802
\(819\) −47.1915 −1.64900
\(820\) −1.55242 −0.0542128
\(821\) 31.5653 1.10164 0.550819 0.834625i \(-0.314316\pi\)
0.550819 + 0.834625i \(0.314316\pi\)
\(822\) −39.4558 −1.37618
\(823\) −48.3629 −1.68583 −0.842913 0.538050i \(-0.819161\pi\)
−0.842913 + 0.538050i \(0.819161\pi\)
\(824\) 12.3166 0.429069
\(825\) −9.07552 −0.315969
\(826\) −59.2074 −2.06009
\(827\) 4.60437 0.160110 0.0800548 0.996790i \(-0.474490\pi\)
0.0800548 + 0.996790i \(0.474490\pi\)
\(828\) 11.2422 0.390693
\(829\) −4.35551 −0.151273 −0.0756365 0.997135i \(-0.524099\pi\)
−0.0756365 + 0.997135i \(0.524099\pi\)
\(830\) 24.4709 0.849398
\(831\) 6.29943 0.218525
\(832\) 13.6459 0.473086
\(833\) 68.6828 2.37972
\(834\) −19.0976 −0.661297
\(835\) −4.39008 −0.151925
\(836\) −3.26767 −0.113015
\(837\) 14.9939 0.518266
\(838\) −33.1048 −1.14359
\(839\) −9.62150 −0.332171 −0.166086 0.986111i \(-0.553113\pi\)
−0.166086 + 0.986111i \(0.553113\pi\)
\(840\) 9.54891 0.329469
\(841\) −27.8112 −0.959007
\(842\) −46.9767 −1.61892
\(843\) 37.2007 1.28126
\(844\) 16.3255 0.561947
\(845\) 9.26132 0.318599
\(846\) 11.5627 0.397535
\(847\) −45.1010 −1.54969
\(848\) −47.7335 −1.63918
\(849\) −32.5056 −1.11559
\(850\) 41.8951 1.43699
\(851\) 35.3111 1.21045
\(852\) −6.07251 −0.208041
\(853\) 53.6073 1.83548 0.917739 0.397184i \(-0.130012\pi\)
0.917739 + 0.397184i \(0.130012\pi\)
\(854\) 60.4464 2.06843
\(855\) −4.64745 −0.158939
\(856\) 0.834535 0.0285238
\(857\) 49.9719 1.70701 0.853503 0.521087i \(-0.174473\pi\)
0.853503 + 0.521087i \(0.174473\pi\)
\(858\) 19.2002 0.655483
\(859\) −20.6492 −0.704541 −0.352270 0.935898i \(-0.614590\pi\)
−0.352270 + 0.935898i \(0.614590\pi\)
\(860\) 4.35897 0.148640
\(861\) −12.8708 −0.438637
\(862\) −31.9171 −1.08710
\(863\) 38.0634 1.29569 0.647846 0.761771i \(-0.275670\pi\)
0.647846 + 0.761771i \(0.275670\pi\)
\(864\) −12.6609 −0.430732
\(865\) −12.3545 −0.420065
\(866\) −61.1968 −2.07955
\(867\) 26.1466 0.887984
\(868\) −50.2839 −1.70675
\(869\) 5.93607 0.201367
\(870\) 3.96952 0.134579
\(871\) 59.8895 2.02928
\(872\) −7.44844 −0.252236
\(873\) −4.94212 −0.167265
\(874\) 16.6746 0.564028
\(875\) −35.7200 −1.20756
\(876\) 16.1367 0.545210
\(877\) −25.2001 −0.850948 −0.425474 0.904971i \(-0.639893\pi\)
−0.425474 + 0.904971i \(0.639893\pi\)
\(878\) −38.4969 −1.29921
\(879\) −39.7633 −1.34118
\(880\) −3.92941 −0.132460
\(881\) −32.3168 −1.08878 −0.544389 0.838833i \(-0.683239\pi\)
−0.544389 + 0.838833i \(0.683239\pi\)
\(882\) −51.6984 −1.74078
\(883\) 20.8144 0.700459 0.350230 0.936664i \(-0.386104\pi\)
0.350230 + 0.936664i \(0.386104\pi\)
\(884\) −36.6727 −1.23344
\(885\) 14.1756 0.476507
\(886\) 76.6934 2.57657
\(887\) 15.8463 0.532068 0.266034 0.963964i \(-0.414287\pi\)
0.266034 + 0.963964i \(0.414287\pi\)
\(888\) 23.8470 0.800253
\(889\) −69.2840 −2.32371
\(890\) 8.69223 0.291364
\(891\) −10.1337 −0.339491
\(892\) 21.0907 0.706170
\(893\) 7.09597 0.237458
\(894\) −75.6599 −2.53044
\(895\) 0.949060 0.0317236
\(896\) −37.0783 −1.23870
\(897\) −40.5387 −1.35355
\(898\) 54.7765 1.82792
\(899\) 8.71405 0.290630
\(900\) −13.0478 −0.434928
\(901\) 52.7463 1.75723
\(902\) 2.20108 0.0732879
\(903\) 36.1395 1.20265
\(904\) 12.3305 0.410107
\(905\) −8.84699 −0.294084
\(906\) −30.3771 −1.00921
\(907\) −53.0221 −1.76057 −0.880286 0.474444i \(-0.842649\pi\)
−0.880286 + 0.474444i \(0.842649\pi\)
\(908\) −34.2017 −1.13502
\(909\) −35.4176 −1.17473
\(910\) 34.7179 1.15089
\(911\) −10.3445 −0.342727 −0.171364 0.985208i \(-0.554817\pi\)
