Properties

Label 409.2.a.b.1.16
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(1.89605\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.89605 q^{2} +0.972004 q^{3} +1.59500 q^{4} +1.17356 q^{5} +1.84297 q^{6} +1.87820 q^{7} -0.767899 q^{8} -2.05521 q^{9} +2.22513 q^{10} -0.660558 q^{11} +1.55035 q^{12} +3.13946 q^{13} +3.56116 q^{14} +1.14071 q^{15} -4.64597 q^{16} +3.53185 q^{17} -3.89678 q^{18} -1.60271 q^{19} +1.87183 q^{20} +1.82562 q^{21} -1.25245 q^{22} -1.52749 q^{23} -0.746400 q^{24} -3.62275 q^{25} +5.95256 q^{26} -4.91368 q^{27} +2.99573 q^{28} -6.19279 q^{29} +2.16284 q^{30} +2.78733 q^{31} -7.27320 q^{32} -0.642065 q^{33} +6.69656 q^{34} +2.20419 q^{35} -3.27806 q^{36} -11.4685 q^{37} -3.03881 q^{38} +3.05156 q^{39} -0.901178 q^{40} +7.45968 q^{41} +3.46146 q^{42} +8.74141 q^{43} -1.05359 q^{44} -2.41192 q^{45} -2.89619 q^{46} +6.10570 q^{47} -4.51590 q^{48} -3.47237 q^{49} -6.86891 q^{50} +3.43297 q^{51} +5.00743 q^{52} +12.1790 q^{53} -9.31658 q^{54} -0.775207 q^{55} -1.44227 q^{56} -1.55784 q^{57} -11.7418 q^{58} -3.55992 q^{59} +1.81943 q^{60} -8.45118 q^{61} +5.28492 q^{62} -3.86009 q^{63} -4.49839 q^{64} +3.68435 q^{65} -1.21739 q^{66} -5.59502 q^{67} +5.63331 q^{68} -1.48472 q^{69} +4.17924 q^{70} -9.21827 q^{71} +1.57819 q^{72} +12.4803 q^{73} -21.7448 q^{74} -3.52132 q^{75} -2.55632 q^{76} -1.24066 q^{77} +5.78591 q^{78} -12.0097 q^{79} -5.45235 q^{80} +1.38951 q^{81} +14.1439 q^{82} -2.59714 q^{83} +2.91186 q^{84} +4.14485 q^{85} +16.5741 q^{86} -6.01941 q^{87} +0.507241 q^{88} -4.80605 q^{89} -4.57312 q^{90} +5.89652 q^{91} -2.43634 q^{92} +2.70930 q^{93} +11.5767 q^{94} -1.88088 q^{95} -7.06957 q^{96} +4.44768 q^{97} -6.58379 q^{98} +1.35758 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89605 1.34071 0.670354 0.742041i \(-0.266142\pi\)
0.670354 + 0.742041i \(0.266142\pi\)
\(3\) 0.972004 0.561187 0.280593 0.959827i \(-0.409469\pi\)
0.280593 + 0.959827i \(0.409469\pi\)
\(4\) 1.59500 0.797500
\(5\) 1.17356 0.524834 0.262417 0.964955i \(-0.415480\pi\)
0.262417 + 0.964955i \(0.415480\pi\)
\(6\) 1.84297 0.752388
\(7\) 1.87820 0.709892 0.354946 0.934887i \(-0.384499\pi\)
0.354946 + 0.934887i \(0.384499\pi\)
\(8\) −0.767899 −0.271493
\(9\) −2.05521 −0.685070
\(10\) 2.22513 0.703649
\(11\) −0.660558 −0.199166 −0.0995828 0.995029i \(-0.531751\pi\)
−0.0995828 + 0.995029i \(0.531751\pi\)
\(12\) 1.55035 0.447546
\(13\) 3.13946 0.870728 0.435364 0.900254i \(-0.356620\pi\)
0.435364 + 0.900254i \(0.356620\pi\)
\(14\) 3.56116 0.951759
\(15\) 1.14071 0.294530
\(16\) −4.64597 −1.16149
\(17\) 3.53185 0.856600 0.428300 0.903637i \(-0.359113\pi\)
0.428300 + 0.903637i \(0.359113\pi\)
\(18\) −3.89678 −0.918479
\(19\) −1.60271 −0.367687 −0.183843 0.982956i \(-0.558854\pi\)
−0.183843 + 0.982956i \(0.558854\pi\)
\(20\) 1.87183 0.418555
\(21\) 1.82562 0.398382
\(22\) −1.25245 −0.267023
\(23\) −1.52749 −0.318503 −0.159251 0.987238i \(-0.550908\pi\)
−0.159251 + 0.987238i \(0.550908\pi\)
\(24\) −0.746400 −0.152358
\(25\) −3.62275 −0.724550
\(26\) 5.95256 1.16739
\(27\) −4.91368 −0.945638
\(28\) 2.99573 0.566139
\(29\) −6.19279 −1.14997 −0.574986 0.818163i \(-0.694992\pi\)
−0.574986 + 0.818163i \(0.694992\pi\)
\(30\) 2.16284 0.394878
\(31\) 2.78733 0.500620 0.250310 0.968166i \(-0.419467\pi\)
0.250310 + 0.968166i \(0.419467\pi\)
\(32\) −7.27320 −1.28573
\(33\) −0.642065 −0.111769
\(34\) 6.69656 1.14845
\(35\) 2.20419 0.372575
\(36\) −3.27806 −0.546343
\(37\) −11.4685 −1.88540 −0.942701 0.333637i \(-0.891724\pi\)
−0.942701 + 0.333637i \(0.891724\pi\)
\(38\) −3.03881 −0.492961
\(39\) 3.05156 0.488641
\(40\) −0.901178 −0.142489
\(41\) 7.45968 1.16501 0.582503 0.812829i \(-0.302073\pi\)
0.582503 + 0.812829i \(0.302073\pi\)
\(42\) 3.46146 0.534114
\(43\) 8.74141 1.33305 0.666526 0.745481i \(-0.267780\pi\)
0.666526 + 0.745481i \(0.267780\pi\)
\(44\) −1.05359 −0.158835
\(45\) −2.41192 −0.359548
\(46\) −2.89619 −0.427019
\(47\) 6.10570 0.890608 0.445304 0.895379i \(-0.353096\pi\)
0.445304 + 0.895379i \(0.353096\pi\)
\(48\) −4.51590 −0.651815
\(49\) −3.47237 −0.496053
\(50\) −6.86891 −0.971410
\(51\) 3.43297 0.480712
\(52\) 5.00743 0.694406
\(53\) 12.1790 1.67291 0.836454 0.548037i \(-0.184625\pi\)
0.836454 + 0.548037i \(0.184625\pi\)
\(54\) −9.31658 −1.26783
\(55\) −0.775207 −0.104529
\(56\) −1.44227 −0.192731
\(57\) −1.55784 −0.206341
\(58\) −11.7418 −1.54178
\(59\) −3.55992 −0.463462 −0.231731 0.972780i \(-0.574439\pi\)
−0.231731 + 0.972780i \(0.574439\pi\)
\(60\) 1.81943 0.234887
\(61\) −8.45118 −1.08206 −0.541031 0.841002i \(-0.681966\pi\)
−0.541031 + 0.841002i \(0.681966\pi\)
\(62\) 5.28492 0.671186
\(63\) −3.86009 −0.486326
\(64\) −4.49839 −0.562298
\(65\) 3.68435 0.456988
\(66\) −1.21739 −0.149850
\(67\) −5.59502 −0.683541 −0.341770 0.939783i \(-0.611027\pi\)
−0.341770 + 0.939783i \(0.611027\pi\)
\(68\) 5.63331 0.683139
\(69\) −1.48472 −0.178739
\(70\) 4.17924 0.499515
\(71\) −9.21827 −1.09401 −0.547004 0.837130i \(-0.684232\pi\)
−0.547004 + 0.837130i \(0.684232\pi\)
\(72\) 1.57819 0.185992
