Properties

Label 409.2.a.b.1.14
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(1.59576\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.59576 q^{2} -2.30987 q^{3} +0.546465 q^{4} +2.27401 q^{5} -3.68601 q^{6} +1.11928 q^{7} -2.31950 q^{8} +2.33551 q^{9} +3.62878 q^{10} +5.64263 q^{11} -1.26226 q^{12} +4.63250 q^{13} +1.78611 q^{14} -5.25267 q^{15} -4.79431 q^{16} -5.13442 q^{17} +3.72692 q^{18} +3.82544 q^{19} +1.24267 q^{20} -2.58540 q^{21} +9.00431 q^{22} +8.64693 q^{23} +5.35775 q^{24} +0.171118 q^{25} +7.39237 q^{26} +1.53489 q^{27} +0.611649 q^{28} +3.47670 q^{29} -8.38203 q^{30} -3.14509 q^{31} -3.01158 q^{32} -13.0338 q^{33} -8.19333 q^{34} +2.54526 q^{35} +1.27627 q^{36} -7.83219 q^{37} +6.10450 q^{38} -10.7005 q^{39} -5.27456 q^{40} -7.22331 q^{41} -4.12569 q^{42} +6.31621 q^{43} +3.08350 q^{44} +5.31097 q^{45} +13.7985 q^{46} -6.96264 q^{47} +11.0742 q^{48} -5.74720 q^{49} +0.273064 q^{50} +11.8599 q^{51} +2.53150 q^{52} -11.5281 q^{53} +2.44932 q^{54} +12.8314 q^{55} -2.59618 q^{56} -8.83628 q^{57} +5.54799 q^{58} -4.04329 q^{59} -2.87040 q^{60} +6.10123 q^{61} -5.01882 q^{62} +2.61410 q^{63} +4.78283 q^{64} +10.5343 q^{65} -20.7988 q^{66} -12.9796 q^{67} -2.80578 q^{68} -19.9733 q^{69} +4.06164 q^{70} -0.129308 q^{71} -5.41721 q^{72} +6.82272 q^{73} -12.4983 q^{74} -0.395261 q^{75} +2.09047 q^{76} +6.31571 q^{77} -17.0754 q^{78} +14.7727 q^{79} -10.9023 q^{80} -10.5519 q^{81} -11.5267 q^{82} +6.48568 q^{83} -1.41283 q^{84} -11.6757 q^{85} +10.0792 q^{86} -8.03073 q^{87} -13.0881 q^{88} +4.34780 q^{89} +8.47506 q^{90} +5.18508 q^{91} +4.72524 q^{92} +7.26475 q^{93} -11.1107 q^{94} +8.69909 q^{95} +6.95637 q^{96} -1.38126 q^{97} -9.17118 q^{98} +13.1784 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.59576 1.12838 0.564188 0.825646i \(-0.309189\pi\)
0.564188 + 0.825646i \(0.309189\pi\)
\(3\) −2.30987 −1.33361 −0.666803 0.745234i \(-0.732338\pi\)
−0.666803 + 0.745234i \(0.732338\pi\)
\(4\) 0.546465 0.273232
\(5\) 2.27401 1.01697 0.508484 0.861071i \(-0.330206\pi\)
0.508484 + 0.861071i \(0.330206\pi\)
\(6\) −3.68601 −1.50481
\(7\) 1.11928 0.423050 0.211525 0.977373i \(-0.432157\pi\)
0.211525 + 0.977373i \(0.432157\pi\)
\(8\) −2.31950 −0.820067
\(9\) 2.33551 0.778503
\(10\) 3.62878 1.14752
\(11\) 5.64263 1.70132 0.850659 0.525718i \(-0.176203\pi\)
0.850659 + 0.525718i \(0.176203\pi\)
\(12\) −1.26226 −0.364384
\(13\) 4.63250 1.28482 0.642412 0.766360i \(-0.277934\pi\)
0.642412 + 0.766360i \(0.277934\pi\)
\(14\) 1.78611 0.477359
\(15\) −5.25267 −1.35623
\(16\) −4.79431 −1.19858
\(17\) −5.13442 −1.24528 −0.622640 0.782508i \(-0.713940\pi\)
−0.622640 + 0.782508i \(0.713940\pi\)
\(18\) 3.72692 0.878444
\(19\) 3.82544 0.877616 0.438808 0.898581i \(-0.355401\pi\)
0.438808 + 0.898581i \(0.355401\pi\)
\(20\) 1.24267 0.277869
\(21\) −2.58540 −0.564181
\(22\) 9.00431 1.91973
\(23\) 8.64693 1.80301 0.901505 0.432769i \(-0.142463\pi\)
0.901505 + 0.432769i \(0.142463\pi\)
\(24\) 5.35775 1.09365
\(25\) 0.171118 0.0342236
\(26\) 7.39237 1.44976
\(27\) 1.53489 0.295389
\(28\) 0.611649 0.115591
\(29\) 3.47670 0.645607 0.322803 0.946466i \(-0.395375\pi\)
0.322803 + 0.946466i \(0.395375\pi\)
\(30\) −8.38203 −1.53034
\(31\) −3.14509 −0.564874 −0.282437 0.959286i \(-0.591143\pi\)
−0.282437 + 0.959286i \(0.591143\pi\)
\(32\) −3.01158 −0.532378
\(33\) −13.0338 −2.26889
\(34\) −8.19333 −1.40514
\(35\) 2.54526 0.430228
\(36\) 1.27627 0.212712
\(37\) −7.83219 −1.28760 −0.643802 0.765192i \(-0.722644\pi\)
−0.643802 + 0.765192i \(0.722644\pi\)
\(38\) 6.10450 0.990281
\(39\) −10.7005 −1.71345
\(40\) −5.27456 −0.833982
\(41\) −7.22331 −1.12809 −0.564046 0.825744i \(-0.690756\pi\)
−0.564046 + 0.825744i \(0.690756\pi\)
\(42\) −4.12569 −0.636608
\(43\) 6.31621 0.963213 0.481607 0.876387i \(-0.340053\pi\)
0.481607 + 0.876387i \(0.340053\pi\)
\(44\) 3.08350 0.464855
\(45\) 5.31097 0.791713
\(46\) 13.7985 2.03447
\(47\) −6.96264 −1.01561 −0.507803 0.861473i \(-0.669542\pi\)
−0.507803 + 0.861473i \(0.669542\pi\)
\(48\) 11.0742 1.59843
\(49\) −5.74720 −0.821029
\(50\) 0.273064 0.0386171
\(51\) 11.8599 1.66071
\(52\) 2.53150 0.351055
\(53\) −11.5281 −1.58350 −0.791752 0.610843i \(-0.790831\pi\)
−0.791752 + 0.610843i \(0.790831\pi\)
\(54\) 2.44932 0.333310
\(55\) 12.8314 1.73019
\(56\) −2.59618 −0.346929
\(57\) −8.83628 −1.17039
\(58\) 5.54799 0.728487
\(59\) −4.04329 −0.526391 −0.263196 0.964742i \(-0.584776\pi\)
−0.263196 + 0.964742i \(0.584776\pi\)
\(60\) −2.87040 −0.370567
\(61\) 6.10123 0.781183 0.390591 0.920564i \(-0.372271\pi\)
0.390591 + 0.920564i \(0.372271\pi\)
\(62\) −5.01882 −0.637390
\(63\) 2.61410 0.329345
\(64\) 4.78283 0.597854
\(65\) 10.5343 1.30662
\(66\) −20.7988 −2.56016
\(67\) −12.9796 −1.58571 −0.792853 0.609413i \(-0.791405\pi\)
−0.792853 + 0.609413i \(0.791405\pi\)
\(68\) −2.80578 −0.340251
\(69\) −19.9733 −2.40450
\(70\) 4.06164 0.485459
\(71\) −0.129308 −0.0153461 −0.00767303 0.999971i \(-0.502442\pi\)
−0.00767303 + 0.999971i \(0.502442\pi\)
\(72\) −5.41721 −0.638425
