Properties

Label 409.2.a.b.1.13
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.30315\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30315 q^{2} +3.24667 q^{3} -0.301807 q^{4} -0.0792979 q^{5} +4.23089 q^{6} -0.257170 q^{7} -2.99959 q^{8} +7.54085 q^{9} -0.103337 q^{10} -1.41842 q^{11} -0.979866 q^{12} +2.01129 q^{13} -0.335130 q^{14} -0.257454 q^{15} -3.30530 q^{16} -0.527634 q^{17} +9.82683 q^{18} -2.79846 q^{19} +0.0239327 q^{20} -0.834944 q^{21} -1.84841 q^{22} +4.39762 q^{23} -9.73868 q^{24} -4.99371 q^{25} +2.62100 q^{26} +14.7426 q^{27} +0.0776155 q^{28} -5.67996 q^{29} -0.335501 q^{30} -5.41119 q^{31} +1.69189 q^{32} -4.60514 q^{33} -0.687585 q^{34} +0.0203930 q^{35} -2.27588 q^{36} +7.42947 q^{37} -3.64680 q^{38} +6.52998 q^{39} +0.237862 q^{40} -8.44997 q^{41} -1.08806 q^{42} -11.0307 q^{43} +0.428089 q^{44} -0.597974 q^{45} +5.73075 q^{46} +8.27772 q^{47} -10.7312 q^{48} -6.93386 q^{49} -6.50754 q^{50} -1.71305 q^{51} -0.607020 q^{52} +0.238203 q^{53} +19.2118 q^{54} +0.112478 q^{55} +0.771405 q^{56} -9.08566 q^{57} -7.40182 q^{58} +5.45179 q^{59} +0.0777013 q^{60} -0.709644 q^{61} -7.05157 q^{62} -1.93928 q^{63} +8.81539 q^{64} -0.159491 q^{65} -6.00118 q^{66} +10.4121 q^{67} +0.159244 q^{68} +14.2776 q^{69} +0.0265751 q^{70} +1.66186 q^{71} -22.6195 q^{72} +9.78378 q^{73} +9.68170 q^{74} -16.2129 q^{75} +0.844594 q^{76} +0.364775 q^{77} +8.50952 q^{78} +5.81360 q^{79} +0.262103 q^{80} +25.2418 q^{81} -11.0116 q^{82} -2.44766 q^{83} +0.251992 q^{84} +0.0418403 q^{85} -14.3747 q^{86} -18.4409 q^{87} +4.25469 q^{88} +0.484108 q^{89} -0.779248 q^{90} -0.517242 q^{91} -1.32723 q^{92} -17.5683 q^{93} +10.7871 q^{94} +0.221912 q^{95} +5.49302 q^{96} +11.4472 q^{97} -9.03585 q^{98} -10.6961 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30315 0.921464 0.460732 0.887539i \(-0.347587\pi\)
0.460732 + 0.887539i \(0.347587\pi\)
\(3\) 3.24667 1.87446 0.937232 0.348706i \(-0.113379\pi\)
0.937232 + 0.348706i \(0.113379\pi\)
\(4\) −0.301807 −0.150903
\(5\) −0.0792979 −0.0354631 −0.0177316 0.999843i \(-0.505644\pi\)
−0.0177316 + 0.999843i \(0.505644\pi\)
\(6\) 4.23089 1.72725
\(7\) −0.257170 −0.0972010 −0.0486005 0.998818i \(-0.515476\pi\)
−0.0486005 + 0.998818i \(0.515476\pi\)
\(8\) −2.99959 −1.06052
\(9\) 7.54085 2.51362
\(10\) −0.103337 −0.0326780
\(11\) −1.41842 −0.427670 −0.213835 0.976870i \(-0.568596\pi\)
−0.213835 + 0.976870i \(0.568596\pi\)
\(12\) −0.979866 −0.282863
\(13\) 2.01129 0.557830 0.278915 0.960316i \(-0.410025\pi\)
0.278915 + 0.960316i \(0.410025\pi\)
\(14\) −0.335130 −0.0895673
\(15\) −0.257454 −0.0664743
\(16\) −3.30530 −0.826325
\(17\) −0.527634 −0.127970 −0.0639851 0.997951i \(-0.520381\pi\)
−0.0639851 + 0.997951i \(0.520381\pi\)
\(18\) 9.82683 2.31621
\(19\) −2.79846 −0.642010 −0.321005 0.947077i \(-0.604021\pi\)
−0.321005 + 0.947077i \(0.604021\pi\)
\(20\) 0.0239327 0.00535150
\(21\) −0.834944 −0.182200
\(22\) −1.84841 −0.394083
\(23\) 4.39762 0.916967 0.458483 0.888703i \(-0.348393\pi\)
0.458483 + 0.888703i \(0.348393\pi\)
\(24\) −9.73868 −1.98790
\(25\) −4.99371 −0.998742
\(26\) 2.62100 0.514021
\(27\) 14.7426 2.83722
\(28\) 0.0776155 0.0146680
\(29\) −5.67996 −1.05474 −0.527371 0.849635i \(-0.676822\pi\)
−0.527371 + 0.849635i \(0.676822\pi\)
\(30\) −0.335501 −0.0612537
\(31\) −5.41119 −0.971878 −0.485939 0.873993i \(-0.661522\pi\)
−0.485939 + 0.873993i \(0.661522\pi\)
\(32\) 1.69189 0.299088
\(33\) −4.60514 −0.801653
\(34\) −0.687585 −0.117920
\(35\) 0.0203930 0.00344705
\(36\) −2.27588 −0.379313
\(37\) 7.42947 1.22140 0.610699 0.791863i \(-0.290889\pi\)
0.610699 + 0.791863i \(0.290889\pi\)
\(38\) −3.64680 −0.591590
\(39\) 6.52998 1.04563
\(40\) 0.237862 0.0376092
\(41\) −8.44997 −1.31966 −0.659832 0.751413i \(-0.729372\pi\)
−0.659832 + 0.751413i \(0.729372\pi\)
\(42\) −1.08806 −0.167891
\(43\) −11.0307 −1.68217 −0.841085 0.540903i \(-0.818083\pi\)
−0.841085 + 0.540903i \(0.818083\pi\)
\(44\) 0.428089 0.0645369
\(45\) −0.597974 −0.0891406
\(46\) 5.73075 0.844952
\(47\) 8.27772 1.20743 0.603715 0.797200i \(-0.293686\pi\)
0.603715 + 0.797200i \(0.293686\pi\)
\(48\) −10.7312 −1.54892
\(49\) −6.93386 −0.990552
\(50\) −6.50754 −0.920306
\(51\) −1.71305 −0.239875
\(52\) −0.607020 −0.0841785
\(53\) 0.238203 0.0327197 0.0163599 0.999866i \(-0.494792\pi\)
0.0163599 + 0.999866i \(0.494792\pi\)
\(54\) 19.2118 2.61439
\(55\) 0.112478 0.0151665
\(56\) 0.771405 0.103083
\(57\) −9.08566 −1.20343
\(58\) −7.40182 −0.971907
\(59\) 5.45179 0.709762 0.354881 0.934911i \(-0.384521\pi\)
0.354881 + 0.934911i \(0.384521\pi\)
\(60\) 0.0777013 0.0100312