\(73\) 12.4803 1.46071 0.730353 0.683070i \(-0.239356\pi\)
0.730353 + 0.683070i \(0.239356\pi\)
\(74\) −21.7448 −2.52778
\(75\) −3.52132 −0.406608
\(76\) −2.55632 −0.293230
\(77\) −1.24066 −0.141386
\(78\) 5.78591 0.655125
\(79\) −12.0097 −1.35119 −0.675597 0.737271i \(-0.736114\pi\)
−0.675597 + 0.737271i \(0.736114\pi\)
\(80\) −5.45235 −0.609591
\(81\) 1.38951 0.154390
\(82\) 14.1439 1.56193
\(83\) −2.59714 −0.285074 −0.142537 0.989790i \(-0.545526\pi\)
−0.142537 + 0.989790i \(0.545526\pi\)
\(84\) 2.91186 0.317710
\(85\) 4.14485 0.449572
\(86\) 16.5741 1.78724
\(87\) −6.01941 −0.645348
\(88\) 0.507241 0.0540721
\(89\) −4.80605 −0.509440 −0.254720 0.967015i \(-0.581983\pi\)
−0.254720 + 0.967015i \(0.581983\pi\)
\(90\) −4.57312 −0.482049
\(91\) 5.89652 0.618123
\(92\) −2.43634 −0.254006
\(93\) 2.70930 0.280941
\(94\) 11.5767 1.19405
\(95\) −1.88088 −0.192974
\(96\) −7.06957 −0.721535
\(97\) 4.44768 0.451593 0.225797 0.974174i \(-0.427501\pi\)
0.225797 + 0.974174i \(0.427501\pi\)
\(98\) −6.58379 −0.665063
\(99\) 1.35758 0.136442
\(100\) −5.77829 −0.577829
\(101\) 3.69821 0.367986 0.183993 0.982928i \(-0.441098\pi\)
0.183993 + 0.982928i \(0.441098\pi\)
\(102\) 6.50908 0.644495
\(103\) 9.02564 0.889323 0.444661 0.895699i \(-0.353324\pi\)
0.444661 + 0.895699i \(0.353324\pi\)
\(104\) −2.41078 −0.236397
\(105\) 2.14248 0.209084
\(106\) 23.0919 2.24288
\(107\) 8.91245 0.861599 0.430800 0.902448i \(-0.358232\pi\)
0.430800 + 0.902448i \(0.358232\pi\)
\(108\) −7.83732 −0.754147
\(109\) 6.41961 0.614887 0.307444 0.951566i \(-0.400526\pi\)
0.307444 + 0.951566i \(0.400526\pi\)
\(110\) −1.46983 −0.140143
\(111\) −11.1474 −1.05806
\(112\) −8.72606 −0.824535
\(113\) −2.79405 −0.262842 −0.131421 0.991327i \(-0.541954\pi\)
−0.131421 + 0.991327i \(0.541954\pi\)
\(114\) −2.95374 −0.276643
\(115\) −1.79260 −0.167161
\(116\) −9.87750 −0.917102
\(117\) −6.45224 −0.596510
\(118\) −6.74979 −0.621368
\(119\) 6.63352 0.608094
\(120\) −0.875948 −0.0799628
\(121\) −10.5637 −0.960333
\(122\) −16.0238 −1.45073
\(123\) 7.25083 0.653786
\(124\) 4.44580 0.399244
\(125\) −10.1193 −0.905102
\(126\) −7.31892 −0.652021
\(127\) 15.5725 1.38184 0.690919 0.722932i \(-0.257206\pi\)
0.690919 + 0.722932i \(0.257206\pi\)
\(128\) 6.01723 0.531853
\(129\) 8.49668 0.748091
\(130\) 6.98571 0.612687
\(131\) 13.6245 1.19038 0.595189 0.803586i \(-0.297077\pi\)
0.595189 + 0.803586i \(0.297077\pi\)
\(132\) −1.02409 −0.0891359
\(133\) −3.01020 −0.261018
\(134\) −10.6084 −0.916429
\(135\) −5.76652 −0.496303
\(136\) −2.71210 −0.232561
\(137\) 10.0052 0.854803 0.427401 0.904062i \(-0.359429\pi\)
0.427401 + 0.904062i \(0.359429\pi\)
\(138\) −2.81510 −0.239638
\(139\) 7.04859 0.597854 0.298927 0.954276i \(-0.403371\pi\)
0.298927 + 0.954276i \(0.403371\pi\)
\(140\) 3.51568 0.297129
\(141\) 5.93476 0.499797
\(142\) −17.4783 −1.46674
\(143\) −2.07379 −0.173419
\(144\) 9.54845 0.795704
\(145\) −7.26763 −0.603544
\(146\) 23.6632 1.95838
\(147\) −3.37516 −0.278378
\(148\) −18.2922 −1.50361
\(149\) 4.26885 0.349718 0.174859 0.984593i \(-0.444053\pi\)
0.174859 + 0.984593i \(0.444053\pi\)
\(150\) −6.67660 −0.545142
\(151\) 6.87874 0.559784 0.279892 0.960031i \(-0.409701\pi\)
0.279892 + 0.960031i \(0.409701\pi\)
\(152\) 1.23072 0.0998244
\(153\) −7.25869 −0.586831
\(154\) −2.35235 −0.189558
\(155\) 3.27111 0.262742
\(156\) 4.86724 0.389691
\(157\) −12.3880 −0.988669 −0.494334 0.869272i \(-0.664588\pi\)
−0.494334 + 0.869272i \(0.664588\pi\)
\(158\) −22.7709 −1.81156
\(159\) 11.8380 0.938814
\(160\) −8.53556 −0.674795
\(161\) −2.86892 −0.226103
\(162\) 2.63458 0.206992
\(163\) 20.3543 1.59427 0.797136 0.603799i \(-0.206347\pi\)
0.797136 + 0.603799i \(0.206347\pi\)
\(164\) 11.8982 0.929092
\(165\) −0.753504 −0.0586602
\(166\) −4.92431 −0.382201
\(167\) 18.4501 1.42772 0.713858 0.700291i \(-0.246946\pi\)
0.713858 + 0.700291i \(0.246946\pi\)
\(168\) −1.40189 −0.108158
\(169\) −3.14382 −0.241832
\(170\) 7.85884 0.602746
\(171\) 3.29390 0.251891
\(172\) 13.9426 1.06311
\(173\) 3.92588 0.298479 0.149240 0.988801i \(-0.452317\pi\)
0.149240 + 0.988801i \(0.452317\pi\)
\(174\) −11.4131 −0.865224
\(175\) −6.80424 −0.514352
\(176\) 3.06893 0.231330
\(177\) −3.46026 −0.260089
\(178\) −9.11251 −0.683011
\(179\) −2.51299 −0.187830 −0.0939150 0.995580i \(-0.529938\pi\)
−0.0939150 + 0.995580i \(0.529938\pi\)
\(180\) −3.84701 −0.286739
\(181\) 12.4802 0.927646 0.463823 0.885928i \(-0.346477\pi\)
0.463823 + 0.885928i \(0.346477\pi\)
\(182\) 11.1801 0.828723
\(183\) −8.21458 −0.607239
\(184\) 1.17295 0.0864713
\(185\) −13.4590 −0.989523
\(186\) 5.13696 0.376660
\(187\) −2.33299 −0.170605
\(188\) 9.73859 0.710260
\(189\) −9.22887 −0.671301
\(190\) −3.56624 −0.258722
\(191\) −9.07445 −0.656604 −0.328302 0.944573i \(-0.606476\pi\)
−0.328302 + 0.944573i \(0.606476\pi\)
\(192\) −4.37245 −0.315554
\(193\) −15.5956 −1.12260 −0.561300 0.827613i \(-0.689698\pi\)
−0.561300 + 0.827613i \(0.689698\pi\)
\(194\) 8.43302 0.605455
\(195\) 3.58120 0.256455
\(196\) −5.53843 −0.395602
\(197\) 2.35090 0.167495 0.0837474 0.996487i \(-0.473311\pi\)