\(73\) 6.82272 0.798540 0.399270 0.916833i \(-0.369264\pi\)
0.399270 + 0.916833i \(0.369264\pi\)
\(74\) −12.4983 −1.45290
\(75\) −0.395261 −0.0456408
\(76\) 2.09047 0.239793
\(77\) 6.31571 0.719742
\(78\) −17.0754 −1.93341
\(79\) 14.7727 1.66205 0.831027 0.556232i \(-0.187753\pi\)
0.831027 + 0.556232i \(0.187753\pi\)
\(80\) −10.9023 −1.21891
\(81\) −10.5519 −1.17244
\(82\) −11.5267 −1.27291
\(83\) 6.48568 0.711896 0.355948 0.934506i \(-0.384158\pi\)
0.355948 + 0.934506i \(0.384158\pi\)
\(84\) −1.41283 −0.154153
\(85\) −11.6757 −1.26641
\(86\) 10.0792 1.08687
\(87\) −8.03073 −0.860984
\(88\) −13.0881 −1.39519
\(89\) 4.34780 0.460866 0.230433 0.973088i \(-0.425986\pi\)
0.230433 + 0.973088i \(0.425986\pi\)
\(90\) 8.47506 0.893350
\(91\) 5.18508 0.543544
\(92\) 4.72524 0.492641
\(93\) 7.26475 0.753319
\(94\) −11.1107 −1.14598
\(95\) 8.69909 0.892508
\(96\) 6.95637 0.709982
\(97\) −1.38126 −0.140246 −0.0701229 0.997538i \(-0.522339\pi\)
−0.0701229 + 0.997538i \(0.522339\pi\)
\(98\) −9.17118 −0.926430
\(99\) 13.1784 1.32448
\(100\) 0.0935101 0.00935101
\(101\) 0.945729 0.0941035 0.0470518 0.998892i \(-0.485017\pi\)
0.0470518 + 0.998892i \(0.485017\pi\)
\(102\) 18.9255 1.87391
\(103\) −18.7810 −1.85055 −0.925273 0.379302i \(-0.876164\pi\)
−0.925273 + 0.379302i \(0.876164\pi\)
\(104\) −10.7451 −1.05364
\(105\) −5.87923 −0.573754
\(106\) −18.3961 −1.78679
\(107\) 6.38130 0.616904 0.308452 0.951240i \(-0.400189\pi\)
0.308452 + 0.951240i \(0.400189\pi\)
\(108\) 0.838762 0.0807099
\(109\) 11.9434 1.14397 0.571984 0.820265i \(-0.306174\pi\)
0.571984 + 0.820265i \(0.306174\pi\)
\(110\) 20.4759 1.95230
\(111\) 18.0914 1.71716
\(112\) −5.36619 −0.507057
\(113\) −8.83064 −0.830717 −0.415359 0.909658i \(-0.636344\pi\)
−0.415359 + 0.909658i \(0.636344\pi\)
\(114\) −14.1006 −1.32064
\(115\) 19.6632 1.83360
\(116\) 1.89989 0.176401
\(117\) 10.8192 1.00024
\(118\) −6.45214 −0.593967
\(119\) −5.74687 −0.526815
\(120\) 12.1836 1.11220
\(121\) 20.8393 1.89448
\(122\) 9.73613 0.881468
\(123\) 16.6849 1.50443
\(124\) −1.71868 −0.154342
\(125\) −10.9809 −0.982164
\(126\) 4.17149 0.371625
\(127\) −17.6388 −1.56519 −0.782597 0.622528i \(-0.786106\pi\)
−0.782597 + 0.622528i \(0.786106\pi\)
\(128\) 13.6554 1.20698
\(129\) −14.5896 −1.28455
\(130\) 16.8103 1.47436
\(131\) −4.30376 −0.376021 −0.188011 0.982167i \(-0.560204\pi\)
−0.188011 + 0.982167i \(0.560204\pi\)
\(132\) −7.12249 −0.619933
\(133\) 4.28175 0.371275
\(134\) −20.7123 −1.78927
\(135\) 3.49035 0.300401
\(136\) 11.9093 1.02121
\(137\) 7.74286 0.661518 0.330759 0.943715i \(-0.392695\pi\)
0.330759 + 0.943715i \(0.392695\pi\)
\(138\) −31.8727 −2.71318
\(139\) −18.7780 −1.59273 −0.796365 0.604816i \(-0.793247\pi\)
−0.796365 + 0.604816i \(0.793247\pi\)
\(140\) 1.39090 0.117552
\(141\) 16.0828 1.35442
\(142\) −0.206345 −0.0173161
\(143\) 26.1395 2.18589
\(144\) −11.1971 −0.933096
\(145\) 7.90604 0.656561
\(146\) 10.8875 0.901053
\(147\) 13.2753 1.09493
\(148\) −4.28002 −0.351815
\(149\) 5.83633 0.478131 0.239065 0.971003i \(-0.423159\pi\)
0.239065 + 0.971003i \(0.423159\pi\)
\(150\) −0.630744 −0.0515000
\(151\) 12.2018 0.992970 0.496485 0.868045i \(-0.334624\pi\)
0.496485 + 0.868045i \(0.334624\pi\)
\(152\) −8.87311 −0.719704
\(153\) −11.9915 −0.969454
\(154\) 10.0784 0.812139
\(155\) −7.15195 −0.574459
\(156\) −5.84743 −0.468169
\(157\) −12.0530 −0.961936 −0.480968 0.876738i \(-0.659715\pi\)
−0.480968 + 0.876738i \(0.659715\pi\)
\(158\) 23.5737 1.87542
\(159\) 26.6284 2.11177
\(160\) −6.84837 −0.541411
\(161\) 9.67837 0.762762
\(162\) −16.8384 −1.32295
\(163\) 5.27366 0.413065 0.206532 0.978440i \(-0.433782\pi\)
0.206532 + 0.978440i \(0.433782\pi\)
\(164\) −3.94728 −0.308231
\(165\) −29.6389 −2.30738
\(166\) 10.3496 0.803287
\(167\) −0.638378 −0.0493992 −0.0246996 0.999695i \(-0.507863\pi\)
−0.0246996 + 0.999695i \(0.507863\pi\)
\(168\) 5.99684 0.462666
\(169\) 8.46001 0.650770
\(170\) −18.6317 −1.42899
\(171\) 8.93435 0.683227
\(172\) 3.45159 0.263181
\(173\) 4.88337 0.371276 0.185638 0.982618i \(-0.440565\pi\)
0.185638 + 0.982618i \(0.440565\pi\)
\(174\) −12.8152 −0.971514
\(175\) 0.191530 0.0144783
\(176\) −27.0525 −2.03916
\(177\) 9.33948 0.701998
\(178\) 6.93807 0.520030
\(179\) −13.1127 −0.980091 −0.490046 0.871697i \(-0.663020\pi\)
−0.490046 + 0.871697i \(0.663020\pi\)
\(180\) 2.90226 0.216322
\(181\) −3.22990 −0.240076 −0.120038 0.992769i \(-0.538302\pi\)
−0.120038 + 0.992769i \(0.538302\pi\)
\(182\) 8.27416 0.613322
\(183\) −14.0931 −1.04179
\(184\) −20.0566 −1.47859
\(185\) −17.8105 −1.30945
\(186\) 11.5928 0.850027
\(187\) −28.9716 −2.11862
\(188\) −3.80484 −0.277496
\(189\) 1.71798 0.124964
\(190\) 13.8817 1.00708
\(191\) 22.1721 1.60431 0.802157 0.597114i \(-0.203686\pi\)
0.802157 + 0.597114i \(0.203686\pi\)
\(192\) −11.0477 −0.797302
\(193\) 4.82665 0.347430 0.173715 0.984796i \(-0.444423\pi\)
0.173715 + 0.984796i \(0.444423\pi\)
\(194\) −2.20417 −0.158250
\(195\) −24.3330 −1.74252
\(196\) −3.14064 −0.224332
\(197\) −3.05779 −0.217858 −0.108929 0.994050i \(-0.534742\pi\)