\(61\) −0.709644 −0.0908605 −0.0454303 0.998968i \(-0.514466\pi\)
−0.0454303 + 0.998968i \(0.514466\pi\)
\(62\) −7.05157 −0.895551
\(63\) −1.93928 −0.244326
\(64\) 8.81539 1.10192
\(65\) −0.159491 −0.0197824
\(66\) −6.00118 −0.738694
\(67\) 10.4121 1.27204 0.636021 0.771671i \(-0.280579\pi\)
0.636021 + 0.771671i \(0.280579\pi\)
\(68\) 0.159244 0.0193111
\(69\) 14.2776 1.71882
\(70\) 0.0265751 0.00317633
\(71\) 1.66186 0.197226 0.0986132 0.995126i \(-0.468559\pi\)
0.0986132 + 0.995126i \(0.468559\pi\)
\(72\) −22.6195 −2.66573
\(73\) 9.78378 1.14510 0.572552 0.819868i \(-0.305953\pi\)
0.572552 + 0.819868i \(0.305953\pi\)
\(74\) 9.68170 1.12547
\(75\) −16.2129 −1.87211
\(76\) 0.844594 0.0968815
\(77\) 0.364775 0.0415700
\(78\) 8.50952 0.963513
\(79\) 5.81360 0.654081 0.327041 0.945010i \(-0.393949\pi\)
0.327041 + 0.945010i \(0.393949\pi\)
\(80\) 0.262103 0.0293041
\(81\) 25.2418 2.80465
\(82\) −11.0116 −1.21602
\(83\) −2.44766 −0.268665 −0.134333 0.990936i \(-0.542889\pi\)
−0.134333 + 0.990936i \(0.542889\pi\)
\(84\) 0.251992 0.0274946
\(85\) 0.0418403 0.00453822
\(86\) −14.3747 −1.55006
\(87\) −18.4409 −1.97708
\(88\) 4.25469 0.453551
\(89\) 0.484108 0.0513154 0.0256577 0.999671i \(-0.491832\pi\)
0.0256577 + 0.999671i \(0.491832\pi\)
\(90\) −0.779248 −0.0821399
\(91\) −0.517242 −0.0542217
\(92\) −1.32723 −0.138373
\(93\) −17.5683 −1.82175
\(94\) 10.7871 1.11260
\(95\) 0.221912 0.0227677
\(96\) 5.49302 0.560629
\(97\) 11.4472 1.16229 0.581143 0.813802i \(-0.302606\pi\)
0.581143 + 0.813802i \(0.302606\pi\)
\(98\) −9.03585 −0.912758
\(99\) −10.6961 −1.07500
\(100\) 1.50714 0.150714
\(101\) 6.57355 0.654093 0.327046 0.945008i \(-0.393947\pi\)
0.327046 + 0.945008i \(0.393947\pi\)
\(102\) −2.23236 −0.221037
\(103\) −0.246723 −0.0243104 −0.0121552 0.999926i \(-0.503869\pi\)
−0.0121552 + 0.999926i \(0.503869\pi\)
\(104\) −6.03304 −0.591588
\(105\) 0.0662094 0.00646137
\(106\) 0.310414 0.0301501
\(107\) 9.62130 0.930126 0.465063 0.885278i \(-0.346032\pi\)
0.465063 + 0.885278i \(0.346032\pi\)
\(108\) −4.44942 −0.428146
\(109\) 0.981224 0.0939842 0.0469921 0.998895i \(-0.485036\pi\)
0.0469921 + 0.998895i \(0.485036\pi\)
\(110\) 0.146575 0.0139754
\(111\) 24.1210 2.28947
\(112\) 0.850023 0.0803196
\(113\) 9.78799 0.920777 0.460388 0.887718i \(-0.347710\pi\)
0.460388 + 0.887718i \(0.347710\pi\)
\(114\) −11.8400 −1.10891
\(115\) −0.348722 −0.0325185
\(116\) 1.71425 0.159164
\(117\) 15.1668 1.40217
\(118\) 7.10448 0.654021
\(119\) 0.135692 0.0124388
\(120\) 0.772257 0.0704971
\(121\) −8.98808 −0.817098
\(122\) −0.924770 −0.0837248
\(123\) −27.4342 −2.47366
\(124\) 1.63313 0.146660
\(125\) 0.792481 0.0708816
\(126\) −2.52716 −0.225138
\(127\) −15.5930 −1.38365 −0.691827 0.722063i \(-0.743194\pi\)
−0.691827 + 0.722063i \(0.743194\pi\)
\(128\) 8.10396 0.716296
\(129\) −35.8131 −3.15317
\(130\) −0.207840 −0.0182288
\(131\) −1.17813 −0.102933 −0.0514667 0.998675i \(-0.516390\pi\)
−0.0514667 + 0.998675i \(0.516390\pi\)
\(132\) 1.38986 0.120972
\(133\) 0.719679 0.0624041
\(134\) 13.5685 1.17214
\(135\) −1.16906 −0.100617
\(136\) 1.58269 0.135714
\(137\) −14.4017 −1.23042 −0.615210 0.788364i \(-0.710929\pi\)
−0.615210 + 0.788364i \(0.710929\pi\)
\(138\) 18.6058 1.58383
\(139\) −20.3316 −1.72450 −0.862251 0.506482i \(-0.830946\pi\)
−0.862251 + 0.506482i \(0.830946\pi\)
\(140\) −0.00615475 −0.000520172 0
\(141\) 26.8750 2.26328
\(142\) 2.16565 0.181737
\(143\) −2.85285 −0.238567
\(144\) −24.9248 −2.07706
\(145\) 0.450409 0.0374044
\(146\) 12.7497 1.05517
\(147\) −22.5119 −1.85675
\(148\) −2.24226 −0.184313
\(149\) 0.247293 0.0202590 0.0101295 0.999949i \(-0.496776\pi\)
0.0101295 + 0.999949i \(0.496776\pi\)
\(150\) −21.1278 −1.72508
\(151\) 7.64628 0.622246 0.311123 0.950370i \(-0.399295\pi\)
0.311123 + 0.950370i \(0.399295\pi\)
\(152\) 8.39424 0.680863
\(153\) −3.97881 −0.321668
\(154\) 0.475356 0.0383053
\(155\) 0.429096 0.0344658
\(156\) −1.97079 −0.157789
\(157\) 15.6300 1.24741 0.623705 0.781660i \(-0.285627\pi\)
0.623705 + 0.781660i \(0.285627\pi\)
\(158\) 7.57598 0.602713
\(159\) 0.773366 0.0613319
\(160\) −0.134164 −0.0106066
\(161\) −1.13093 −0.0891301
\(162\) 32.8938 2.58438
\(163\) −19.4203 −1.52111 −0.760556 0.649273i \(-0.775073\pi\)
−0.760556 + 0.649273i \(0.775073\pi\)
\(164\) 2.55026 0.199142
\(165\) 0.365178 0.0284291
\(166\) −3.18966 −0.247566
\(167\) 17.7956 1.37707 0.688534 0.725204i \(-0.258255\pi\)
0.688534 + 0.725204i \(0.258255\pi\)
\(168\) 2.50449 0.193226
\(169\) −8.95473 −0.688825
\(170\) 0.0545241 0.00418181
\(171\) −21.1027 −1.61377
\(172\) 3.32915 0.253845