0.0837474 + 0.996487i \(0.473311\pi\)
\(198\) 2.57405 0.182929
\(199\) 0.675453 0.0478816 0.0239408 0.999713i \(-0.492379\pi\)
0.0239408 + 0.999713i \(0.492379\pi\)
\(200\) 2.78190 0.196710
\(201\) −5.43838 −0.383594
\(202\) 7.01199 0.493362
\(203\) −11.6313 −0.816356
\(204\) 5.47559 0.383368
\(205\) 8.75441 0.611434
\(206\) 17.1131 1.19232
\(207\) 3.13930 0.218197
\(208\) −14.5858 −1.01135
\(209\) 1.05868 0.0732305
\(210\) 4.06224 0.280321
\(211\) −4.62446 −0.318361 −0.159181 0.987249i \(-0.550885\pi\)
−0.159181 + 0.987249i \(0.550885\pi\)
\(212\) 19.4254 1.33415
\(213\) −8.96019 −0.613942
\(214\) 16.8984 1.15515
\(215\) 10.2586 0.699631
\(216\) 3.77321 0.256734
\(217\) 5.23516 0.355386
\(218\) 12.1719 0.824385
\(219\) 12.1309 0.819728
\(220\) −1.23646 −0.0833618
\(221\) 11.0881 0.745866
\(222\) −21.1360 −1.41855
\(223\) −7.41478 −0.496531 −0.248265 0.968692i \(-0.579860\pi\)
−0.248265 + 0.968692i \(0.579860\pi\)
\(224\) −13.6605 −0.912731
\(225\) 7.44550 0.496367
\(226\) −5.29766 −0.352395
\(227\) 22.1135 1.46772 0.733862 0.679298i \(-0.237716\pi\)
0.733862 + 0.679298i \(0.237716\pi\)
\(228\) −2.48475 −0.164557
\(229\) −17.5974 −1.16287 −0.581434 0.813593i \(-0.697508\pi\)
−0.581434 + 0.813593i \(0.697508\pi\)
\(230\) −3.39886 −0.224114
\(231\) −1.20592 −0.0793440
\(232\) 4.75543 0.312209
\(233\) 10.5325 0.690007 0.345003 0.938601i \(-0.387878\pi\)
0.345003 + 0.938601i \(0.387878\pi\)
\(234\) −12.2338 −0.799746
\(235\) 7.16543 0.467421
\(236\) −5.67808 −0.369611
\(237\) −11.6734 −0.758272
\(238\) 12.5775 0.815276
\(239\) −7.61277 −0.492429 −0.246215 0.969215i \(-0.579187\pi\)
−0.246215 + 0.969215i \(0.579187\pi\)
\(240\) −5.29970 −0.342094
\(241\) −21.2758 −1.37050 −0.685248 0.728310i \(-0.740306\pi\)
−0.685248 + 0.728310i \(0.740306\pi\)
\(242\) −20.0292 −1.28753
\(243\) 16.0917 1.03228
\(244\) −13.4796 −0.862945
\(245\) −4.07505 −0.260345
\(246\) 13.7479 0.876536
\(247\) −5.03163 −0.320155
\(248\) −2.14039 −0.135915
\(249\) −2.52443 −0.159979
\(250\) −19.1868 −1.21348
\(251\) −6.96387 −0.439555 −0.219778 0.975550i \(-0.570533\pi\)
−0.219778 + 0.975550i \(0.570533\pi\)
\(252\) −6.15685 −0.387845
\(253\) 1.00899 0.0634348
\(254\) 29.5263 1.85264
\(255\) 4.02881 0.252294
\(256\) 20.4057 1.27536
\(257\) −7.68381 −0.479303 −0.239651 0.970859i \(-0.577033\pi\)
−0.239651 + 0.970859i \(0.577033\pi\)
\(258\) 16.1101 1.00297
\(259\) −21.5400 −1.33843
\(260\) 5.87654 0.364448
\(261\) 12.7275 0.787810
\(262\) 25.8327 1.59595
\(263\) 22.5399 1.38987 0.694934 0.719074i \(-0.255434\pi\)
0.694934 + 0.719074i \(0.255434\pi\)
\(264\) 0.493041 0.0303445
\(265\) 14.2928 0.877999
\(266\) −5.70749 −0.349949
\(267\) −4.67150 −0.285891
\(268\) −8.92406 −0.545124
\(269\) −20.6354 −1.25816 −0.629082 0.777339i \(-0.716569\pi\)
−0.629082 + 0.777339i \(0.716569\pi\)
\(270\) −10.9336 −0.665398
\(271\) 9.53213 0.579035 0.289518 0.957173i \(-0.406505\pi\)
0.289518 + 0.957173i \(0.406505\pi\)
\(272\) −16.4089 −0.994935
\(273\) 5.73144 0.346882
\(274\) 18.9704 1.14604
\(275\) 2.39303 0.144305
\(276\) −2.36813 −0.142545
\(277\) 11.3525 0.682106 0.341053 0.940044i \(-0.389217\pi\)
0.341053 + 0.940044i \(0.389217\pi\)
\(278\) 13.3645 0.801548
\(279\) −5.72855 −0.342959
\(280\) −1.69259 −0.101152
\(281\) −0.243462 −0.0145237 −0.00726185 0.999974i \(-0.502312\pi\)
−0.00726185 + 0.999974i \(0.502312\pi\)
\(282\) 11.2526 0.670082
\(283\) −20.8454 −1.23913 −0.619565 0.784945i \(-0.712691\pi\)
−0.619565 + 0.784945i \(0.712691\pi\)
\(284\) −14.7031 −0.872471
\(285\) −1.82822 −0.108295
\(286\) −3.93201 −0.232505
\(287\) 14.0108 0.827028
\(288\) 14.9479 0.880816
\(289\) −4.52603 −0.266237
\(290\) −13.7798 −0.809176
\(291\) 4.32316 0.253428
\(292\) 19.9060 1.16491
\(293\) 10.3636 0.605447 0.302723 0.953078i \(-0.402104\pi\)
0.302723 + 0.953078i \(0.402104\pi\)
\(294\) −6.39946 −0.373224
\(295\) −4.17780 −0.243241
\(296\) 8.80661 0.511874
\(297\) 3.24577 0.188339
\(298\) 8.09395 0.468870
\(299\) −4.79547 −0.277329
\(300\) −5.61651 −0.324270
\(301\) 16.4181 0.946324
\(302\) 13.0424 0.750507
\(303\) 3.59467 0.206509
\(304\) 7.44614 0.427066
\(305\) −9.91800 −0.567903
\(306\) −13.7628 −0.786769
\(307\) −14.2586 −0.813783 −0.406891 0.913477i \(-0.633387\pi\)
−0.406891 + 0.913477i \(0.633387\pi\)
\(308\) −1.97885 −0.112756
\(309\) 8.77295 0.499076
\(310\) 6.20219 0.352261
\(311\) 32.9594 1.86895 0.934477 0.356023i \(-0.115868\pi\)
0.934477 + 0.356023i \(0.115868\pi\)
\(312\) −2.34329 −0.132663
\(313\) 8.96988 0.507008 0.253504 0.967334i \(-0.418417\pi\)
0.253504 + 0.967334i \(0.418417\pi\)
\(314\) −23.4882 −1.32552
\(315\) −4.53006 −0.255240
\(316\) −19.1554 −1.07758
\(317\) −31.6969 −1.78028 −0.890138 0.455691i \(-0.849392\pi\)
−0.890138 + 0.455691i \(0.849392\pi\)
\(318\) 22.4454 1.25868
\(319\) 4.09069 0.229035
\(320\) −5.27914 −0.295113
\(321\) 8.66294 0.483518
\(322\) −5.43961 −0.303138
\(323\) −5.66053 −0.314960
\(324\) 2.21627 0.123126
\(325\) −11.3735 −0.630886
\(326\) 38.5928 2.13746
\(327\) 6.23989 0.345066
\(328\) −5.72828 −0.316291
\(329\) 11.4677 0.632236
\(330\) −1.42868 −0.0786462