−0.108929 + 0.994050i \(0.534742\pi\)
\(198\) 21.0297 1.49451
\(199\) −22.8974 −1.62315 −0.811575 0.584248i \(-0.801390\pi\)
−0.811575 + 0.584248i \(0.801390\pi\)
\(200\) −0.396909 −0.0280657
\(201\) 29.9811 2.11471
\(202\) 1.50916 0.106184
\(203\) 3.89141 0.273124
\(204\) 6.48099 0.453760
\(205\) −16.4259 −1.14723
\(206\) −29.9700 −2.08811
\(207\) 20.1950 1.40365
\(208\) −22.2096 −1.53996
\(209\) 21.5856 1.49310
\(210\) −9.38187 −0.647410
\(211\) 16.2204 1.11666 0.558329 0.829620i \(-0.311443\pi\)
0.558329 + 0.829620i \(0.311443\pi\)
\(212\) −6.29969 −0.432665
\(213\) 0.298685 0.0204656
\(214\) 10.1831 0.696099
\(215\) 14.3631 0.979557
\(216\) −3.56017 −0.242239
\(217\) −3.52024 −0.238970
\(218\) 19.0588 1.29083
\(219\) −15.7596 −1.06494
\(220\) 7.01191 0.472743
\(221\) −23.7852 −1.59996
\(222\) 28.8696 1.93760
\(223\) −17.9300 −1.20068 −0.600342 0.799743i \(-0.704969\pi\)
−0.600342 + 0.799743i \(0.704969\pi\)
\(224\) −3.37082 −0.225222
\(225\) 0.399648 0.0266432
\(226\) −14.0916 −0.937361
\(227\) 1.13782 0.0755196 0.0377598 0.999287i \(-0.487978\pi\)
0.0377598 + 0.999287i \(0.487978\pi\)
\(228\) −4.82871 −0.319789
\(229\) −17.8832 −1.18175 −0.590877 0.806762i \(-0.701218\pi\)
−0.590877 + 0.806762i \(0.701218\pi\)
\(230\) 31.3778 2.06899
\(231\) −14.5885 −0.959851
\(232\) −8.06420 −0.529441
\(233\) 12.0658 0.790458 0.395229 0.918583i \(-0.370665\pi\)
0.395229 + 0.918583i \(0.370665\pi\)
\(234\) 17.2650 1.12865
\(235\) −15.8331 −1.03284
\(236\) −2.20951 −0.143827
\(237\) −34.1230 −2.21652
\(238\) −9.17066 −0.594445
\(239\) 20.4634 1.32367 0.661835 0.749650i \(-0.269778\pi\)
0.661835 + 0.749650i \(0.269778\pi\)
\(240\) 25.1829 1.62555
\(241\) −2.48714 −0.160211 −0.0801053 0.996786i \(-0.525526\pi\)
−0.0801053 + 0.996786i \(0.525526\pi\)
\(242\) 33.2546 2.13769
\(243\) 19.7689 1.26818
\(244\) 3.33411 0.213444
\(245\) −13.0692 −0.834960
\(246\) 26.6252 1.69756
\(247\) 17.7213 1.12758
\(248\) 7.29503 0.463235
\(249\) −14.9811 −0.949389
\(250\) −17.5230 −1.10825
\(251\) 8.23208 0.519605 0.259802 0.965662i \(-0.416343\pi\)
0.259802 + 0.965662i \(0.416343\pi\)
\(252\) 1.42851 0.0899878
\(253\) 48.7915 3.06749
\(254\) −28.1474 −1.76613
\(255\) 26.9694 1.68889
\(256\) 12.2252 0.764075
\(257\) 4.41696 0.275522 0.137761 0.990465i \(-0.456009\pi\)
0.137761 + 0.990465i \(0.456009\pi\)
\(258\) −23.2816 −1.44945
\(259\) −8.76644 −0.544720
\(260\) 5.75664 0.357012
\(261\) 8.11986 0.502607
\(262\) −6.86778 −0.424293
\(263\) −4.26365 −0.262908 −0.131454 0.991322i \(-0.541965\pi\)
−0.131454 + 0.991322i \(0.541965\pi\)
\(264\) 30.2318 1.86064
\(265\) −26.2150 −1.61037
\(266\) 6.83267 0.418938
\(267\) −10.0429 −0.614613
\(268\) −7.09287 −0.433266
\(269\) −23.2292 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(270\) 5.56978 0.338966
\(271\) −18.4623 −1.12150 −0.560752 0.827984i \(-0.689488\pi\)
−0.560752 + 0.827984i \(0.689488\pi\)
\(272\) 24.6160 1.49256
\(273\) −11.9769 −0.724873
\(274\) 12.3558 0.746441
\(275\) 0.965557 0.0582253
\(276\) −10.9147 −0.656988
\(277\) −8.70780 −0.523201 −0.261601 0.965176i \(-0.584250\pi\)
−0.261601 + 0.965176i \(0.584250\pi\)
\(278\) −29.9653 −1.79720
\(279\) −7.34538 −0.439756
\(280\) −5.90373 −0.352816
\(281\) 7.43068 0.443277 0.221639 0.975129i \(-0.428859\pi\)
0.221639 + 0.975129i \(0.428859\pi\)
\(282\) 25.6644 1.52829
\(283\) 28.8258 1.71351 0.856757 0.515721i \(-0.172476\pi\)
0.856757 + 0.515721i \(0.172476\pi\)
\(284\) −0.0706624 −0.00419304
\(285\) −20.0938 −1.19025
\(286\) 41.7124 2.46651
\(287\) −8.08493 −0.477238
\(288\) −7.03358 −0.414458
\(289\) 9.36227 0.550722
\(290\) 12.6162 0.740848
\(291\) 3.19054 0.187033
\(292\) 3.72838 0.218187
\(293\) −5.44959 −0.318368 −0.159184 0.987249i \(-0.550886\pi\)
−0.159184 + 0.987249i \(0.550886\pi\)
\(294\) 21.1843 1.23549
\(295\) −9.19448 −0.535323
\(296\) 18.1668 1.05592
\(297\) 8.66081 0.502551
\(298\) 9.31341 0.539511
\(299\) 40.0569 2.31655
\(300\) −0.215996 −0.0124706
\(301\) 7.06963 0.407487
\(302\) 19.4712 1.12044
\(303\) −2.18451 −0.125497
\(304\) −18.3403 −1.05189
\(305\) 13.8743 0.794438
\(306\) −19.1356 −1.09391
\(307\) −20.9184 −1.19388 −0.596939 0.802287i \(-0.703617\pi\)
−0.596939 + 0.802287i \(0.703617\pi\)
\(308\) 3.45131 0.196657
\(309\) 43.3817 2.46790
\(310\) −11.4128 −0.648206
\(311\) −4.98628 −0.282746 −0.141373 0.989956i \(-0.545152\pi\)
−0.141373 + 0.989956i \(0.545152\pi\)
\(312\) 24.8197 1.40514
\(313\) −17.8811 −1.01070 −0.505350 0.862914i \(-0.668637\pi\)
−0.505350 + 0.862914i \(0.668637\pi\)
\(314\) −19.2338 −1.08543
\(315\) 5.94448 0.334934
\(316\) 8.07274 0.454127
\(317\) 2.44848 0.137521 0.0687603 0.997633i \(-0.478096\pi\)
0.0687603 + 0.997633i \(0.478096\pi\)
\(318\) 42.4927 2.38287
\(319\) 19.6177 1.09838
\(320\) 10.8762 0.607999
\(321\) −14.7400 −0.822706
\(322\) 15.4444 0.860683
\(323\) −19.6414 −1.09288
\(324\) −5.76625 −0.320347
\(325\) 0.792704 0.0439713
\(326\) 8.41551 0.466092
\(327\) −27.5877 −1.52560
\(328\) 16.7545 0.925111
\(329\) −7.79317 −0.429651
\(330\) −47.2967 −2.60360