\(173\) 12.6809 0.964112 0.482056 0.876140i \(-0.339890\pi\)
0.482056 + 0.876140i \(0.339890\pi\)
\(174\) −24.0313 −1.82180
\(175\) 1.28423 0.0970788
\(176\) 4.68831 0.353395
\(177\) 17.7001 1.33042
\(178\) 0.630865 0.0472853
\(179\) −14.8252 −1.10809 −0.554045 0.832486i \(-0.686917\pi\)
−0.554045 + 0.832486i \(0.686917\pi\)
\(180\) 0.180472 0.0134516
\(181\) −23.6180 −1.75551 −0.877757 0.479106i \(-0.840961\pi\)
−0.877757 + 0.479106i \(0.840961\pi\)
\(182\) −0.674042 −0.0499633
\(183\) −2.30398 −0.170315
\(184\) −13.1911 −0.972459
\(185\) −0.589142 −0.0433146
\(186\) −22.8941 −1.67868
\(187\) 0.748408 0.0547290
\(188\) −2.49827 −0.182205
\(189\) −3.79135 −0.275780
\(190\) 0.289184 0.0209796
\(191\) 16.4708 1.19178 0.595892 0.803064i \(-0.296798\pi\)
0.595892 + 0.803064i \(0.296798\pi\)
\(192\) 28.6206 2.06552
\(193\) 17.8342 1.28373 0.641867 0.766816i \(-0.278160\pi\)
0.641867 + 0.766816i \(0.278160\pi\)
\(194\) 14.9174 1.07100
\(195\) −0.517814 −0.0370814
\(196\) 2.09269 0.149478
\(197\) 5.98149 0.426163 0.213082 0.977034i \(-0.431650\pi\)
0.213082 + 0.977034i \(0.431650\pi\)
\(198\) −13.9386 −0.990573
\(199\) 27.7176 1.96485 0.982423 0.186669i \(-0.0597693\pi\)
0.982423 + 0.186669i \(0.0597693\pi\)
\(200\) 14.9791 1.05918
\(201\) 33.8047 2.38440
\(202\) 8.56630 0.602723
\(203\) 1.46071 0.102522
\(204\) 0.517011 0.0361980
\(205\) 0.670065 0.0467994
\(206\) −0.321517 −0.0224011
\(207\) 33.1618 2.30490
\(208\) −6.64790 −0.460949
\(209\) 3.96940 0.274569
\(210\) 0.0862806 0.00595393
\(211\) 5.37734 0.370191 0.185096 0.982721i \(-0.440741\pi\)
0.185096 + 0.982721i \(0.440741\pi\)
\(212\) −0.0718913 −0.00493751
\(213\) 5.39550 0.369694
\(214\) 12.5380 0.857078
\(215\) 0.874714 0.0596550
\(216\) −44.2218 −3.00892
\(217\) 1.39159 0.0944675
\(218\) 1.27868 0.0866031
\(219\) 31.7647 2.14646
\(220\) −0.0339466 −0.00228868
\(221\) −1.06122 −0.0713856
\(222\) 31.4332 2.10966
\(223\) 1.56551 0.104834 0.0524170 0.998625i \(-0.483307\pi\)
0.0524170 + 0.998625i \(0.483307\pi\)
\(224\) −0.435104 −0.0290716
\(225\) −37.6568 −2.51045
\(226\) 12.7552 0.848463
\(227\) 15.3517 1.01893 0.509464 0.860492i \(-0.329844\pi\)
0.509464 + 0.860492i \(0.329844\pi\)
\(228\) 2.74211 0.181601
\(229\) −2.82658 −0.186786 −0.0933930 0.995629i \(-0.529771\pi\)
−0.0933930 + 0.995629i \(0.529771\pi\)
\(230\) −0.454436 −0.0299647
\(231\) 1.18430 0.0779214
\(232\) 17.0376 1.11857
\(233\) −19.3158 −1.26542 −0.632710 0.774389i \(-0.718058\pi\)
−0.632710 + 0.774389i \(0.718058\pi\)
\(234\) 19.7646 1.29205
\(235\) −0.656406 −0.0428192
\(236\) −1.64539 −0.107105
\(237\) 18.8748 1.22605
\(238\) 0.176826 0.0114619
\(239\) −1.08613 −0.0702560 −0.0351280 0.999383i \(-0.511184\pi\)
−0.0351280 + 0.999383i \(0.511184\pi\)
\(240\) 0.850963 0.0549294
\(241\) −18.0997 −1.16591 −0.582953 0.812506i \(-0.698103\pi\)
−0.582953 + 0.812506i \(0.698103\pi\)
\(242\) −11.7128 −0.752927
\(243\) 37.7239 2.41999
\(244\) 0.214175 0.0137112
\(245\) 0.549841 0.0351281
\(246\) −35.7508 −2.27939
\(247\) −5.62850 −0.358133
\(248\) 16.2314 1.03069
\(249\) −7.94673 −0.503604
\(250\) 1.03272 0.0653149
\(251\) 20.1908 1.27443 0.637215 0.770686i \(-0.280086\pi\)
0.637215 + 0.770686i \(0.280086\pi\)
\(252\) 0.585287 0.0368696
\(253\) −6.23768 −0.392160
\(254\) −20.3200 −1.27499
\(255\) 0.135842 0.00850673
\(256\) −7.07012 −0.441882
\(257\) 18.7568 1.17002 0.585009 0.811027i \(-0.301091\pi\)
0.585009 + 0.811027i \(0.301091\pi\)
\(258\) −46.6697 −2.90553
\(259\) −1.91063 −0.118721
\(260\) 0.0481354 0.00298523
\(261\) −42.8317 −2.65122
\(262\) −1.53527 −0.0948495
\(263\) 8.47761 0.522752 0.261376 0.965237i \(-0.415824\pi\)
0.261376 + 0.965237i \(0.415824\pi\)
\(264\) 13.8136 0.850166
\(265\) −0.0188890 −0.00116034
\(266\) 0.937848 0.0575031
\(267\) 1.57174 0.0961889
\(268\) −3.14245 −0.191956
\(269\) −23.6023 −1.43906 −0.719528 0.694463i \(-0.755642\pi\)
−0.719528 + 0.694463i \(0.755642\pi\)
\(270\) −1.52346 −0.0927146
\(271\) 5.92870 0.360143 0.180071 0.983654i \(-0.442367\pi\)
0.180071 + 0.983654i \(0.442367\pi\)
\(272\) 1.74399 0.105745
\(273\) −1.67931 −0.101637
\(274\) −18.7675 −1.13379
\(275\) 7.08319 0.427132
\(276\) −4.30908 −0.259376
\(277\) −28.7263 −1.72600 −0.862998 0.505208i \(-0.831416\pi\)
−0.862998 + 0.505208i \(0.831416\pi\)
\(278\) −26.4950 −1.58907
\(279\) −40.8049 −2.44293
\(280\) −0.0611708 −0.00365565
\(281\) 2.68307 0.160058 0.0800291 0.996793i \(-0.474499\pi\)
0.0800291 + 0.996793i \(0.474499\pi\)
\(282\) 35.0221 2.08554
\(283\) −17.7178 −1.05321 −0.526606 0.850110i \(-0.676536\pi\)
−0.526606 + 0.850110i \(0.676536\pi\)