\(331\) 6.11301 0.336002 0.168001 0.985787i \(-0.446269\pi\)
0.168001 + 0.985787i \(0.446269\pi\)
\(332\) −4.14245 −0.227346
\(333\) 23.5701 1.29163
\(334\) 34.9824 1.91415
\(335\) −6.56612 −0.358745
\(336\) −8.48176 −0.462718
\(337\) −27.7611 −1.51224 −0.756121 0.654432i \(-0.772908\pi\)
−0.756121 + 0.654432i \(0.772908\pi\)
\(338\) −5.96083 −0.324227
\(339\) −2.71583 −0.147504
\(340\) 6.61104 0.358534
\(341\) −1.84120 −0.0997063
\(342\) 6.24540 0.337712
\(343\) −19.6692 −1.06204
\(344\) −6.71252 −0.361915
\(345\) −1.74242 −0.0938085
\(346\) 7.44366 0.400174
\(347\) 14.3085 0.768121 0.384061 0.923308i \(-0.374525\pi\)
0.384061 + 0.923308i \(0.374525\pi\)
\(348\) −9.60096 −0.514666
\(349\) −25.9079 −1.38682 −0.693409 0.720544i \(-0.743892\pi\)
−0.693409 + 0.720544i \(0.743892\pi\)
\(350\) −12.9012 −0.689596
\(351\) −15.4263 −0.823394
\(352\) 4.80437 0.256074
\(353\) −16.2569 −0.865265 −0.432633 0.901570i \(-0.642415\pi\)
−0.432633 + 0.901570i \(0.642415\pi\)
\(354\) −6.56082 −0.348703
\(355\) −10.8182 −0.574172
\(356\) −7.66566 −0.406279
\(357\) 6.44780 0.341254
\(358\) −4.76476 −0.251825
\(359\) −2.01625 −0.106413 −0.0532067 0.998584i \(-0.516944\pi\)
−0.0532067 + 0.998584i \(0.516944\pi\)
\(360\) 1.85211 0.0976147
\(361\) −16.4313 −0.864807
\(362\) 23.6631 1.24370
\(363\) −10.2679 −0.538926
\(364\) 9.40495 0.492953
\(365\) 14.6464 0.766627
\(366\) −15.5752 −0.814131
\(367\) 2.99174 0.156168 0.0780839 0.996947i \(-0.475120\pi\)
0.0780839 + 0.996947i \(0.475120\pi\)
\(368\) 7.09666 0.369939
\(369\) −15.3312 −0.798110
\(370\) −25.5189 −1.32666
\(371\) 22.8745 1.18758
\(372\) 4.32133 0.224051
\(373\) −1.59062 −0.0823591 −0.0411795 0.999152i \(-0.513112\pi\)
−0.0411795 + 0.999152i \(0.513112\pi\)
\(374\) −4.42347 −0.228732
\(375\) −9.83604 −0.507931
\(376\) −4.68856 −0.241794
\(377\) −19.4420 −1.00131
\(378\) −17.4984 −0.900020
\(379\) −32.2797 −1.65810 −0.829049 0.559176i \(-0.811118\pi\)
−0.829049 + 0.559176i \(0.811118\pi\)
\(380\) −3.00001 −0.153897
\(381\) 15.1365 0.775469
\(382\) −17.2056 −0.880315
\(383\) 25.0354 1.27925 0.639625 0.768687i \(-0.279090\pi\)
0.639625 + 0.768687i \(0.279090\pi\)
\(384\) 5.84877 0.298469
\(385\) −1.45599 −0.0742042
\(386\) −29.5701 −1.50508
\(387\) −17.9654 −0.913234
\(388\) 7.09405 0.360146
\(389\) 12.3661 0.626986 0.313493 0.949590i \(-0.398501\pi\)
0.313493 + 0.949590i \(0.398501\pi\)
\(390\) 6.79013 0.343832
\(391\) −5.39485 −0.272829
\(392\) 2.66643 0.134675
\(393\) 13.2431 0.668024
\(394\) 4.45742 0.224562
\(395\) −14.0941 −0.709152
\(396\) 2.16535 0.108813
\(397\) −15.4081 −0.773309 −0.386654 0.922225i \(-0.626369\pi\)
−0.386654 + 0.922225i \(0.626369\pi\)
\(398\) 1.28069 0.0641953
\(399\) −2.92593 −0.146480
\(400\) 16.8312 0.841560
\(401\) −0.347141 −0.0173354 −0.00866770 0.999962i \(-0.502759\pi\)
−0.00866770 + 0.999962i \(0.502759\pi\)
\(402\) −10.3114 −0.514288
\(403\) 8.75071 0.435904
\(404\) 5.89865 0.293469
\(405\) 1.63068 0.0810291
\(406\) −22.0535 −1.09450
\(407\) 7.57558 0.375508
\(408\) −2.63617 −0.130510
\(409\) 1.00000 0.0494468
\(410\) 16.5988 0.819755
\(411\) 9.72510 0.479704
\(412\) 14.3959 0.709235
\(413\) −6.68624 −0.329008
\(414\) 5.95227 0.292538
\(415\) −3.04791 −0.149616
\(416\) −22.8339 −1.11952
\(417\) 6.85126 0.335507
\(418\) 2.00731 0.0981808
\(419\) −10.1111 −0.493959 −0.246979 0.969021i \(-0.579438\pi\)
−0.246979 + 0.969021i \(0.579438\pi\)
\(420\) 3.41725 0.166745
\(421\) −29.1186 −1.41915 −0.709576 0.704629i \(-0.751113\pi\)
−0.709576 + 0.704629i \(0.751113\pi\)
\(422\) −8.76821 −0.426830
\(423\) −12.5485 −0.610128
\(424\) −9.35221 −0.454183
\(425\) −12.7950 −0.620649
\(426\) −16.9890 −0.823118
\(427\) −15.8730 −0.768148
\(428\) 14.2154 0.687126
\(429\) −2.01573 −0.0973205
\(430\) 19.4508 0.938001
\(431\) −15.0403 −0.724466 −0.362233 0.932088i \(-0.617986\pi\)
−0.362233 + 0.932088i \(0.617986\pi\)
\(432\) 22.8288 1.09835
\(433\) −29.2100 −1.40374 −0.701872 0.712303i \(-0.747652\pi\)
−0.701872 + 0.712303i \(0.747652\pi\)
\(434\) 9.92613 0.476469
\(435\) −7.06416 −0.338701
\(436\) 10.2393 0.490373
\(437\) 2.44811 0.117109
\(438\) 23.0007 1.09902
\(439\) 33.0594 1.57784 0.788920 0.614496i \(-0.210641\pi\)
0.788920 + 0.614496i \(0.210641\pi\)
\(440\) 0.595280 0.0283789
\(441\) 7.13645 0.339831
\(442\) 21.0236 0.999989
\(443\) −19.7670 −0.939157 −0.469578 0.882891i \(-0.655594\pi\)
−0.469578 + 0.882891i \(0.655594\pi\)
\(444\) −17.7801 −0.843805
\(445\) −5.64021 −0.267371
\(446\) −14.0588 −0.665703
\(447\) 4.14934 0.196257
\(448\) −8.44886 −0.399171
\(449\) −8.94927 −0.422342 −0.211171 0.977449i \(-0.567728\pi\)
−0.211171 + 0.977449i \(0.567728\pi\)
\(450\) 14.1170 0.665484
\(451\) −4.92755 −0.232029
\(452\) −4.45651 −0.209617
\(453\) 6.68616 0.314143
\(454\) 41.9283 1.96779
\(455\) 6.91994 0.324412
\(456\) 1.19626 0.0560201
\(457\) 15.2739 0.714484 0.357242 0.934012i \(-0.383717\pi\)
0.357242 + 0.934012i \(0.383717\pi\)
\(458\) −33.3655 −1.55907
\(459\) −17.3544 −0.810034
\(460\) −2.85920 −0.133311
\(461\) −37.9187 −1.76605 −0.883026 0.469325i \(-0.844497\pi\)