\(331\) −26.2243 −1.44142 −0.720709 0.693238i \(-0.756183\pi\)
−0.720709 + 0.693238i \(0.756183\pi\)
\(332\) 3.54420 0.194513
\(333\) −18.2922 −1.00240
\(334\) −1.01870 −0.0557408
\(335\) −29.5157 −1.61261
\(336\) 12.3952 0.676214
\(337\) 1.66023 0.0904382 0.0452191 0.998977i \(-0.485601\pi\)
0.0452191 + 0.998977i \(0.485601\pi\)
\(338\) 13.5002 0.734313
\(339\) 20.3977 1.10785
\(340\) −6.38037 −0.346024
\(341\) −17.7466 −0.961030
\(342\) 14.2571 0.770937
\(343\) −14.2677 −0.770385
\(344\) −14.6505 −0.789900
\(345\) −45.4195 −2.44530
\(346\) 7.79271 0.418939
\(347\) −19.9063 −1.06863 −0.534313 0.845287i \(-0.679430\pi\)
−0.534313 + 0.845287i \(0.679430\pi\)
\(348\) −4.38851 −0.235249
\(349\) −15.8591 −0.848919 −0.424459 0.905447i \(-0.639536\pi\)
−0.424459 + 0.905447i \(0.639536\pi\)
\(350\) 0.305637 0.0163370
\(351\) 7.11036 0.379523
\(352\) −16.9933 −0.905744
\(353\) −3.28287 −0.174729 −0.0873647 0.996176i \(-0.527845\pi\)
−0.0873647 + 0.996176i \(0.527845\pi\)
\(354\) 14.9036 0.792118
\(355\) −0.294048 −0.0156064
\(356\) 2.37592 0.125923
\(357\) 13.2745 0.702563
\(358\) −20.9248 −1.10591
\(359\) 32.9164 1.73726 0.868630 0.495461i \(-0.165001\pi\)
0.868630 + 0.495461i \(0.165001\pi\)
\(360\) −12.3188 −0.649258
\(361\) −4.36600 −0.229790
\(362\) −5.15416 −0.270896
\(363\) −48.1361 −2.52649
\(364\) 2.83346 0.148514
\(365\) 15.5149 0.812089
\(366\) −22.4892 −1.17553
\(367\) −14.5464 −0.759314 −0.379657 0.925127i \(-0.623958\pi\)
−0.379657 + 0.925127i \(0.623958\pi\)
\(368\) −41.4560 −2.16105
\(369\) −16.8701 −0.878223
\(370\) −28.4213 −1.47755
\(371\) −12.9032 −0.669901
\(372\) 3.96993 0.205831
\(373\) −30.2342 −1.56547 −0.782735 0.622355i \(-0.786176\pi\)
−0.782735 + 0.622355i \(0.786176\pi\)
\(374\) −46.2319 −2.39060
\(375\) 25.3645 1.30982
\(376\) 16.1498 0.832865
\(377\) 16.1058 0.829490
\(378\) 2.74148 0.141007
\(379\) 11.5374 0.592638 0.296319 0.955089i \(-0.404241\pi\)
0.296319 + 0.955089i \(0.404241\pi\)
\(380\) 4.75374 0.243862
\(381\) 40.7435 2.08735
\(382\) 35.3814 1.81027
\(383\) 8.30939 0.424590 0.212295 0.977206i \(-0.431906\pi\)
0.212295 + 0.977206i \(0.431906\pi\)
\(384\) −31.5423 −1.60964
\(385\) 14.3620 0.731954
\(386\) 7.70220 0.392031
\(387\) 14.7516 0.749865
\(388\) −0.754811 −0.0383197
\(389\) 19.3524 0.981208 0.490604 0.871383i \(-0.336776\pi\)
0.490604 + 0.871383i \(0.336776\pi\)
\(390\) −38.8297 −1.96622
\(391\) −44.3970 −2.24525
\(392\) 13.3306 0.673299
\(393\) 9.94113 0.501464
\(394\) −4.87951 −0.245826
\(395\) 33.5932 1.69026
\(396\) 7.20154 0.361891
\(397\) 12.4940 0.627055 0.313527 0.949579i \(-0.398489\pi\)
0.313527 + 0.949579i \(0.398489\pi\)
\(398\) −36.5388 −1.83152
\(399\) −9.89030 −0.495134
\(400\) −0.820393 −0.0410196
\(401\) 21.8124 1.08926 0.544630 0.838677i \(-0.316670\pi\)
0.544630 + 0.838677i \(0.316670\pi\)
\(402\) 47.8428 2.38618
\(403\) −14.5696 −0.725763
\(404\) 0.516808 0.0257121
\(405\) −23.9952 −1.19233
\(406\) 6.20978 0.308186
\(407\) −44.1942 −2.19062
\(408\) −27.5089 −1.36190
\(409\) 1.00000 0.0494468
\(410\) −26.2118 −1.29451
\(411\) −17.8850 −0.882203
\(412\) −10.2631 −0.505629
\(413\) −4.52559 −0.222690
\(414\) 32.2265 1.58384
\(415\) 14.7485 0.723976
\(416\) −13.9511 −0.684011
\(417\) 43.3748 2.12407
\(418\) 34.4455 1.68478
\(419\) 13.1765 0.643714 0.321857 0.946788i \(-0.395693\pi\)
0.321857 + 0.946788i \(0.395693\pi\)
\(420\) −3.21279 −0.156768
\(421\) 8.91268 0.434377 0.217189 0.976130i \(-0.430311\pi\)
0.217189 + 0.976130i \(0.430311\pi\)
\(422\) 25.8839 1.26001
\(423\) −16.2613 −0.790652
\(424\) 26.7394 1.29858
\(425\) −0.878593 −0.0426180
\(426\) 0.476632 0.0230929
\(427\) 6.82901 0.330479
\(428\) 3.48716 0.168558
\(429\) −60.3788 −2.91512
\(430\) 22.9202 1.10531
\(431\) −11.3904 −0.548658 −0.274329 0.961636i \(-0.588456\pi\)
−0.274329 + 0.961636i \(0.588456\pi\)
\(432\) −7.35872 −0.354047
\(433\) 25.4354 1.22235 0.611174 0.791496i \(-0.290698\pi\)
0.611174 + 0.791496i \(0.290698\pi\)
\(434\) −5.61748 −0.269648
\(435\) −18.2620 −0.875593
\(436\) 6.52664 0.312569
\(437\) 33.0783 1.58235
\(438\) −25.1486 −1.20165
\(439\) 26.7471 1.27657 0.638286 0.769799i \(-0.279644\pi\)
0.638286 + 0.769799i \(0.279644\pi\)
\(440\) −29.7624 −1.41887
\(441\) −13.4226 −0.639174
\(442\) −37.9555 −1.80536
\(443\) −4.09607 −0.194610 −0.0973051 0.995255i \(-0.531022\pi\)
−0.0973051 + 0.995255i \(0.531022\pi\)
\(444\) 9.88629 0.469183
\(445\) 9.88694 0.468686
\(446\) −28.6121 −1.35482
\(447\) −13.4812 −0.637638
\(448\) 5.35335 0.252922
\(449\) 2.67865 0.126413 0.0632065 0.998000i \(-0.479867\pi\)
0.0632065 + 0.998000i \(0.479867\pi\)
\(450\) 0.637744 0.0300636
\(451\) −40.7585 −1.91924
\(452\) −4.82564 −0.226979
\(453\) −28.1847 −1.32423
\(454\) 1.81569 0.0852144
\(455\) 11.7909 0.552767
\(456\) 20.4957 0.959801
\(457\) −35.5703 −1.66391 −0.831953 0.554846i \(-0.812777\pi\)
−0.831953 + 0.554846i \(0.812777\pi\)
\(458\) −28.5373 −1.33346
\(459\) −7.88076 −0.367842
\(460\) 10.7452 0.501000
\(461\) 11.1466 0.519148 0.259574 0.965723i \(-0.416418\pi\)
0.259574 + 0.965723i \(0.416418\pi\)