\(284\) −0.501560 −0.0297621
\(285\) 0.720474 0.0426772
\(286\) −3.71769 −0.219831
\(287\) 2.17308 0.128273
\(288\) 12.7583 0.751791
\(289\) −16.7216 −0.983624
\(290\) 0.586949 0.0344669
\(291\) 37.1652 2.17866
\(292\) −2.95281 −0.172800
\(293\) 21.5122 1.25676 0.628379 0.777907i \(-0.283719\pi\)
0.628379 + 0.777907i \(0.283719\pi\)
\(294\) −29.3364 −1.71093
\(295\) −0.432316 −0.0251704
\(296\) −22.2854 −1.29531
\(297\) −20.9112 −1.21339
\(298\) 0.322259 0.0186680
\(299\) 8.84487 0.511512
\(300\) 4.89317 0.282507
\(301\) 2.83677 0.163509
\(302\) 9.96423 0.573377
\(303\) 21.3421 1.22607
\(304\) 9.24974 0.530509
\(305\) 0.0562733 0.00322220
\(306\) −5.18498 −0.296405
\(307\) 13.0749 0.746225 0.373113 0.927786i \(-0.378290\pi\)
0.373113 + 0.927786i \(0.378290\pi\)
\(308\) −0.110092 −0.00627305
\(309\) −0.801028 −0.0455689
\(310\) 0.559175 0.0317590
\(311\) −22.3534 −1.26755 −0.633773 0.773519i \(-0.718495\pi\)
−0.633773 + 0.773519i \(0.718495\pi\)
\(312\) −19.5873 −1.10891
\(313\) −24.9904 −1.41254 −0.706271 0.707942i \(-0.749624\pi\)
−0.706271 + 0.707942i \(0.749624\pi\)
\(314\) 20.3682 1.14944
\(315\) 0.153781 0.00866456
\(316\) −1.75458 −0.0987031
\(317\) 31.5740 1.77337 0.886685 0.462374i \(-0.153002\pi\)
0.886685 + 0.462374i \(0.153002\pi\)
\(318\) 1.00781 0.0565152
\(319\) 8.05658 0.451082
\(320\) −0.699042 −0.0390776
\(321\) 31.2372 1.74349
\(322\) −1.47377 −0.0821302
\(323\) 1.47656 0.0821582
\(324\) −7.61815 −0.423231
\(325\) −10.0438 −0.557129
\(326\) −25.3075 −1.40165
\(327\) 3.18571 0.176170
\(328\) 25.3465 1.39952
\(329\) −2.12878 −0.117363
\(330\) 0.475881 0.0261964
\(331\) −7.61834 −0.418742 −0.209371 0.977836i \(-0.567142\pi\)
−0.209371 + 0.977836i \(0.567142\pi\)
\(332\) 0.738720 0.0405425
\(333\) 56.0245 3.07012
\(334\) 23.1903 1.26892
\(335\) −0.825660 −0.0451106
\(336\) 2.75974 0.150556
\(337\) 7.76074 0.422754 0.211377 0.977405i \(-0.432205\pi\)
0.211377 + 0.977405i \(0.432205\pi\)
\(338\) −11.6693 −0.634728
\(339\) 31.7783 1.72596
\(340\) −0.0126277 −0.000684833 0
\(341\) 7.67535 0.415643
\(342\) −27.5000 −1.48703
\(343\) 3.58337 0.193484
\(344\) 33.0877 1.78397
\(345\) −1.13218 −0.0609548
\(346\) 16.5251 0.888395
\(347\) 19.8266 1.06435 0.532173 0.846636i \(-0.321376\pi\)
0.532173 + 0.846636i \(0.321376\pi\)
\(348\) 5.56560 0.298347
\(349\) −4.56114 −0.244152 −0.122076 0.992521i \(-0.538955\pi\)
−0.122076 + 0.992521i \(0.538955\pi\)
\(350\) 1.67354 0.0894546
\(351\) 29.6516 1.58269
\(352\) −2.39982 −0.127911
\(353\) −22.9993 −1.22413 −0.612064 0.790808i \(-0.709660\pi\)
−0.612064 + 0.790808i \(0.709660\pi\)
\(354\) 23.0659 1.22594
\(355\) −0.131782 −0.00699427
\(356\) −0.146107 −0.00774367
\(357\) 0.440545 0.0233161
\(358\) −19.3195 −1.02107
\(359\) −17.0473 −0.899724 −0.449862 0.893098i \(-0.648527\pi\)
−0.449862 + 0.893098i \(0.648527\pi\)
\(360\) 1.79368 0.0945351
\(361\) −11.1686 −0.587823
\(362\) −30.7778 −1.61764
\(363\) −29.1813 −1.53162
\(364\) 0.156107 0.00818223
\(365\) −0.775834 −0.0406090
\(366\) −3.00242 −0.156939
\(367\) −14.3441 −0.748754 −0.374377 0.927277i \(-0.622143\pi\)
−0.374377 + 0.927277i \(0.622143\pi\)
\(368\) −14.5354 −0.757713
\(369\) −63.7199 −3.31713
\(370\) −0.767739 −0.0399128
\(371\) −0.0612586 −0.00318039
\(372\) 5.30224 0.274908
\(373\) −28.8717 −1.49492 −0.747461 0.664306i \(-0.768727\pi\)
−0.747461 + 0.664306i \(0.768727\pi\)
\(374\) 0.975286 0.0504309
\(375\) 2.57292 0.132865
\(376\) −24.8298 −1.28050
\(377\) −11.4240 −0.588367
\(378\) −4.94069 −0.254122
\(379\) 24.6795 1.26770 0.633850 0.773456i \(-0.281474\pi\)
0.633850 + 0.773456i \(0.281474\pi\)
\(380\) −0.0669745 −0.00343572
\(381\) −50.6253 −2.59361
\(382\) 21.4639 1.09819
\(383\) −12.5038 −0.638913 −0.319457 0.947601i \(-0.603500\pi\)
−0.319457 + 0.947601i \(0.603500\pi\)
\(384\) 26.3109 1.34267
\(385\) −0.0289259 −0.00147420
\(386\) 23.2406 1.18292
\(387\) −83.1810 −4.22833
\(388\) −3.45484 −0.175393
\(389\) −28.6548 −1.45286 −0.726429 0.687242i \(-0.758821\pi\)
−0.726429 + 0.687242i \(0.758821\pi\)
\(390\) −0.674788 −0.0341692
\(391\) −2.32034 −0.117344
\(392\) 20.7988 1.05050
\(393\) −3.82499 −0.192945
\(394\) 7.79476 0.392694
\(395\) −0.461007 −0.0231958
\(396\) 3.22816 0.162221
\(397\) 29.0706 1.45901 0.729507 0.683974i \(-0.239750\pi\)
0.729507 + 0.683974i \(0.239750\pi\)
\(398\) 36.1201 1.81054
\(399\) 2.33656 0.116974
\(400\) 16.5057 0.825286
\(401\) 32.6462 1.63027 0.815136 0.579270i \(-0.196662\pi\)
0.815136 + 0.579270i \(0.196662\pi\)
\(402\) 44.0525 2.19714
\(403\) −10.8834 −0.542143
\(404\) −1.98394 −0.0987048
\(405\) −2.00162 −0.0994615