−0.883026 + 0.469325i \(0.844497\pi\)
\(462\) −2.28649 −0.106377
\(463\) 13.6247 0.633194 0.316597 0.948560i \(-0.397460\pi\)
0.316597 + 0.948560i \(0.397460\pi\)
\(464\) 28.7715 1.33568
\(465\) 3.17953 0.147447
\(466\) 19.9701 0.925098
\(467\) 4.17503 0.193197 0.0965987 0.995323i \(-0.469204\pi\)
0.0965987 + 0.995323i \(0.469204\pi\)
\(468\) −10.2913 −0.475717
\(469\) −10.5086 −0.485240
\(470\) 13.5860 0.626675
\(471\) −12.0412 −0.554827
\(472\) 2.73366 0.125827
\(473\) −5.77421 −0.265498
\(474\) −22.1334 −1.01662
\(475\) 5.80621 0.266407
\(476\) 10.5805 0.484955
\(477\) −25.0303 −1.14606
\(478\) −14.4342 −0.660204
\(479\) −3.57205 −0.163211 −0.0816056 0.996665i \(-0.526005\pi\)
−0.0816056 + 0.996665i \(0.526005\pi\)
\(480\) −8.29659 −0.378686
\(481\) −36.0047 −1.64167
\(482\) −40.3400 −1.83744
\(483\) −2.78860 −0.126886
\(484\) −16.8490 −0.765866
\(485\) 5.21963 0.237011
\(486\) 30.5106 1.38399
\(487\) −21.2793 −0.964255 −0.482128 0.876101i \(-0.660136\pi\)
−0.482128 + 0.876101i \(0.660136\pi\)
\(488\) 6.48965 0.293773
\(489\) 19.7845 0.894684
\(490\) −7.72649 −0.349047
\(491\) 28.4185 1.28251 0.641255 0.767328i \(-0.278414\pi\)
0.641255 + 0.767328i \(0.278414\pi\)
\(492\) 11.5651 0.521394
\(493\) −21.8720 −0.985065
\(494\) −9.54022 −0.429235
\(495\) 1.59321 0.0716095
\(496\) −12.9499 −0.581467
\(497\) −17.3137 −0.776627
\(498\) −4.78645 −0.214486
\(499\) −35.0686 −1.56988 −0.784942 0.619569i \(-0.787308\pi\)
−0.784942 + 0.619569i \(0.787308\pi\)
\(500\) −16.1404 −0.721819
\(501\) 17.9336 0.801215
\(502\) −13.2038 −0.589316
\(503\) 0.262159 0.0116891 0.00584454 0.999983i \(-0.498140\pi\)
0.00584454 + 0.999983i \(0.498140\pi\)
\(504\) 2.96416 0.132034
\(505\) 4.34009 0.193131
\(506\) 1.91310 0.0850476
\(507\) −3.05580 −0.135713
\(508\) 24.8382 1.10202
\(509\) 27.3021 1.21014 0.605072 0.796171i \(-0.293144\pi\)
0.605072 + 0.796171i \(0.293144\pi\)
\(510\) 7.63882 0.338253
\(511\) 23.4404 1.03694
\(512\) 26.6558 1.17803
\(513\) 7.87520 0.347699
\(514\) −14.5689 −0.642605
\(515\) 10.5922 0.466746
\(516\) 13.5522 0.596603
\(517\) −4.03317 −0.177379
\(518\) −40.8410 −1.79445
\(519\) 3.81597 0.167502
\(520\) −2.82921 −0.124069
\(521\) 18.0665 0.791509 0.395754 0.918356i \(-0.370483\pi\)
0.395754 + 0.918356i \(0.370483\pi\)
\(522\) 24.1319 1.05622
\(523\) −20.6909 −0.904752 −0.452376 0.891827i \(-0.649423\pi\)
−0.452376 + 0.891827i \(0.649423\pi\)
\(524\) 21.7311 0.949327
\(525\) −6.61375 −0.288648
\(526\) 42.7367 1.86341
\(527\) 9.84445 0.428831
\(528\) 2.98302 0.129819
\(529\) −20.6668 −0.898556
\(530\) 27.0998 1.17714
\(531\) 7.31638 0.317504
\(532\) −4.80128 −0.208162
\(533\) 23.4193 1.01440
\(534\) −8.85739 −0.383297
\(535\) 10.4593 0.452196
\(536\) 4.29641 0.185577
\(537\) −2.44264 −0.105408
\(538\) −39.1257 −1.68683
\(539\) 2.29370 0.0987967
\(540\) −9.19760 −0.395802
\(541\) 30.5888 1.31511 0.657557 0.753405i \(-0.271590\pi\)
0.657557 + 0.753405i \(0.271590\pi\)
\(542\) 18.0734 0.776318
\(543\) 12.1308 0.520582
\(544\) −25.6878 −1.10136
\(545\) 7.53382 0.322714
\(546\) 10.8671 0.465068
\(547\) 14.7666 0.631372 0.315686 0.948864i \(-0.397765\pi\)
0.315686 + 0.948864i \(0.397765\pi\)
\(548\) 15.9583 0.681706
\(549\) 17.3689 0.741288
\(550\) 4.53731 0.193472
\(551\) 9.92523 0.422829
\(552\) 1.14012 0.0485265
\(553\) −22.5566 −0.959202
\(554\) 21.5249 0.914505
\(555\) −13.0822 −0.555307
\(556\) 11.2425 0.476788
\(557\) 32.1543 1.36242 0.681211 0.732087i \(-0.261454\pi\)
0.681211 + 0.732087i \(0.261454\pi\)
\(558\) −10.8616 −0.459809
\(559\) 27.4433 1.16073
\(560\) −10.2406 −0.432744
\(561\) −2.26768 −0.0957414
\(562\) −0.461615 −0.0194721
\(563\) −39.4405 −1.66222 −0.831110 0.556109i \(-0.812294\pi\)
−0.831110 + 0.556109i \(0.812294\pi\)
\(564\) 9.46595 0.398588
\(565\) −3.27900 −0.137948
\(566\) −39.5239 −1.66131
\(567\) 2.60978 0.109600
\(568\) 7.07869 0.297015
\(569\) −0.771919 −0.0323605 −0.0161803 0.999869i \(-0.505151\pi\)
−0.0161803 + 0.999869i \(0.505151\pi\)
\(570\) −3.46640 −0.145191
\(571\) −6.66763 −0.279032 −0.139516 0.990220i \(-0.544555\pi\)
−0.139516 + 0.990220i \(0.544555\pi\)
\(572\) −3.30770 −0.138302
\(573\) −8.82039 −0.368477
\(574\) 26.5651 1.10880
\(575\) 5.53370 0.230771
\(576\) 9.24512 0.385213
\(577\) 31.2723 1.30188 0.650942 0.759128i \(-0.274374\pi\)
0.650942 + 0.759128i \(0.274374\pi\)
\(578\) −8.58156 −0.356946
\(579\) −15.1590 −0.629988
\(580\) −11.5919 −0.481326
\(581\) −4.87795 −0.202372
\(582\) 8.19692 0.339773
\(583\) −8.04491 −0.333186
\(584\) −9.58358 −0.396571
\(585\) −7.57211 −0.313068
\(586\) 19.6499 0.811728
\(587\) 4.05302 0.167286 0.0836431 0.996496i \(-0.473344\pi\)
0.0836431 + 0.996496i \(0.473344\pi\)
\(588\) −5.38338 −0.222007
\(589\) −4.46728 −0.184071
\(590\) −7.92130 −0.326115
\(591\) 2.28508 0.0939958
\(592\) 53.2822 2.18988
\(593\) 6.60358 0.271177 0.135588 0.990765i \(-0.456708\pi\)
0.135588 + 0.990765i \(0.456708\pi\)
\(594\) 6.15414 0.252507
\(595\) 7.78486 0.319148
\(596\) 6.80882 0.278900
\(597\) 0.656543 0.0268705
\(598\) −9.09245 −0.371818