−0.171364 + 0.985208i \(0.554817\pi\)
\(912\) 27.0972 0.897278
\(913\) −14.3556 −0.475102
\(914\) 4.52278 0.149600
\(915\) −14.4722 −0.478436
\(916\) 41.3611 1.36661
\(917\) −80.2739 −2.65088
\(918\) 18.4969 0.610488
\(919\) −51.4484 −1.69713 −0.848563 0.529094i \(-0.822532\pi\)
−0.848563 + 0.529094i \(0.822532\pi\)
\(920\) 3.44784 0.113672
\(921\) −53.4162 −1.76013
\(922\) −12.1681 −0.400736
\(923\) 9.20395 0.302952
\(924\) 13.4375 0.442063
\(925\) −40.9826 −1.34750
\(926\) −38.4432 −1.26332
\(927\) 24.6510 0.809645
\(928\) −7.35814 −0.241543
\(929\) 2.02854 0.0665541 0.0332770 0.999446i \(-0.489406\pi\)
0.0332770 + 0.999446i \(0.489406\pi\)
\(930\) 29.0970 0.954128
\(931\) −31.7270 −1.03981
\(932\) 2.80132 0.0917604
\(933\) 5.61916 0.183963
\(934\) −32.5326 −1.06450
\(935\) 4.34206 0.142001
\(936\) −11.5074 −0.376132
\(937\) −23.5868 −0.770549 −0.385274 0.922802i \(-0.625893\pi\)
−0.385274 + 0.922802i \(0.625893\pi\)
\(938\) 101.302 3.30764
\(939\) −49.8205 −1.62583
\(940\) −3.51962 −0.114797
\(941\) 46.1140 1.50327 0.751637 0.659577i \(-0.229264\pi\)
0.751637 + 0.659577i \(0.229264\pi\)
\(942\) 88.3088 2.87726
\(943\) −4.64730 −0.151337
\(944\) −34.7406 −1.13071
\(945\) −7.24527 −0.235689
\(946\) −6.18032 −0.200940
\(947\) 26.0758 0.847350 0.423675 0.905814i \(-0.360740\pi\)
0.423675 + 0.905814i \(0.360740\pi\)
\(948\) 20.3039 0.659440
\(949\) −24.4580 −0.793942
\(950\) −19.3528 −0.627889
\(951\) −38.7843 −1.25767
\(952\) 25.8594 0.838108
\(953\) −60.5603 −1.96174 −0.980870 0.194666i \(-0.937638\pi\)
−0.980870 + 0.194666i \(0.937638\pi\)
\(954\) −39.7028 −1.28543
\(955\) 10.8591 0.351392
\(956\) 21.8676 0.707247
\(957\) −2.32868 −0.0752757
\(958\) −58.4144 −1.88728
\(959\) 41.8535 1.35152
\(960\) −5.52631 −0.178361
\(961\) 32.8748 1.06048
\(962\) 86.7028 2.79541
\(963\) 1.67027 0.0538239
\(964\) −27.3333 −0.880348
\(965\) −12.2634 −0.394772
\(966\) −68.5708 −2.20623
\(967\) −36.5038 −1.17388 −0.586941 0.809630i \(-0.699668\pi\)
−0.586941 + 0.809630i \(0.699668\pi\)
\(968\) −10.9977 −0.353479
\(969\) −29.9428 −0.961903
\(970\) 3.63582 0.116739
\(971\) 2.62614 0.0842770 0.0421385 0.999112i \(-0.486583\pi\)
0.0421385 + 0.999112i \(0.486583\pi\)
\(972\) −26.7169 −0.856945
\(973\) 20.2582 0.649447
\(974\) −43.2023 −1.38429
\(975\) 47.0498 1.50680
\(976\) 35.4675 1.13529
\(977\) 19.3688 0.619664 0.309832 0.950791i \(-0.399727\pi\)
0.309832 + 0.950791i \(0.399727\pi\)
\(978\) −50.6829 −1.62066
\(979\) −5.09922 −0.162972
\(980\) 15.7367 0.502689
\(981\) −14.9076 −0.475965
\(982\) 21.1684 0.675512
\(983\) 45.2430 1.44303 0.721514 0.692400i \(-0.243446\pi\)
0.721514 + 0.692400i \(0.243446\pi\)
\(984\) −3.13850 −0.100052
\(985\) 22.4043 0.713860
\(986\) 10.7499 0.342345
\(987\) −29.1806 −0.928829
\(988\) 16.9404 0.538946
\(989\) 13.0490 0.414933
\(990\) −3.26833 −0.103874
\(991\) 22.5861 0.717470 0.358735 0.933439i \(-0.383208\pi\)
0.358735 + 0.933439i \(0.383208\pi\)
\(992\) −53.9359 −1.71247
\(993\) 7.11615 0.225824
\(994\) 15.5684 0.493799
\(995\) −12.2393 −0.388012
\(996\) −49.1025 −1.55587
\(997\) −46.7957 −1.48203 −0.741017 0.671487i \(-0.765656\pi\)
−0.741017 + 0.671487i \(0.765656\pi\)
\(998\) −20.8011 −0.658447
\(999\) −18.0940 −0.572469
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.4 20
3.2 odd 2 3681.2.a.i.1.17 20
4.3 odd 2 6544.2.a.i.1.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.4 20 1.1 even 1 trivial
3681.2.a.i.1.17 20 3.2 odd 2
6544.2.a.i.1.4 20 4.3 odd 2