\(406\) 1.90352 0.0944703
\(407\) −10.5381 −0.522356
\(408\) 5.13846 0.254392
\(409\) 1.00000 0.0494468
\(410\) 0.873194 0.0431240
\(411\) −46.7575 −2.30638
\(412\) 0.0744627 0.00366851
\(413\) −1.40203 −0.0689896
\(414\) 43.2147 2.12389
\(415\) 0.194094 0.00952772
\(416\) 3.40288 0.166840
\(417\) −66.0098 −3.23252
\(418\) 5.17271 0.253005
\(419\) −10.6982 −0.522642 −0.261321 0.965252i \(-0.584158\pi\)
−0.261321 + 0.965252i \(0.584158\pi\)
\(420\) −0.0199824 −0.000975043 0
\(421\) −25.9303 −1.26377 −0.631883 0.775064i \(-0.717718\pi\)
−0.631883 + 0.775064i \(0.717718\pi\)
\(422\) 7.00747 0.341118
\(423\) 62.4210 3.03501
\(424\) −0.714513 −0.0346998
\(425\) 2.63485 0.127809
\(426\) 7.03114 0.340660
\(427\) 0.182499 0.00883174
\(428\) −2.90377 −0.140359
\(429\) −9.26226 −0.447186
\(430\) 1.13988 0.0549699
\(431\) 22.6333 1.09021 0.545104 0.838368i \(-0.316490\pi\)
0.545104 + 0.838368i \(0.316490\pi\)
\(432\) −48.7288 −2.34446
\(433\) −20.3248 −0.976746 −0.488373 0.872635i \(-0.662409\pi\)
−0.488373 + 0.872635i \(0.662409\pi\)
\(434\) 1.81345 0.0870484
\(435\) 1.46233 0.0701133
\(436\) −0.296140 −0.0141825
\(437\) −12.3066 −0.588702
\(438\) 41.3941 1.97788
\(439\) −19.1914 −0.915957 −0.457978 0.888963i \(-0.651426\pi\)
−0.457978 + 0.888963i \(0.651426\pi\)
\(440\) −0.337388 −0.0160843
\(441\) −52.2872 −2.48987
\(442\) −1.38293 −0.0657793
\(443\) 5.52024 0.262274 0.131137 0.991364i \(-0.458137\pi\)
0.131137 + 0.991364i \(0.458137\pi\)
\(444\) −7.27988 −0.345488
\(445\) −0.0383888 −0.00181980
\(446\) 2.04009 0.0966009
\(447\) 0.802878 0.0379748
\(448\) −2.26705 −0.107108
\(449\) −21.0318 −0.992554 −0.496277 0.868164i \(-0.665300\pi\)
−0.496277 + 0.868164i \(0.665300\pi\)
\(450\) −49.0724 −2.31329
\(451\) 11.9856 0.564381
\(452\) −2.95408 −0.138948
\(453\) 24.8249 1.16638
\(454\) 20.0055 0.938906
\(455\) 0.0410162 0.00192287
\(456\) 27.2533 1.27625
\(457\) −5.27660 −0.246829 −0.123415 0.992355i \(-0.539384\pi\)
−0.123415 + 0.992355i \(0.539384\pi\)
\(458\) −3.68346 −0.172117
\(459\) −7.77871 −0.363079
\(460\) 0.105247 0.00490715
\(461\) −12.0755 −0.562414 −0.281207 0.959647i \(-0.590735\pi\)
−0.281207 + 0.959647i \(0.590735\pi\)
\(462\) 1.54332 0.0718018
\(463\) 10.7139 0.497916 0.248958 0.968514i \(-0.419912\pi\)
0.248958 + 0.968514i \(0.419912\pi\)
\(464\) 18.7740 0.871559
\(465\) 1.39313 0.0646049
\(466\) −25.1713 −1.16604
\(467\) −20.7896 −0.962030 −0.481015 0.876712i \(-0.659732\pi\)
−0.481015 + 0.876712i \(0.659732\pi\)
\(468\) −4.57744 −0.211592
\(469\) −2.67768 −0.123644
\(470\) −0.855394 −0.0394564
\(471\) 50.7454 2.33822
\(472\) −16.3531 −0.752714
\(473\) 15.6462 0.719414
\(474\) 24.5967 1.12976
\(475\) 13.9747 0.641203
\(476\) −0.0409526 −0.00187706
\(477\) 1.79625 0.0822448
\(478\) −1.41539 −0.0647384
\(479\) −39.1497 −1.78879 −0.894397 0.447273i \(-0.852395\pi\)
−0.894397 + 0.447273i \(0.852395\pi\)
\(480\) −0.435585 −0.0198816
\(481\) 14.9428 0.681333
\(482\) −23.5866 −1.07434
\(483\) −3.67177 −0.167071
\(484\) 2.71266 0.123303
\(485\) −0.907738 −0.0412183
\(486\) 49.1599 2.22994
\(487\) 12.1969 0.552692 0.276346 0.961058i \(-0.410876\pi\)
0.276346 + 0.961058i \(0.410876\pi\)
\(488\) 2.12864 0.0963591
\(489\) −63.0511 −2.85127
\(490\) 0.716524 0.0323693
\(491\) 25.0876 1.13219 0.566094 0.824341i \(-0.308454\pi\)
0.566094 + 0.824341i \(0.308454\pi\)
\(492\) 8.27983 0.373284
\(493\) 2.99694 0.134975
\(494\) −7.33477 −0.330007
\(495\) 0.848179 0.0381228
\(496\) 17.8856 0.803087
\(497\) −0.427380 −0.0191706
\(498\) −10.3558 −0.464053
\(499\) −27.4769 −1.23004 −0.615018 0.788513i \(-0.710851\pi\)
−0.615018 + 0.788513i \(0.710851\pi\)
\(500\) −0.239176 −0.0106963
\(501\) 57.7765 2.58126
\(502\) 26.3116 1.17434
\(503\) 28.9853 1.29239 0.646196 0.763172i \(-0.276359\pi\)
0.646196 + 0.763172i \(0.276359\pi\)
\(504\) 5.81704 0.259112
\(505\) −0.521269 −0.0231962
\(506\) −8.12862 −0.361361
\(507\) −29.0730 −1.29118
\(508\) 4.70607 0.208798
\(509\) 29.7835 1.32013 0.660065 0.751208i \(-0.270529\pi\)
0.660065 + 0.751208i \(0.270529\pi\)
\(510\) 0.177022 0.00783865
\(511\) −2.51609 −0.111305
\(512\) −25.4213 −1.12347
\(513\) −41.2566 −1.82152
\(514\) 24.4429 1.07813
\(515\) 0.0195646 0.000862121 0
\(516\) 10.8086 0.475823
\(517\) −11.7413 −0.516382
\(518\) −2.48984 −0.109397
\(519\) 41.1707 1.80719
\(520\) 0.478408 0.0209796
\(521\) 26.7743 1.17300 0.586501 0.809948i \(-0.300505\pi\)
0.586501 + 0.809948i \(0.300505\pi\)
\(522\) −55.8160 −2.44300
\(523\) −10.6602 −0.466140 −0.233070 0.972460i \(-0.574877\pi\)
−0.233070 + 0.972460i \(0.574877\pi\)
\(524\) 0.355567 0.0155330