\(599\) 28.1040 1.14830 0.574149 0.818750i \(-0.305333\pi\)
0.574149 + 0.818750i \(0.305333\pi\)
\(600\) 2.70402 0.110391
\(601\) −32.2145 −1.31406 −0.657029 0.753866i \(-0.728187\pi\)
−0.657029 + 0.753866i \(0.728187\pi\)
\(602\) 31.1295 1.26874
\(603\) 11.4989 0.468273
\(604\) 10.9716 0.446428
\(605\) −12.3971 −0.504015
\(606\) 6.81568 0.276868
\(607\) 24.6563 1.00077 0.500384 0.865804i \(-0.333192\pi\)
0.500384 + 0.865804i \(0.333192\pi\)
\(608\) 11.6568 0.472746
\(609\) −11.3056 −0.458128
\(610\) −18.8050 −0.761392
\(611\) 19.1686 0.775477
\(612\) −11.5776 −0.467998
\(613\) 19.0444 0.769195 0.384597 0.923084i \(-0.374340\pi\)
0.384597 + 0.923084i \(0.374340\pi\)
\(614\) −27.0350 −1.09105
\(615\) 8.50931 0.343129
\(616\) 0.952700 0.0383854
\(617\) 26.1846 1.05415 0.527076 0.849818i \(-0.323288\pi\)
0.527076 + 0.849818i \(0.323288\pi\)
\(618\) 16.6339 0.669116
\(619\) −31.8280 −1.27928 −0.639638 0.768677i \(-0.720916\pi\)
−0.639638 + 0.768677i \(0.720916\pi\)
\(620\) 5.21743 0.209537
\(621\) 7.50558 0.301188
\(622\) 62.4926 2.50572
\(623\) −9.02672 −0.361648
\(624\) −14.1775 −0.567553
\(625\) 6.23805 0.249522
\(626\) 17.0073 0.679750
\(627\) 1.02904 0.0410960
\(628\) −19.7588 −0.788463
\(629\) −40.5049 −1.61504
\(630\) −8.58922 −0.342203
\(631\) 25.5972 1.01901 0.509504 0.860468i \(-0.329829\pi\)
0.509504 + 0.860468i \(0.329829\pi\)
\(632\) 9.22221 0.366840
\(633\) −4.49499 −0.178660
\(634\) −60.0989 −2.38683
\(635\) 18.2753 0.725235
\(636\) 18.8816 0.748704
\(637\) −10.9014 −0.431927
\(638\) 7.75615 0.307069
\(639\) 18.9455 0.749471
\(640\) 7.06161 0.279135
\(641\) 17.8941 0.706774 0.353387 0.935477i \(-0.385030\pi\)
0.353387 + 0.935477i \(0.385030\pi\)
\(642\) 16.4253 0.648257
\(643\) 24.8619 0.980459 0.490229 0.871593i \(-0.336913\pi\)
0.490229 + 0.871593i \(0.336913\pi\)
\(644\) −4.57593 −0.180317
\(645\) 9.97140 0.392623
\(646\) −10.7326 −0.422270
\(647\) −38.6520 −1.51957 −0.759783 0.650177i \(-0.774695\pi\)
−0.759783 + 0.650177i \(0.774695\pi\)
\(648\) −1.06700 −0.0419158
\(649\) 2.35153 0.0923058
\(650\) −21.5646 −0.845834
\(651\) 5.08860 0.199438
\(652\) 32.4651 1.27143
\(653\) −24.4718 −0.957656 −0.478828 0.877909i \(-0.658938\pi\)
−0.478828 + 0.877909i \(0.658938\pi\)
\(654\) 11.8311 0.462634
\(655\) 15.9892 0.624751
\(656\) −34.6575 −1.35315
\(657\) −25.6496 −1.00068
\(658\) 21.7433 0.847644
\(659\) 26.3373 1.02596 0.512978 0.858402i \(-0.328542\pi\)
0.512978 + 0.858402i \(0.328542\pi\)
\(660\) −1.20184 −0.0467815
\(661\) 3.44609 0.134038 0.0670188 0.997752i \(-0.478651\pi\)
0.0670188 + 0.997752i \(0.478651\pi\)
\(662\) 11.5906 0.450480
\(663\) 10.7777 0.418570
\(664\) 1.99434 0.0773955
\(665\) −3.53267 −0.136991
\(666\) 44.6900 1.73170
\(667\) 9.45939 0.366269
\(668\) 29.4280 1.13860
\(669\) −7.20720 −0.278646
\(670\) −12.4497 −0.480973
\(671\) 5.58249 0.215510
\(672\) −13.2781 −0.512212
\(673\) −17.2653 −0.665527 −0.332764 0.943010i \(-0.607981\pi\)
−0.332764 + 0.943010i \(0.607981\pi\)
\(674\) −52.6363 −2.02748
\(675\) 17.8010 0.685162
\(676\) −5.01439 −0.192861
\(677\) 2.92530 0.112428 0.0562142 0.998419i \(-0.482097\pi\)
0.0562142 + 0.998419i \(0.482097\pi\)
\(678\) −5.14934 −0.197759
\(679\) 8.35362 0.320583
\(680\) −3.18283 −0.122056
\(681\) 21.4944 0.823667
\(682\) −3.49100 −0.133677
\(683\) −18.2366 −0.697804 −0.348902 0.937159i \(-0.613445\pi\)
−0.348902 + 0.937159i \(0.613445\pi\)
\(684\) 5.25377 0.200883
\(685\) 11.7418 0.448629
\(686\) −37.2937 −1.42388
\(687\) −17.1047 −0.652586
\(688\) −40.6124 −1.54833
\(689\) 38.2353 1.45665
\(690\) −3.30370 −0.125770
\(691\) 29.4210 1.11923 0.559613 0.828754i \(-0.310950\pi\)
0.559613 + 0.828754i \(0.310950\pi\)
\(692\) 6.26178 0.238037
\(693\) 2.54981 0.0968594
\(694\) 27.1296 1.02983
\(695\) 8.27197 0.313774
\(696\) 4.62230 0.175208
\(697\) 26.3465 0.997944
\(698\) −49.1227 −1.85932
\(699\) 10.2376 0.387223
\(700\) −10.8528 −0.410196
\(701\) 18.2846 0.690601 0.345301 0.938492i \(-0.387777\pi\)
0.345301 + 0.938492i \(0.387777\pi\)
\(702\) −29.2490 −1.10393
\(703\) 18.3806 0.693237
\(704\) 2.97144 0.111990
\(705\) 6.96482 0.262310
\(706\) −30.8238 −1.16007
\(707\) 6.94597 0.261230
\(708\) −5.51911 −0.207421
\(709\) 11.2944 0.424171 0.212085 0.977251i \(-0.431975\pi\)
0.212085 + 0.977251i \(0.431975\pi\)
\(710\) −20.5119 −0.769797
\(711\) 24.6824 0.925662
\(712\) 3.69056 0.138310
\(713\) −4.25761 −0.159449
\(714\) 12.2253 0.457522
\(715\) −2.43373 −0.0910162
\(716\) −4.00823 −0.149794
\(717\) −7.39964 −0.276345
\(718\) −3.82290 −0.142669
\(719\) −28.4111 −1.05955 −0.529777 0.848137i \(-0.677724\pi\)
−0.529777 + 0.848137i \(0.677724\pi\)
\(720\) 11.2057 0.417612
\(721\) 16.9519 0.631323
\(722\) −31.1546 −1.15945
\(723\) −20.6802 −0.769104
\(724\) 19.9059 0.739798
\(725\) 22.4349 0.833211
\(726\) −19.4685 −0.722543
\(727\) −11.3690 −0.421651 −0.210826 0.977524i \(-0.567615\pi\)
−0.210826 + 0.977524i \(0.567615\pi\)
\(728\) −4.52793 −0.167816
\(729\) 11.4726 0.424912
\(730\) 27.7703 1.02782
\(731\) 30.8734 1.14189
\(732\) −13.1023 −0.484273
\(733\) 17.7129 0.654242 0.327121 0.944982i \(-0.393921\pi\)