\(462\) −23.2798 −1.08307
\(463\) 13.6820 0.635857 0.317928 0.948115i \(-0.397013\pi\)
0.317928 + 0.948115i \(0.397013\pi\)
\(464\) −16.6684 −0.773809
\(465\) 16.5201 0.766101
\(466\) 19.2542 0.891934
\(467\) 6.21481 0.287587 0.143793 0.989608i \(-0.454070\pi\)
0.143793 + 0.989608i \(0.454070\pi\)
\(468\) 5.91233 0.273298
\(469\) −14.5278 −0.670832
\(470\) −25.2659 −1.16543
\(471\) 27.8409 1.28284
\(472\) 9.37841 0.431676
\(473\) 35.6401 1.63873
\(474\) −54.4522 −2.50107
\(475\) 0.654603 0.0300352
\(476\) −3.14046 −0.143943
\(477\) −26.9239 −1.23276
\(478\) 32.6548 1.49360
\(479\) 8.30122 0.379293 0.189646 0.981852i \(-0.439266\pi\)
0.189646 + 0.981852i \(0.439266\pi\)
\(480\) 15.8189 0.722029
\(481\) −36.2826 −1.65434
\(482\) −3.96889 −0.180778
\(483\) −22.3558 −1.01722
\(484\) 11.3879 0.517634
\(485\) −3.14100 −0.142626
\(486\) 31.5466 1.43098
\(487\) −13.7269 −0.622025 −0.311013 0.950406i \(-0.600668\pi\)
−0.311013 + 0.950406i \(0.600668\pi\)
\(488\) −14.1518 −0.640622
\(489\) −12.1815 −0.550865
\(490\) −20.8554 −0.942149
\(491\) 29.8108 1.34534 0.672670 0.739942i \(-0.265147\pi\)
0.672670 + 0.739942i \(0.265147\pi\)
\(492\) 9.11772 0.411059
\(493\) −17.8508 −0.803961
\(494\) 28.2791 1.27234
\(495\) 29.9679 1.34695
\(496\) 15.0785 0.677045
\(497\) −0.144733 −0.00649214
\(498\) −23.9063 −1.07127
\(499\) 21.3462 0.955589 0.477795 0.878472i \(-0.341436\pi\)
0.477795 + 0.878472i \(0.341436\pi\)
\(500\) −6.00069 −0.268359
\(501\) 1.47457 0.0658790
\(502\) 13.1365 0.586309
\(503\) −13.4129 −0.598053 −0.299027 0.954245i \(-0.596662\pi\)
−0.299027 + 0.954245i \(0.596662\pi\)
\(504\) −6.06340 −0.270085
\(505\) 2.15060 0.0957003
\(506\) 77.8597 3.46128
\(507\) −19.5415 −0.867871
\(508\) −9.63901 −0.427662
\(509\) −6.97595 −0.309203 −0.154602 0.987977i \(-0.549409\pi\)
−0.154602 + 0.987977i \(0.549409\pi\)
\(510\) 43.0368 1.90570
\(511\) 7.63656 0.337822
\(512\) −7.80233 −0.344818
\(513\) 5.87162 0.259238
\(514\) 7.04843 0.310893
\(515\) −42.7081 −1.88195
\(516\) −7.97273 −0.350980
\(517\) −39.2876 −1.72787
\(518\) −13.9892 −0.614649
\(519\) −11.2800 −0.495135
\(520\) −24.4344 −1.07152
\(521\) 31.9655 1.40043 0.700216 0.713931i \(-0.253087\pi\)
0.700216 + 0.713931i \(0.253087\pi\)
\(522\) 12.9574 0.567129
\(523\) −12.6093 −0.551365 −0.275682 0.961249i \(-0.588904\pi\)
−0.275682 + 0.961249i \(0.588904\pi\)
\(524\) −2.35185 −0.102741
\(525\) −0.442409 −0.0193083
\(526\) −6.80379 −0.296659
\(527\) 16.1482 0.703426
\(528\) 62.4878 2.71943
\(529\) 51.7694 2.25084
\(530\) −41.8329 −1.81711
\(531\) −9.44314 −0.409797
\(532\) 2.33983 0.101444
\(533\) −33.4619 −1.44940
\(534\) −16.0260 −0.693515
\(535\) 14.5111 0.627371
\(536\) 30.1061 1.30039
\(537\) 30.2887 1.30705
\(538\) −37.0684 −1.59813
\(539\) −32.4294 −1.39683
\(540\) 1.90735 0.0820794
\(541\) −25.5509 −1.09852 −0.549259 0.835652i \(-0.685090\pi\)
−0.549259 + 0.835652i \(0.685090\pi\)
\(542\) −29.4614 −1.26548
\(543\) 7.46065 0.320167
\(544\) 15.4627 0.662959
\(545\) 27.1594 1.16338
\(546\) −19.1123 −0.817929
\(547\) 15.3477 0.656218 0.328109 0.944640i \(-0.393589\pi\)
0.328109 + 0.944640i \(0.393589\pi\)
\(548\) 4.23120 0.180748
\(549\) 14.2495 0.608153
\(550\) 1.54080 0.0657000
\(551\) 13.2999 0.566595
\(552\) 46.3281 1.97185
\(553\) 16.5348 0.703131
\(554\) −13.8956 −0.590368
\(555\) 41.1399 1.74629
\(556\) −10.2615 −0.435185
\(557\) 0.0909675 0.00385442 0.00192721 0.999998i \(-0.499387\pi\)
0.00192721 + 0.999998i \(0.499387\pi\)
\(558\) −11.7215 −0.496210
\(559\) 29.2598 1.23756
\(560\) −12.2028 −0.515661
\(561\) 66.9208 2.82540
\(562\) 11.8576 0.500183
\(563\) 0.631492 0.0266142 0.0133071 0.999911i \(-0.495764\pi\)
0.0133071 + 0.999911i \(0.495764\pi\)
\(564\) 8.78869 0.370070
\(565\) −20.0810 −0.844813
\(566\) 45.9991 1.93349
\(567\) −11.8106 −0.495998
\(568\) 0.299930 0.0125848
\(569\) 15.6213 0.654879 0.327440 0.944872i \(-0.393814\pi\)
0.327440 + 0.944872i \(0.393814\pi\)
\(570\) −32.0649 −1.34305
\(571\) 16.4264 0.687421 0.343711 0.939076i \(-0.388316\pi\)
0.343711 + 0.939076i \(0.388316\pi\)
\(572\) 14.2843 0.597256
\(573\) −51.2146 −2.13952
\(574\) −12.9016 −0.538504
\(575\) 1.47965 0.0617056
\(576\) 11.1704 0.465431
\(577\) 16.0284 0.667271 0.333636 0.942702i \(-0.391724\pi\)
0.333636 + 0.942702i \(0.391724\pi\)
\(578\) 14.9400 0.621421
\(579\) −11.1489 −0.463334
\(580\) 4.32037 0.179394
\(581\) 7.25932 0.301167
\(582\) 5.09135 0.211043
\(583\) −65.0487 −2.69404
\(584\) −15.8253 −0.654856
\(585\) 24.6030 1.01721
\(586\) −8.69626 −0.359239
\(587\) 41.8813 1.72863 0.864313 0.502954i \(-0.167753\pi\)
0.864313 + 0.502954i \(0.167753\pi\)
\(588\) 7.25449 0.299170
\(589\) −12.0313 −0.495743
\(590\) −14.6722 −0.604046
\(591\) 7.06310 0.290537
\(592\) 37.5499 1.54329
\(593\) 29.8719 1.22669 0.613345 0.789815i \(-0.289823\pi\)
0.613345 + 0.789815i \(0.289823\pi\)
\(594\) 13.8206 0.567067
\(595\) −13.0684 −0.535754
\(596\) 3.18935 0.130641
\(597\) 52.8900 2.16464
\(598\) 63.9213 2.61394
\(599\) 24.6241 1.00611 0.503057 0.864253i \(-0.332208\pi\)
0.503057 + 0.864253i \(0.332208\pi\)