\(525\) 4.16947 0.181971
\(526\) 11.0476 0.481697
\(527\) 2.85513 0.124371
\(528\) 15.2214 0.662426
\(529\) −3.66095 −0.159172
\(530\) −0.0246152 −0.00106921
\(531\) 41.1111 1.78407
\(532\) −0.217204 −0.00941698
\(533\) −16.9953 −0.736148
\(534\) 2.04821 0.0886346
\(535\) −0.762949 −0.0329852
\(536\) −31.2321 −1.34902
\(537\) −48.1326 −2.07708
\(538\) −30.7572 −1.32604
\(539\) 9.83515 0.423630
\(540\) 0.352830 0.0151834
\(541\) −41.2307 −1.77265 −0.886323 0.463067i \(-0.846749\pi\)
−0.886323 + 0.463067i \(0.846749\pi\)
\(542\) 7.72597 0.331859
\(543\) −76.6799 −3.29065
\(544\) −0.892702 −0.0382743
\(545\) −0.0778090 −0.00333297
\(546\) −2.18839 −0.0936545
\(547\) 39.9688 1.70894 0.854471 0.519499i \(-0.173882\pi\)
0.854471 + 0.519499i \(0.173882\pi\)
\(548\) 4.34653 0.185674
\(549\) −5.35131 −0.228388
\(550\) 9.23044 0.393587
\(551\) 15.8951 0.677155
\(552\) −42.8270 −1.82284
\(553\) −1.49508 −0.0635774
\(554\) −37.4346 −1.59044
\(555\) −1.91275 −0.0811916
\(556\) 6.13620 0.260233
\(557\) −2.73835 −0.116027 −0.0580137 0.998316i \(-0.518477\pi\)
−0.0580137 + 0.998316i \(0.518477\pi\)
\(558\) −53.1748 −2.25107
\(559\) −22.1859 −0.938365
\(560\) −0.0674051 −0.00284838
\(561\) 2.42983 0.102588
\(562\) 3.49643 0.147488
\(563\) 38.5408 1.62430 0.812150 0.583449i \(-0.198297\pi\)
0.812150 + 0.583449i \(0.198297\pi\)
\(564\) −8.11106 −0.341537
\(565\) −0.776168 −0.0326536
\(566\) −23.0889 −0.970497
\(567\) −6.49143 −0.272614
\(568\) −4.98490 −0.209162
\(569\) 21.9552 0.920409 0.460204 0.887813i \(-0.347776\pi\)
0.460204 + 0.887813i \(0.347776\pi\)
\(570\) 0.938884 0.0393255
\(571\) −27.2036 −1.13843 −0.569217 0.822187i \(-0.692754\pi\)
−0.569217 + 0.822187i \(0.692754\pi\)
\(572\) 0.861010 0.0360006
\(573\) 53.4752 2.23396
\(574\) 2.83184 0.118199
\(575\) −21.9604 −0.915814
\(576\) 66.4755 2.76981
\(577\) 6.14567 0.255847 0.127924 0.991784i \(-0.459169\pi\)
0.127924 + 0.991784i \(0.459169\pi\)
\(578\) −21.7907 −0.906374
\(579\) 57.9017 2.40631
\(580\) −0.135936 −0.00564446
\(581\) 0.629464 0.0261146
\(582\) 48.4317 2.00756
\(583\) −0.337873 −0.0139933
\(584\) −29.3474 −1.21440
\(585\) −1.20270 −0.0497254
\(586\) 28.0336 1.15806
\(587\) 3.76761 0.155506 0.0777529 0.996973i \(-0.475225\pi\)
0.0777529 + 0.996973i \(0.475225\pi\)
\(588\) 6.79426 0.280190
\(589\) 15.1430 0.623956
\(590\) −0.563371 −0.0231936
\(591\) 19.4199 0.798828
\(592\) −24.5566 −1.00927
\(593\) −44.8123 −1.84022 −0.920110 0.391660i \(-0.871901\pi\)
−0.920110 + 0.391660i \(0.871901\pi\)
\(594\) −27.2504 −1.11810
\(595\) −0.0107601 −0.000441120 0
\(596\) −0.0746347 −0.00305716
\(597\) 89.9897 3.68303
\(598\) 11.5262 0.471340
\(599\) −4.44042 −0.181431 −0.0907154 0.995877i \(-0.528915\pi\)
−0.0907154 + 0.995877i \(0.528915\pi\)
\(600\) 48.6322 1.98540
\(601\) −17.7180 −0.722731 −0.361366 0.932424i \(-0.617689\pi\)
−0.361366 + 0.932424i \(0.617689\pi\)
\(602\) 3.69673 0.150667
\(603\) 78.5162 3.19743
\(604\) −2.30770 −0.0938990
\(605\) 0.712736 0.0289768
\(606\) 27.8119 1.12978
\(607\) −39.9816 −1.62280 −0.811402 0.584489i \(-0.801295\pi\)
−0.811402 + 0.584489i \(0.801295\pi\)
\(608\) −4.73470 −0.192017
\(609\) 4.74245 0.192174
\(610\) 0.0733324 0.00296914
\(611\) 16.6489 0.673541
\(612\) 1.20083 0.0485407
\(613\) 2.70621 0.109303 0.0546514 0.998505i \(-0.482595\pi\)
0.0546514 + 0.998505i \(0.482595\pi\)
\(614\) 17.0386 0.687620
\(615\) 2.17548 0.0877238
\(616\) −1.09418 −0.0440857
\(617\) −22.8230 −0.918819 −0.459409 0.888225i \(-0.651939\pi\)
−0.459409 + 0.888225i \(0.651939\pi\)
\(618\) −1.04386 −0.0419901
\(619\) 8.04743 0.323454 0.161727 0.986836i \(-0.448294\pi\)
0.161727 + 0.986836i \(0.448294\pi\)
\(620\) −0.129504 −0.00520101
\(621\) 64.8324 2.60163
\(622\) −29.1298 −1.16800
\(623\) −0.124498 −0.00498791
\(624\) −21.5835 −0.864032
\(625\) 24.9057 0.996229
\(626\) −32.5662 −1.30161
\(627\) 12.8873 0.514669
\(628\) −4.71724 −0.188238
\(629\) −3.92004 −0.156302
\(630\) 0.200399 0.00798408
\(631\) 44.8068 1.78373 0.891865 0.452302i \(-0.149397\pi\)
0.891865 + 0.452302i \(0.149397\pi\)
\(632\) −17.4384 −0.693664
\(633\) 17.4584 0.693910
\(634\) 41.1455 1.63410
\(635\) 1.23649 0.0490687
\(636\) −0.233407 −0.00925519
\(637\) −13.9460 −0.552560
\(638\) 10.4989 0.415656
\(639\) 12.5318 0.495751
\(640\) −0.642627 −0.0254021
\(641\) 15.4824 0.611517 0.305758 0.952109i \(-0.401090\pi\)
0.305758 + 0.952109i \(0.401090\pi\)
\(642\) 40.7066 1.60656
\(643\) 9.68629 0.381990 0.190995 0.981591i \(-0.438829\pi\)
0.190995 + 0.981591i \(0.438829\pi\)
\(644\) 0.341324 0.0134500
\(645\) 2.83990 0.111821
\(646\) 1.92418 0.0757058