0.327121 + 0.944982i \(0.393921\pi\)
\(734\) 5.67249 0.209376
\(735\) −3.96096 −0.146102
\(736\) 11.1097 0.409509
\(737\) 3.69584 0.136138
\(738\) −29.0687 −1.07003
\(739\) −5.53202 −0.203499 −0.101749 0.994810i \(-0.532444\pi\)
−0.101749 + 0.994810i \(0.532444\pi\)
\(740\) −21.4671 −0.789145
\(741\) −4.89076 −0.179667
\(742\) 43.3712 1.59221
\(743\) −31.1293 −1.14202 −0.571012 0.820942i \(-0.693449\pi\)
−0.571012 + 0.820942i \(0.693449\pi\)
\(744\) −2.08047 −0.0762736
\(745\) 5.00977 0.183544
\(746\) −3.01589 −0.110420
\(747\) 5.33767 0.195295
\(748\) −3.72112 −0.136058
\(749\) 16.7394 0.611643
\(750\) −18.6496 −0.680987
\(751\) −14.5955 −0.532599 −0.266299 0.963890i \(-0.585801\pi\)
−0.266299 + 0.963890i \(0.585801\pi\)
\(752\) −28.3669 −1.03444
\(753\) −6.76890 −0.246673
\(754\) −36.8629 −1.34247
\(755\) 8.07264 0.293793
\(756\) −14.7200 −0.535363
\(757\) −3.08384 −0.112084 −0.0560420 0.998428i \(-0.517848\pi\)
−0.0560420 + 0.998428i \(0.517848\pi\)
\(758\) −61.2039 −2.22303
\(759\) 0.980744 0.0355988
\(760\) 1.44433 0.0523912
\(761\) 3.11254 0.112829 0.0564147 0.998407i \(-0.482033\pi\)
0.0564147 + 0.998407i \(0.482033\pi\)
\(762\) 28.6996 1.03968
\(763\) 12.0573 0.436504
\(764\) −14.4737 −0.523642
\(765\) −8.51854 −0.307988
\(766\) 47.4683 1.71510
\(767\) −11.1762 −0.403550
\(768\) 19.8345 0.715714
\(769\) −21.7099 −0.782880 −0.391440 0.920204i \(-0.628023\pi\)
−0.391440 + 0.920204i \(0.628023\pi\)
\(770\) −2.76063 −0.0994863
\(771\) −7.46869 −0.268978
\(772\) −24.8751 −0.895273
\(773\) 25.2412 0.907863 0.453931 0.891037i \(-0.350021\pi\)
0.453931 + 0.891037i \(0.350021\pi\)
\(774\) −34.0633 −1.22438
\(775\) −10.0978 −0.362724
\(776\) −3.41537 −0.122605
\(777\) −20.9370 −0.751111
\(778\) 23.4467 0.840606
\(779\) −11.9557 −0.428357
\(780\) 5.71202 0.204523
\(781\) 6.08920 0.217889
\(782\) −10.2289 −0.365785
\(783\) 30.4294 1.08746
\(784\) 16.1325 0.576162
\(785\) −14.5381 −0.518887
\(786\) 25.1095 0.895626
\(787\) 18.4022 0.655969 0.327984 0.944683i \(-0.393631\pi\)
0.327984 + 0.944683i \(0.393631\pi\)
\(788\) 3.74969 0.133577
\(789\) 21.9088 0.779975
\(790\) −26.7231 −0.950767
\(791\) −5.24778 −0.186590
\(792\) −1.04249 −0.0370432
\(793\) −26.5321 −0.942182
\(794\) −29.2144 −1.03678
\(795\) 13.8926 0.492721
\(796\) 1.07735 0.0381856
\(797\) −29.8970 −1.05900 −0.529502 0.848308i \(-0.677621\pi\)
−0.529502 + 0.848308i \(0.677621\pi\)
\(798\) −5.54770 −0.196387
\(799\) 21.5644 0.762894
\(800\) 26.3490 0.931576
\(801\) 9.87744 0.349002
\(802\) −0.658197 −0.0232417
\(803\) −8.24394 −0.290922
\(804\) −8.67422 −0.305916
\(805\) −3.36686 −0.118666
\(806\) 16.5918 0.584420
\(807\) −20.0577 −0.706064
\(808\) −2.83985 −0.0999056
\(809\) −13.7840 −0.484621 −0.242310 0.970199i \(-0.577905\pi\)
−0.242310 + 0.970199i \(0.577905\pi\)
\(810\) 3.09185 0.108636
\(811\) −54.7860 −1.92380 −0.961898 0.273407i \(-0.911849\pi\)
−0.961898 + 0.273407i \(0.911849\pi\)
\(812\) −18.5519 −0.651044
\(813\) 9.26526 0.324947
\(814\) 14.3637 0.503446
\(815\) 23.8871 0.836728
\(816\) −15.9495 −0.558344
\(817\) −14.0099 −0.490146
\(818\) 1.89605 0.0662938
\(819\) −12.1186 −0.423457
\(820\) 13.9633 0.487619
\(821\) −3.64212 −0.127111 −0.0635555 0.997978i \(-0.520244\pi\)
−0.0635555 + 0.997978i \(0.520244\pi\)
\(822\) 18.4393 0.643143
\(823\) 12.7841 0.445627 0.222813 0.974861i \(-0.428476\pi\)
0.222813 + 0.974861i \(0.428476\pi\)
\(824\) −6.93078 −0.241445
\(825\) 2.32604 0.0809823
\(826\) −12.6774 −0.441104
\(827\) −42.4885 −1.47747 −0.738735 0.673996i \(-0.764577\pi\)
−0.738735 + 0.673996i \(0.764577\pi\)
\(828\) 5.00719 0.174012
\(829\) −5.45416 −0.189431 −0.0947154 0.995504i \(-0.530194\pi\)
−0.0947154 + 0.995504i \(0.530194\pi\)
\(830\) −5.77899 −0.200592
\(831\) 11.0347 0.382788
\(832\) −14.1225 −0.489609
\(833\) −12.2639 −0.424919
\(834\) 12.9903 0.449818
\(835\) 21.6524 0.749313
\(836\) 1.68860 0.0584014
\(837\) −13.6961 −0.473405
\(838\) −19.1711 −0.662255
\(839\) 40.8536 1.41042 0.705211 0.708997i \(-0.250852\pi\)
0.705211 + 0.708997i \(0.250852\pi\)
\(840\) −1.64520 −0.0567649
\(841\) 9.35059 0.322434
\(842\) −55.2102 −1.90267
\(843\) −0.236646 −0.00815050
\(844\) −7.37602 −0.253893
\(845\) −3.68947 −0.126922
\(846\) −23.7925 −0.818005
\(847\) −19.8407 −0.681733
\(848\) −56.5831 −1.94307
\(849\) −20.2618 −0.695383
\(850\) −24.2600 −0.832110
\(851\) 17.5179 0.600506
\(852\) −14.2915 −0.489619
\(853\) −41.8276 −1.43215 −0.716075 0.698023i \(-0.754063\pi\)
−0.716075 + 0.698023i \(0.754063\pi\)
\(854\) −30.0960 −1.02986
\(855\) 3.86560 0.132201
\(856\) −6.84386 −0.233918
\(857\) −52.8929 −1.80679 −0.903393 0.428813i \(-0.858932\pi\)
−0.903393 + 0.428813i \(0.858932\pi\)
\(858\) −3.82193 −0.130478
\(859\) −5.22079 −0.178131 −0.0890656 0.996026i \(-0.528388\pi\)
−0.0890656 + 0.996026i \(0.528388\pi\)
\(860\) 16.3625 0.557956
\(861\) 13.6185 0.464117
\(862\) −28.5172 −0.971298
\(863\) −54.2898 −1.84805 −0.924024 0.382335i \(-0.875120\pi\)
−0.924024 + 0.382335i \(0.875120\pi\)
\(864\) 35.7382 1.21584
\(865\) 4.60727 0.156652
\(866\) −55.3836 −1.88201