\(600\) 0.916808 0.0374285
\(601\) 36.8165 1.50178 0.750888 0.660430i \(-0.229626\pi\)
0.750888 + 0.660430i \(0.229626\pi\)
\(602\) 11.2815 0.459799
\(603\) −30.3139 −1.23448
\(604\) 6.66787 0.271312
\(605\) 47.3888 1.92663
\(606\) −3.48597 −0.141608
\(607\) 15.5623 0.631653 0.315826 0.948817i \(-0.397718\pi\)
0.315826 + 0.948817i \(0.397718\pi\)
\(608\) −11.5206 −0.467223
\(609\) −8.98866 −0.364239
\(610\) 22.1400 0.896424
\(611\) −32.2544 −1.30487
\(612\) −6.55293 −0.264886
\(613\) −10.3255 −0.417042 −0.208521 0.978018i \(-0.566865\pi\)
−0.208521 + 0.978018i \(0.566865\pi\)
\(614\) −33.3809 −1.34714
\(615\) 37.9417 1.52996
\(616\) −14.6493 −0.590236
\(617\) −39.8929 −1.60603 −0.803014 0.595960i \(-0.796772\pi\)
−0.803014 + 0.595960i \(0.796772\pi\)
\(618\) 69.2270 2.78472
\(619\) 37.1188 1.49193 0.745966 0.665984i \(-0.231988\pi\)
0.745966 + 0.665984i \(0.231988\pi\)
\(620\) −3.90829 −0.156961
\(621\) 13.2721 0.532590
\(622\) −7.95692 −0.319044
\(623\) 4.86642 0.194969
\(624\) 51.3013 2.05370
\(625\) −25.8263 −1.03305
\(626\) −28.5341 −1.14045
\(627\) −49.8599 −1.99121
\(628\) −6.58655 −0.262832
\(629\) 40.2138 1.60343
\(630\) 9.48600 0.377931
\(631\) 5.80965 0.231278 0.115639 0.993291i \(-0.463108\pi\)
0.115639 + 0.993291i \(0.463108\pi\)
\(632\) −34.2652 −1.36300
\(633\) −37.4670 −1.48918
\(634\) 3.90721 0.155175
\(635\) −40.1109 −1.59175
\(636\) 14.5515 0.577004
\(637\) −26.6239 −1.05488
\(638\) 31.3053 1.23939
\(639\) −0.302000 −0.0119470
\(640\) 31.0526 1.22746
\(641\) −0.528917 −0.0208910 −0.0104455 0.999945i \(-0.503325\pi\)
−0.0104455 + 0.999945i \(0.503325\pi\)
\(642\) −23.5216 −0.928322
\(643\) −7.32405 −0.288833 −0.144416 0.989517i \(-0.546130\pi\)
−0.144416 + 0.989517i \(0.546130\pi\)
\(644\) 5.28889 0.208411
\(645\) −33.1770 −1.30634
\(646\) −31.3431 −1.23318
\(647\) 45.7871 1.80007 0.900037 0.435813i \(-0.143539\pi\)
0.900037 + 0.435813i \(0.143539\pi\)
\(648\) 24.4752 0.961476
\(649\) −22.8148 −0.895559
\(650\) 1.26497 0.0496162
\(651\) 8.13131 0.318691
\(652\) 2.88187 0.112863
\(653\) −17.8131 −0.697079 −0.348539 0.937294i \(-0.613322\pi\)
−0.348539 + 0.937294i \(0.613322\pi\)
\(654\) −44.0234 −1.72145
\(655\) −9.78678 −0.382401
\(656\) 34.6307 1.35210
\(657\) 15.9345 0.621666
\(658\) −12.4361 −0.484808
\(659\) 34.7524 1.35376 0.676880 0.736093i \(-0.263331\pi\)
0.676880 + 0.736093i \(0.263331\pi\)
\(660\) −16.1966 −0.630452
\(661\) −27.8081 −1.08161 −0.540804 0.841149i \(-0.681880\pi\)
−0.540804 + 0.841149i \(0.681880\pi\)
\(662\) −41.8478 −1.62646
\(663\) 54.9407 2.13372
\(664\) −15.0435 −0.583803
\(665\) 9.73675 0.377575
\(666\) −29.1900 −1.13109
\(667\) 30.0628 1.16404
\(668\) −0.348851 −0.0134975
\(669\) 41.4161 1.60124
\(670\) −47.1000 −1.81963
\(671\) 34.4270 1.32904
\(672\) 7.78615 0.300357
\(673\) −24.2109 −0.933262 −0.466631 0.884452i \(-0.654532\pi\)
−0.466631 + 0.884452i \(0.654532\pi\)
\(674\) 2.64933 0.102048
\(675\) 0.262647 0.0101093
\(676\) 4.62310 0.177811
\(677\) −3.64316 −0.140018 −0.0700090 0.997546i \(-0.522303\pi\)
−0.0700090 + 0.997546i \(0.522303\pi\)
\(678\) 32.5499 1.25007
\(679\) −1.54602 −0.0593309
\(680\) 27.0818 1.03854
\(681\) −2.62821 −0.100713
\(682\) −28.3193 −1.08440
\(683\) 35.1573 1.34526 0.672628 0.739981i \(-0.265166\pi\)
0.672628 + 0.739981i \(0.265166\pi\)
\(684\) 4.88231 0.186680
\(685\) 17.6073 0.672742
\(686\) −22.7680 −0.869284
\(687\) 41.3078 1.57599
\(688\) −30.2819 −1.15448
\(689\) −53.4038 −2.03452
\(690\) −72.4788 −2.75922
\(691\) −6.49256 −0.246989 −0.123494 0.992345i \(-0.539410\pi\)
−0.123494 + 0.992345i \(0.539410\pi\)
\(692\) 2.66859 0.101445
\(693\) 14.7504 0.560321
\(694\) −31.7658 −1.20581
\(695\) −42.7014 −1.61976
\(696\) 18.6273 0.706065
\(697\) 37.0875 1.40479
\(698\) −25.3074 −0.957899
\(699\) −27.8705 −1.05416
\(700\) 0.104664 0.00395594
\(701\) −37.3339 −1.41008 −0.705040 0.709167i \(-0.749071\pi\)
−0.705040 + 0.709167i \(0.749071\pi\)
\(702\) 11.3465 0.428245
\(703\) −29.9616 −1.13002
\(704\) 26.9878 1.01714
\(705\) 36.5725 1.37740
\(706\) −5.23869 −0.197161
\(707\) 1.05854 0.0398105
\(708\) 5.10370 0.191809
\(709\) 12.3533 0.463938 0.231969 0.972723i \(-0.425483\pi\)
0.231969 + 0.972723i \(0.425483\pi\)
\(710\) −0.469231 −0.0176099
\(711\) 34.5017 1.29391
\(712\) −10.0847 −0.377941
\(713\) −27.1953 −1.01847
\(714\) 21.1830 0.792756
\(715\) 59.4414 2.22298
\(716\) −7.16564 −0.267793
\(717\) −47.2679 −1.76525
\(718\) 52.5268 1.96028
\(719\) −30.9709 −1.15502 −0.577510 0.816383i \(-0.695976\pi\)
−0.577510 + 0.816383i \(0.695976\pi\)
\(720\) −25.4624 −0.948928
\(721\) −21.0213 −0.782873
\(722\) −6.96712 −0.259289
\(723\) 5.74497 0.213658
\(724\) −1.76503 −0.0655966
\(725\) 0.594926 0.0220950
\(726\) −76.8139 −2.85083
\(727\) 41.1577 1.52646 0.763228 0.646129i \(-0.223613\pi\)
0.763228 + 0.646129i \(0.223613\pi\)
\(728\) −12.0268 −0.445742
\(729\) −14.0079 −0.518812
\(730\) 24.7582 0.916342
\(731\) −32.4301 −1.19947
\(732\) −7.70136 −0.284651
\(733\) 15.0958 0.557575 0.278787 0.960353i \(-0.410067\pi\)