\(647\) 17.1868 0.675683 0.337841 0.941203i \(-0.390303\pi\)
0.337841 + 0.941203i \(0.390303\pi\)
\(648\) −75.7152 −2.97437
\(649\) −7.73293 −0.303544
\(650\) −13.0885 −0.513374
\(651\) 4.51804 0.177076
\(652\) 5.86116 0.229541
\(653\) −36.6235 −1.43319 −0.716595 0.697490i \(-0.754300\pi\)
−0.716595 + 0.697490i \(0.754300\pi\)
\(654\) 4.15144 0.162334
\(655\) 0.0934231 0.00365034
\(656\) 27.9297 1.09047
\(657\) 73.7780 2.87835
\(658\) −2.77411 −0.108146
\(659\) 5.68191 0.221336 0.110668 0.993857i \(-0.464701\pi\)
0.110668 + 0.993857i \(0.464701\pi\)
\(660\) −0.110213 −0.00429005
\(661\) −12.2718 −0.477317 −0.238659 0.971104i \(-0.576708\pi\)
−0.238659 + 0.971104i \(0.576708\pi\)
\(662\) −9.92781 −0.385855
\(663\) −3.44544 −0.133810
\(664\) 7.34198 0.284924
\(665\) −0.0570690 −0.00221304
\(666\) 73.0082 2.82901
\(667\) −24.9783 −0.967164
\(668\) −5.37084 −0.207804
\(669\) 5.08268 0.196508
\(670\) −1.07596 −0.0415678
\(671\) 1.00657 0.0388584
\(672\) −1.41264 −0.0544937
\(673\) 2.49095 0.0960192 0.0480096 0.998847i \(-0.484712\pi\)
0.0480096 + 0.998847i \(0.484712\pi\)
\(674\) 10.1134 0.389553
\(675\) −73.6204 −2.83365
\(676\) 2.70260 0.103946
\(677\) −36.6597 −1.40895 −0.704474 0.709730i \(-0.748817\pi\)
−0.704474 + 0.709730i \(0.748817\pi\)
\(678\) 41.4119 1.59041
\(679\) −2.94387 −0.112975
\(680\) −0.125504 −0.00481286
\(681\) 49.8419 1.90994
\(682\) 10.0021 0.383001
\(683\) 12.6766 0.485056 0.242528 0.970144i \(-0.422023\pi\)
0.242528 + 0.970144i \(0.422023\pi\)
\(684\) 6.36895 0.243523
\(685\) 1.14202 0.0436345
\(686\) 4.66966 0.178288
\(687\) −9.17698 −0.350123
\(688\) 36.4598 1.39002
\(689\) 0.479095 0.0182520
\(690\) −1.47540 −0.0561677
\(691\) −19.2969 −0.734088 −0.367044 0.930204i \(-0.619630\pi\)
−0.367044 + 0.930204i \(0.619630\pi\)
\(692\) −3.82718 −0.145488
\(693\) 2.75071 0.104491
\(694\) 25.8369 0.980757
\(695\) 1.61225 0.0611562
\(696\) 55.3153 2.09672
\(697\) 4.45849 0.168878
\(698\) −5.94383 −0.224977
\(699\) −62.7120 −2.37199
\(700\) −0.387590 −0.0146495
\(701\) 13.5194 0.510619 0.255310 0.966859i \(-0.417823\pi\)
0.255310 + 0.966859i \(0.417823\pi\)
\(702\) 38.6404 1.45839
\(703\) −20.7911 −0.784150
\(704\) −12.5039 −0.471260
\(705\) −2.13113 −0.0802631
\(706\) −29.9714 −1.12799
\(707\) −1.69052 −0.0635785
\(708\) −5.34202 −0.200765
\(709\) 30.7803 1.15598 0.577990 0.816044i \(-0.303837\pi\)
0.577990 + 0.816044i \(0.303837\pi\)
\(710\) −0.171731 −0.00644497
\(711\) 43.8395 1.64411
\(712\) −1.45213 −0.0544208
\(713\) −23.7963 −0.891180
\(714\) 0.574096 0.0214850
\(715\) 0.226225 0.00846035
\(716\) 4.47436 0.167215
\(717\) −3.52631 −0.131692
\(718\) −22.2152 −0.829063
\(719\) 5.83155 0.217480 0.108740 0.994070i \(-0.465318\pi\)
0.108740 + 0.994070i \(0.465318\pi\)
\(720\) 1.97648 0.0736591
\(721\) 0.0634497 0.00236299
\(722\) −14.5544 −0.541658
\(723\) −58.7638 −2.18545
\(724\) 7.12808 0.264913
\(725\) 28.3641 1.05342
\(726\) −38.0275 −1.41133
\(727\) −33.8612 −1.25584 −0.627921 0.778277i \(-0.716094\pi\)
−0.627921 + 0.778277i \(0.716094\pi\)
\(728\) 1.55151 0.0575030
\(729\) 46.7516 1.73154
\(730\) −1.01103 −0.0374197
\(731\) 5.82019 0.215268
\(732\) 0.695355 0.0257011
\(733\) −30.0453 −1.10975 −0.554875 0.831934i \(-0.687234\pi\)
−0.554875 + 0.831934i \(0.687234\pi\)
\(734\) −18.6924 −0.689950
\(735\) 1.78515 0.0658463
\(736\) 7.44031 0.274253
\(737\) −14.7688 −0.544015
\(738\) −83.0364 −3.05661
\(739\) −11.4350 −0.420644 −0.210322 0.977632i \(-0.567451\pi\)
−0.210322 + 0.977632i \(0.567451\pi\)
\(740\) 0.177807 0.00653631
\(741\) −18.2739 −0.671307
\(742\) −0.0798290 −0.00293062
\(743\) 33.0844 1.21375 0.606875 0.794797i \(-0.292423\pi\)
0.606875 + 0.794797i \(0.292423\pi\)
\(744\) 52.6978 1.93200
\(745\) −0.0196098 −0.000718449 0
\(746\) −37.6241 −1.37752
\(747\) −18.4574 −0.675322
\(748\) −0.225875 −0.00825879
\(749\) −2.47431 −0.0904092
\(750\) 3.35290 0.122430
\(751\) 31.3123 1.14260 0.571302 0.820740i \(-0.306439\pi\)
0.571302 + 0.820740i \(0.306439\pi\)
\(752\) −27.3604 −0.997729
\(753\) 65.5527 2.38887
\(754\) −14.8872 −0.542159
\(755\) −0.606335 −0.0220668
\(756\) 1.14426 0.0416162
\(757\) 53.0401 1.92778 0.963888 0.266308i \(-0.0858039\pi\)
0.963888 + 0.266308i \(0.0858039\pi\)
\(758\) 32.1610 1.16814
\(759\) −20.2517 −0.735089
\(760\) −0.665646 −0.0241455
\(761\) −27.3441 −0.991222 −0.495611 0.868545i \(-0.665056\pi\)
−0.495611 + 0.868545i \(0.665056\pi\)
\(762\) −65.9722 −2.38992
\(763\) −0.252341 −0.00913536
\(764\) −4.97100 −0.179844
\(765\) 0.315511 0.0114073
\(766\) −16.2943 −0.588736
\(767\) 10.9651 0.395927