\(867\) −4.39931 −0.149408
\(868\) 8.35009 0.283421
\(869\) 7.93309 0.269112
\(870\) −13.3940 −0.454099
\(871\) −17.5653 −0.595178
\(872\) −4.92961 −0.166938
\(873\) −9.14091 −0.309373
\(874\) 4.64174 0.157009
\(875\) −19.0061 −0.642525
\(876\) 19.3487 0.653733
\(877\) −19.3162 −0.652263 −0.326131 0.945324i \(-0.605745\pi\)
−0.326131 + 0.945324i \(0.605745\pi\)
\(878\) 62.6823 2.11542
\(879\) 10.0734 0.339769
\(880\) 3.60159 0.121410
\(881\) 10.2758 0.346200 0.173100 0.984904i \(-0.444622\pi\)
0.173100 + 0.984904i \(0.444622\pi\)
\(882\) 13.5311 0.455614
\(883\) −0.673102 −0.0226517 −0.0113258 0.999936i \(-0.503605\pi\)
−0.0113258 + 0.999936i \(0.503605\pi\)
\(884\) 17.6855 0.594828
\(885\) −4.06083 −0.136503
\(886\) −37.4791 −1.25914
\(887\) 46.6681 1.56696 0.783481 0.621416i \(-0.213442\pi\)
0.783481 + 0.621416i \(0.213442\pi\)
\(888\) 8.56006 0.287257
\(889\) 29.2483 0.980956
\(890\) −10.6941 −0.358467
\(891\) −0.917852 −0.0307492
\(892\) −11.8266 −0.395983
\(893\) −9.78566 −0.327464
\(894\) 7.86735 0.263123
\(895\) −2.94916 −0.0985795
\(896\) 11.3016 0.377559
\(897\) −4.66122 −0.155634
\(898\) −16.9683 −0.566238
\(899\) −17.2614 −0.575699
\(900\) 11.8756 0.395853
\(901\) 43.0143 1.43301
\(902\) −9.34287 −0.311084
\(903\) 15.9585 0.531064
\(904\) 2.14555 0.0713599
\(905\) 14.6463 0.486860
\(906\) 12.6773 0.421175
\(907\) 2.11538 0.0702401 0.0351200 0.999383i \(-0.488819\pi\)
0.0351200 + 0.999383i \(0.488819\pi\)
\(908\) 35.2710 1.17051
\(909\) −7.60059 −0.252096
\(910\) 13.1205 0.434942
\(911\) 56.4199 1.86927 0.934637 0.355603i \(-0.115725\pi\)
0.934637 + 0.355603i \(0.115725\pi\)
\(912\) 7.23768 0.239663
\(913\) 1.71556 0.0567769
\(914\) 28.9601 0.957915
\(915\) −9.64033 −0.318699
\(916\) −28.0679 −0.927388
\(917\) 25.5895 0.845040
\(918\) −32.9048 −1.08602
\(919\) −23.4794 −0.774513 −0.387256 0.921972i \(-0.626577\pi\)
−0.387256 + 0.921972i \(0.626577\pi\)
\(920\) 1.37654 0.0453831
\(921\) −13.8594 −0.456684
\(922\) −71.8957 −2.36776
\(923\) −28.9403 −0.952583
\(924\) −1.92345 −0.0632769
\(925\) 41.5473 1.36607
\(926\) 25.8331 0.848929
\(927\) −18.5496 −0.609248
\(928\) 45.0413 1.47855
\(929\) 46.7568 1.53404 0.767020 0.641623i \(-0.221738\pi\)
0.767020 + 0.641623i \(0.221738\pi\)
\(930\) 6.02855 0.197684
\(931\) 5.56520 0.182392
\(932\) 16.7993 0.550281
\(933\) 32.0366 1.04883
\(934\) 7.91607 0.259022
\(935\) −2.73792 −0.0895394
\(936\) 4.95466 0.161948
\(937\) 54.1331 1.76845 0.884226 0.467060i \(-0.154687\pi\)
0.884226 + 0.467060i \(0.154687\pi\)
\(938\) −19.9247 −0.650566
\(939\) 8.71876 0.284526
\(940\) 11.4289 0.372768
\(941\) −21.2548 −0.692888 −0.346444 0.938071i \(-0.612611\pi\)
−0.346444 + 0.938071i \(0.612611\pi\)
\(942\) −22.8306 −0.743862
\(943\) −11.3945 −0.371057
\(944\) 16.5393 0.538309
\(945\) −10.8307 −0.352322
\(946\) −10.9482 −0.355956
\(947\) −34.7588 −1.12951 −0.564755 0.825259i \(-0.691029\pi\)
−0.564755 + 0.825259i \(0.691029\pi\)
\(948\) −18.6192 −0.604722
\(949\) 39.1813 1.27188
\(950\) 11.0089 0.357174
\(951\) −30.8095 −0.999067
\(952\) −5.09387 −0.165093
\(953\) −33.2464 −1.07696 −0.538479 0.842639i \(-0.681001\pi\)
−0.538479 + 0.842639i \(0.681001\pi\)
\(954\) −47.4587 −1.53653
\(955\) −10.6494 −0.344608
\(956\) −12.1424 −0.392712
\(957\) 3.97617 0.128531
\(958\) −6.77278 −0.218819
\(959\) 18.7918 0.606818
\(960\) −5.13134 −0.165613
\(961\) −23.2308 −0.749380
\(962\) −68.2667 −2.20101
\(963\) −18.3170 −0.590256
\(964\) −33.9349 −1.09297
\(965\) −18.3025 −0.589178
\(966\) −5.28732 −0.170117
\(967\) 57.3850 1.84538 0.922689 0.385545i \(-0.125987\pi\)
0.922689 + 0.385545i \(0.125987\pi\)
\(968\) 8.11182 0.260724
\(969\) −5.50205 −0.176751
\(970\) 9.89668 0.317763
\(971\) 12.2948 0.394560 0.197280 0.980347i \(-0.436789\pi\)
0.197280 + 0.980347i \(0.436789\pi\)
\(972\) 25.6662 0.823244
\(973\) 13.2387 0.424412
\(974\) −40.3465 −1.29279
\(975\) −11.0550 −0.354045
\(976\) 39.2640 1.25681
\(977\) 42.3917 1.35623 0.678115 0.734956i \(-0.262797\pi\)
0.678115 + 0.734956i \(0.262797\pi\)
\(978\) 37.5123 1.19951
\(979\) 3.17468 0.101463
\(980\) −6.49971 −0.207625
\(981\) −13.1936 −0.421241
\(982\) 53.8829 1.71947
\(983\) 18.9499 0.604407 0.302204 0.953243i \(-0.402278\pi\)
0.302204 + 0.953243i \(0.402278\pi\)
\(984\) −5.56790 −0.177498
\(985\) 2.75893 0.0879069
\(986\) −41.4704 −1.32069
\(987\) 11.1467 0.354802
\(988\) −8.02546 −0.255324
\(989\) −13.3524 −0.424581
\(990\) 3.02081 0.0960076
\(991\) 57.1892 1.81667 0.908337 0.418239i \(-0.137353\pi\)
0.908337 + 0.418239i \(0.137353\pi\)
\(992\) −20.2728 −0.643663
\(993\) 5.94187 0.188560
\(994\) −32.8277 −1.04123
\(995\) 0.792687 0.0251299
\(996\) −4.02647 −0.127584
\(997\) 46.9941 1.48832 0.744160 0.668002i \(-0.232850\pi\)
0.744160 + 0.668002i \(0.232850\pi\)
\(998\) −66.4917 −2.10476
\(999\) 56.3524 1.78291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.16 20
3.2 odd 2 3681.2.a.i.1.5 20
4.3 odd 2 6544.2.a.i.1.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.16 20 1.1 even 1 trivial
3681.2.a.i.1.5 20 3.2 odd 2
6544.2.a.i.1.9 20 4.3 odd 2