0.278787 + 0.960353i \(0.410067\pi\)
\(734\) −23.2126 −0.856791
\(735\) 30.1882 1.11351
\(736\) −26.0410 −0.959882
\(737\) −73.2389 −2.69779
\(738\) −26.9207 −0.990965
\(739\) 13.4496 0.494753 0.247377 0.968919i \(-0.420431\pi\)
0.247377 + 0.968919i \(0.420431\pi\)
\(740\) −9.73280 −0.357785
\(741\) −40.9340 −1.50375
\(742\) −20.5905 −0.755900
\(743\) −1.89225 −0.0694198 −0.0347099 0.999397i \(-0.511051\pi\)
−0.0347099 + 0.999397i \(0.511051\pi\)
\(744\) −16.8506 −0.617772
\(745\) 13.2719 0.486244
\(746\) −48.2467 −1.76644
\(747\) 15.1474 0.554213
\(748\) −15.8320 −0.578875
\(749\) 7.14249 0.260981
\(750\) 40.4758 1.47797
\(751\) −25.7910 −0.941128 −0.470564 0.882366i \(-0.655950\pi\)
−0.470564 + 0.882366i \(0.655950\pi\)
\(752\) 33.3810 1.21728
\(753\) −19.0151 −0.692947
\(754\) 25.7010 0.935977
\(755\) 27.7471 1.00982
\(756\) 0.938813 0.0341443
\(757\) 9.60626 0.349146 0.174573 0.984644i \(-0.444146\pi\)
0.174573 + 0.984644i \(0.444146\pi\)
\(758\) 18.4110 0.668718
\(759\) −112.702 −4.09082
\(760\) −20.1775 −0.731916
\(761\) 3.35648 0.121672 0.0608362 0.998148i \(-0.480623\pi\)
0.0608362 + 0.998148i \(0.480623\pi\)
\(762\) 65.0170 2.35532
\(763\) 13.3680 0.483955
\(764\) 12.1162 0.438350
\(765\) −27.2688 −0.985904
\(766\) 13.2598 0.479097
\(767\) −18.7305 −0.676320
\(768\) −28.2387 −1.01897
\(769\) −39.6230 −1.42884 −0.714420 0.699717i \(-0.753310\pi\)
−0.714420 + 0.699717i \(0.753310\pi\)
\(770\) 22.9183 0.825919
\(771\) −10.2026 −0.367438
\(772\) 2.63759 0.0949291
\(773\) −5.24230 −0.188552 −0.0942762 0.995546i \(-0.530054\pi\)
−0.0942762 + 0.995546i \(0.530054\pi\)
\(774\) 23.5400 0.846129
\(775\) −0.538181 −0.0193320
\(776\) 3.20384 0.115011
\(777\) 20.2494 0.726442
\(778\) 30.8819 1.10717
\(779\) −27.6323 −0.990031
\(780\) −13.2971 −0.476113
\(781\) −0.729638 −0.0261085
\(782\) −70.8471 −2.53349
\(783\) 5.33634 0.190705
\(784\) 27.5539 0.984066
\(785\) −27.4087 −0.978258
\(786\) 15.8637 0.565840
\(787\) −2.54440 −0.0906980 −0.0453490 0.998971i \(-0.514440\pi\)
−0.0453490 + 0.998971i \(0.514440\pi\)
\(788\) −1.67097 −0.0595259
\(789\) 9.84850 0.350616
\(790\) 53.6068 1.90724
\(791\) −9.88400 −0.351434
\(792\) −30.5674 −1.08616
\(793\) 28.2639 1.00368
\(794\) 19.9375 0.707554
\(795\) 60.5532 2.14760
\(796\) −12.5126 −0.443497
\(797\) −16.8841 −0.598065 −0.299033 0.954243i \(-0.596664\pi\)
−0.299033 + 0.954243i \(0.596664\pi\)
\(798\) −15.7826 −0.558698
\(799\) 35.7491 1.26471
\(800\) −0.515337 −0.0182199
\(801\) 10.1543 0.358786
\(802\) 34.8075 1.22909
\(803\) 38.4981 1.35857
\(804\) 16.3836 0.577806
\(805\) 22.0087 0.775705
\(806\) −23.2496 −0.818934
\(807\) 53.6565 1.88880
\(808\) −2.19362 −0.0771712
\(809\) −3.36769 −0.118402 −0.0592008 0.998246i \(-0.518855\pi\)
−0.0592008 + 0.998246i \(0.518855\pi\)
\(810\) −38.2906 −1.34540
\(811\) −2.53677 −0.0890779 −0.0445390 0.999008i \(-0.514182\pi\)
−0.0445390 + 0.999008i \(0.514182\pi\)
\(812\) 2.12652 0.0746262
\(813\) 42.6455 1.49564
\(814\) −70.5235 −2.47185
\(815\) 11.9923 0.420073
\(816\) −56.8598 −1.99049
\(817\) 24.1623 0.845332
\(818\) 1.59576 0.0557946
\(819\) 12.1098 0.423151
\(820\) −8.97616 −0.313461
\(821\) 15.2527 0.532324 0.266162 0.963928i \(-0.414244\pi\)
0.266162 + 0.963928i \(0.414244\pi\)
\(822\) −28.5403 −0.995457
\(823\) −15.2327 −0.530978 −0.265489 0.964114i \(-0.585533\pi\)
−0.265489 + 0.964114i \(0.585533\pi\)
\(824\) 43.5625 1.51757
\(825\) −2.23031 −0.0776495
\(826\) −7.22177 −0.251278
\(827\) −41.2946 −1.43595 −0.717977 0.696066i \(-0.754932\pi\)
−0.717977 + 0.696066i \(0.754932\pi\)
\(828\) 11.0359 0.383522
\(829\) −0.908418 −0.0315507 −0.0157753 0.999876i \(-0.505022\pi\)
−0.0157753 + 0.999876i \(0.505022\pi\)
\(830\) 23.5351 0.816917
\(831\) 20.1139 0.697744
\(832\) 22.1565 0.768137
\(833\) 29.5086 1.02241
\(834\) 69.2160 2.39675
\(835\) −1.45168 −0.0502374
\(836\) 11.7957 0.407964
\(837\) −4.82735 −0.166858
\(838\) 21.0266 0.726352
\(839\) −24.0199 −0.829261 −0.414630 0.909990i \(-0.636089\pi\)
−0.414630 + 0.909990i \(0.636089\pi\)
\(840\) 13.6369 0.470517
\(841\) −16.9126 −0.583192
\(842\) 14.2225 0.490141
\(843\) −17.1639 −0.591157
\(844\) 8.86387 0.305107
\(845\) 19.2381 0.661812
\(846\) −25.9492 −0.892153
\(847\) 23.3251 0.801460
\(848\) 55.2692 1.89795
\(849\) −66.5838 −2.28515
\(850\) −1.40203 −0.0480891
\(851\) −67.7244 −2.32156
\(852\) 0.163221 0.00559186
\(853\) 35.2482 1.20687 0.603437 0.797411i \(-0.293797\pi\)
0.603437 + 0.797411i \(0.293797\pi\)
\(854\) 10.8975 0.372904
\(855\) 20.3168 0.694820
\(856\) −14.8014 −0.505902
\(857\) 53.8046 1.83793 0.918965 0.394338i \(-0.129026\pi\)
0.918965 + 0.394338i \(0.129026\pi\)
\(858\) −96.3504 −3.28935
\(859\) 42.6015 1.45355 0.726773 0.686878i \(-0.241019\pi\)
0.726773 + 0.686878i \(0.241019\pi\)
\(860\) 7.84894 0.267647
\(861\) 18.6752 0.636448
\(862\) −18.1764 −0.619092
\(863\) 18.3270 0.623860 0.311930 0.950105i \(-0.399025\pi\)
0.311930 + 0.950105i \(0.399025\pi\)
\(864\) −4.62244 −0.157259
\(865\) 11.1048 0.377576
\(866\) 40.5889 1.37927
\(867\) −21.6257 −0.734446
\(868\) −1.92369 −0.0652943
\(869\) 83.3567 2.82768
\(870\) −29.1418 −0.987999
\(871\) −60.1278 −2.03735
\(872\) −27.7027 −0.938131
\(873\) −3.22595 −0.109182
\(874\) 52.7852 1.78549
\(875\) −12.2908 −0.415504
\(876\) −8.61208 −0.290975
\(877\) 9.22122 0.311378 0.155689 0.987806i \(-0.450240\pi\)
0.155689 + 0.987806i \(0.450240\pi\)
\(878\) 42.6822 1.44045
\(879\) 12.5878 0.424577
\(880\) −61.5176 −2.07376
\(881\) 9.85588 0.332053 0.166027 0.986121i \(-0.446906\pi\)
0.166027 + 0.986121i \(0.446906\pi\)
\(882\) −21.4194 −0.721228
\(883\) −28.6958 −0.965691 −0.482845 0.875706i \(-0.660397\pi\)
−0.482845 + 0.875706i \(0.660397\pi\)
\(884\) −12.9978 −0.437162
\(885\) 21.2381 0.713910
\(886\) −6.53636 −0.219593
\(887\) 41.0932 1.37978 0.689888 0.723916i \(-0.257660\pi\)
0.689888 + 0.723916i \(0.257660\pi\)
\(888\) −41.9629 −1.40818
\(889\) −19.7429 −0.662155
\(890\) 15.7772 0.528854
\(891\) −59.5406 −1.99469
\(892\) −9.79814 −0.328066
\(893\) −26.6352 −0.891312
\(894\) −21.5128 −0.719495
\(895\) −29.8185 −0.996721
\(896\) 15.2843 0.510613
\(897\) −92.5262 −3.08936
\(898\) 4.27449 0.142641
\(899\) −10.9345 −0.364686
\(900\) 0.218394 0.00727979
\(901\) 59.1900 1.97191
\(902\) −65.0409 −2.16563
\(903\) −16.3300 −0.543427
\(904\) 20.4827 0.681244
\(905\) −7.34482 −0.244150
\(906\) −44.9761 −1.49423
\(907\) −28.8950 −0.959443 −0.479722 0.877421i \(-0.659262\pi\)
−0.479722 + 0.877421i \(0.659262\pi\)
\(908\) 0.621777 0.0206344
\(909\) 2.20876 0.0732599
\(910\) 18.8155 0.623728
\(911\) 5.65818 0.187464 0.0937319 0.995597i \(-0.470120\pi\)
0.0937319 + 0.995597i \(0.470120\pi\)
\(912\) 42.3638 1.40281
\(913\) 36.5963 1.21116
\(914\) −56.7618 −1.87751
\(915\) −32.0478 −1.05947
\(916\) −9.77252 −0.322893
\(917\) −4.81713 −0.159076
\(918\) −12.5758 −0.415065
\(919\) 20.2347 0.667483 0.333741 0.942665i \(-0.391689\pi\)
0.333741 + 0.942665i \(0.391689\pi\)
\(920\) −45.6088 −1.50368
\(921\) 48.3189 1.59216
\(922\) 17.7873 0.585794
\(923\) −0.599020 −0.0197170
\(924\) −7.97209 −0.262262
\(925\) −1.34023 −0.0440665
\(926\) 21.8333 0.717486
\(927\) −43.8632 −1.44066
\(928\) −10.4704 −0.343707
\(929\) −21.6182 −0.709269 −0.354634 0.935005i \(-0.615395\pi\)
−0.354634 + 0.935005i \(0.615395\pi\)
\(930\) 26.3622 0.864450
\(931\) −21.9856 −0.720548
\(932\) 6.59355 0.215979
\(933\) 11.5177 0.377071
\(934\) 9.91737 0.324506
\(935\) −65.8818 −2.15456
\(936\) −25.0952 −0.820263
\(937\) −37.1276 −1.21291 −0.606453 0.795119i \(-0.707408\pi\)
−0.606453 + 0.795119i \(0.707408\pi\)
\(938\) −23.1830 −0.756951
\(939\) 41.3031 1.34788
\(940\) −8.65223 −0.282205
\(941\) 29.7695 0.970456 0.485228 0.874388i \(-0.338737\pi\)
0.485228 + 0.874388i \(0.338737\pi\)
\(942\) 44.4276 1.44753
\(943\) −62.4594 −2.03396
\(944\) 19.3848 0.630920
\(945\) 3.90669 0.127085
\(946\) 56.8732 1.84911
\(947\) −35.7140 −1.16055 −0.580274 0.814421i \(-0.697054\pi\)
−0.580274 + 0.814421i \(0.697054\pi\)
\(948\) −18.6470 −0.605626
\(949\) 31.6062 1.02598
\(950\) 1.04459 0.0338910
\(951\) −5.65569 −0.183398
\(952\) 13.3299 0.432024
\(953\) −32.0434 −1.03799 −0.518993 0.854778i \(-0.673693\pi\)
−0.518993 + 0.854778i \(0.673693\pi\)
\(954\) −42.9643 −1.39102
\(955\) 50.4195 1.63154
\(956\) 11.1825 0.361669
\(957\) −45.3144 −1.46481
\(958\) 13.2468 0.427985
\(959\) 8.66646 0.279855
\(960\) −25.1227 −0.810830
\(961\) −21.1084 −0.680917
\(962\) −57.8985 −1.86672
\(963\) 14.9036 0.480261
\(964\) −1.35913 −0.0437747
\(965\) 10.9758 0.353325
\(966\) −35.6746 −1.14781
\(967\) 35.2531 1.13366 0.566832 0.823834i \(-0.308169\pi\)
0.566832 + 0.823834i \(0.308169\pi\)
\(968\) −48.3368 −1.55360
\(969\) 45.3692 1.45747
\(970\) −5.01230 −0.160935
\(971\) −14.6476 −0.470065 −0.235032 0.971988i \(-0.575520\pi\)
−0.235032 + 0.971988i \(0.575520\pi\)
\(972\) 10.8030 0.346507
\(973\) −21.0179 −0.673804
\(974\) −21.9049 −0.701878
\(975\) −1.83105 −0.0586404
\(976\) −29.2512 −0.936307
\(977\) −56.6508 −1.81242 −0.906210 0.422828i \(-0.861037\pi\)
−0.906210 + 0.422828i \(0.861037\pi\)
\(978\) −19.4388 −0.621583
\(979\) 24.5330 0.784079
\(980\) −7.14185 −0.228138
\(981\) 27.8939 0.890583
\(982\) 47.5709 1.51805
\(983\) 58.3738 1.86184 0.930918 0.365228i \(-0.119009\pi\)
0.930918 + 0.365228i \(0.119009\pi\)
\(984\) −38.7007 −1.23373
\(985\) −6.95344 −0.221555
\(986\) −28.4857 −0.907170
\(987\) 18.0012 0.572985
\(988\) 9.68408 0.308092
\(989\) 54.6159 1.73668
\(990\) 47.8216 1.51987
\(991\) 35.8945 1.14023 0.570114 0.821566i \(-0.306899\pi\)
0.570114 + 0.821566i \(0.306899\pi\)
\(992\) 9.47169 0.300726
\(993\) 60.5748 1.92228
\(994\) −0.230959 −0.00732558
\(995\) −52.0688 −1.65069
\(996\) −8.18664 −0.259404
\(997\) −17.8457 −0.565180 −0.282590 0.959241i \(-0.591194\pi\)
−0.282590 + 0.959241i \(0.591194\pi\)
\(998\) 34.0636 1.07826
\(999\) −12.0215 −0.380345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.14 20
3.2 odd 2 3681.2.a.i.1.7 20
4.3 odd 2 6544.2.a.i.1.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.14 20 1.1 even 1 trivial
3681.2.a.i.1.7 20 3.2 odd 2
6544.2.a.i.1.17 20 4.3 odd 2