\(768\) −22.9543 −0.828293
\(769\) 34.9373 1.25987 0.629935 0.776648i \(-0.283081\pi\)
0.629935 + 0.776648i \(0.283081\pi\)
\(770\) −0.0376947 −0.00135842
\(771\) 60.8971 2.19316
\(772\) −5.38248 −0.193720
\(773\) −25.6077 −0.921043 −0.460522 0.887648i \(-0.652338\pi\)
−0.460522 + 0.887648i \(0.652338\pi\)
\(774\) −108.397 −3.89625
\(775\) 27.0219 0.970656
\(776\) −34.3369 −1.23262
\(777\) −6.20319 −0.222538
\(778\) −37.3415 −1.33876
\(779\) 23.6469 0.847238
\(780\) 0.156280 0.00559571
\(781\) −2.35722 −0.0843479
\(782\) −3.02374 −0.108129
\(783\) −83.7374 −2.99253
\(784\) 22.9185 0.818518
\(785\) −1.23943 −0.0442370
\(786\) −4.98452 −0.177792
\(787\) 5.77938 0.206012 0.103006 0.994681i \(-0.467154\pi\)
0.103006 + 0.994681i \(0.467154\pi\)
\(788\) −1.80525 −0.0643095
\(789\) 27.5240 0.979879
\(790\) −0.600760 −0.0213741
\(791\) −2.51717 −0.0895004
\(792\) 32.0840 1.14005
\(793\) −1.42730 −0.0506848
\(794\) 37.8833 1.34443
\(795\) −0.0613264 −0.00217502
\(796\) −8.36534 −0.296502
\(797\) 36.0085 1.27549 0.637743 0.770250i \(-0.279868\pi\)
0.637743 + 0.770250i \(0.279868\pi\)
\(798\) 3.04488 0.107788
\(799\) −4.36761 −0.154515
\(800\) −8.44883 −0.298711
\(801\) 3.65059 0.128987
\(802\) 42.5428 1.50224
\(803\) −13.8775 −0.489727
\(804\) −10.2025 −0.359814
\(805\) 0.0896808 0.00316083
\(806\) −14.1827 −0.499565
\(807\) −76.6287 −2.69746
\(808\) −19.7180 −0.693676
\(809\) 3.77871 0.132852 0.0664262 0.997791i \(-0.478840\pi\)
0.0664262 + 0.997791i \(0.478840\pi\)
\(810\) −2.60841 −0.0916503
\(811\) 2.61255 0.0917391 0.0458695 0.998947i \(-0.485394\pi\)
0.0458695 + 0.998947i \(0.485394\pi\)
\(812\) −0.440853 −0.0154709
\(813\) 19.2485 0.675075
\(814\) −13.7327 −0.481332
\(815\) 1.53999 0.0539434
\(816\) 5.66215 0.198215
\(817\) 30.8690 1.07997
\(818\) 1.30315 0.0455635
\(819\) −3.90044 −0.136292
\(820\) −0.202230 −0.00706218
\(821\) −35.1769 −1.22768 −0.613841 0.789430i \(-0.710376\pi\)
−0.613841 + 0.789430i \(0.710376\pi\)
\(822\) −60.9319 −2.12524
\(823\) 33.2639 1.15951 0.579754 0.814792i \(-0.303149\pi\)
0.579754 + 0.814792i \(0.303149\pi\)
\(824\) 0.740069 0.0257815
\(825\) 22.9968 0.800644
\(826\) −1.82706 −0.0635715
\(827\) −54.7760 −1.90475 −0.952375 0.304930i \(-0.901367\pi\)
−0.952375 + 0.304930i \(0.901367\pi\)
\(828\) −10.0084 −0.347817
\(829\) −2.60439 −0.0904543 −0.0452272 0.998977i \(-0.514401\pi\)
−0.0452272 + 0.998977i \(0.514401\pi\)
\(830\) 0.252934 0.00877945
\(831\) −93.2647 −3.23532
\(832\) 17.7303 0.614686
\(833\) 3.65855 0.126761
\(834\) −86.0205 −2.97865
\(835\) −1.41116 −0.0488351
\(836\) −1.19799 −0.0414334
\(837\) −79.7750 −2.75743
\(838\) −13.9414 −0.481596
\(839\) 31.5303 1.08855 0.544273 0.838908i \(-0.316806\pi\)
0.544273 + 0.838908i \(0.316806\pi\)
\(840\) −0.198601 −0.00685239
\(841\) 3.26193 0.112481
\(842\) −33.7910 −1.16451
\(843\) 8.71102 0.300023
\(844\) −1.62292 −0.0558631
\(845\) 0.710092 0.0244279
\(846\) 81.3438 2.79666
\(847\) 2.31146 0.0794228
\(848\) −0.787333 −0.0270371
\(849\) −57.5237 −1.97421
\(850\) 3.43360 0.117772
\(851\) 32.6720 1.11998
\(852\) −1.62840 −0.0557880
\(853\) −32.4941 −1.11258 −0.556288 0.830990i \(-0.687775\pi\)
−0.556288 + 0.830990i \(0.687775\pi\)
\(854\) 0.237823 0.00813813
\(855\) 1.67340 0.0572292
\(856\) −28.8600 −0.986414
\(857\) −23.7591 −0.811597 −0.405798 0.913963i \(-0.633006\pi\)
−0.405798 + 0.913963i \(0.633006\pi\)
\(858\) −12.0701 −0.412066
\(859\) −0.365751 −0.0124793 −0.00623963 0.999981i \(-0.501986\pi\)
−0.00623963 + 0.999981i \(0.501986\pi\)
\(860\) −0.263994 −0.00900214
\(861\) 7.05525 0.240442
\(862\) 29.4945 1.00459
\(863\) −9.73662 −0.331438 −0.165719 0.986173i \(-0.552995\pi\)
−0.165719 + 0.986173i \(0.552995\pi\)
\(864\) 24.9429 0.848576
\(865\) −1.00557 −0.0341904
\(866\) −26.4862 −0.900037
\(867\) −54.2895 −1.84377
\(868\) −0.419992 −0.0142555
\(869\) −8.24614 −0.279731
\(870\) 1.90563 0.0646069
\(871\) 20.9417 0.709584
\(872\) −2.94327 −0.0996718
\(873\) 86.3215 2.92154
\(874\) −16.0373 −0.542468
\(875\) −0.203802 −0.00688977
\(876\) −9.58679 −0.323908
\(877\) 18.3330 0.619060 0.309530 0.950890i \(-0.399828\pi\)
0.309530 + 0.950890i \(0.399828\pi\)
\(878\) −25.0093 −0.844022
\(879\) 69.8431 2.35575
\(880\) −0.371773 −0.0125325
\(881\) −52.3916 −1.76512 −0.882559 0.470201i \(-0.844181\pi\)
−0.882559 + 0.470201i \(0.844181\pi\)
\(882\) −68.1379 −2.29432
\(883\) 43.0331 1.44818 0.724090 0.689706i \(-0.242260\pi\)
0.724090 + 0.689706i \(0.242260\pi\)
\(884\) 0.320284 0.0107723
\(885\) −1.40358 −0.0471810
\(886\) 7.19368 0.241677
\(887\) −52.0606 −1.74802 −0.874011 0.485906i \(-0.838490\pi\)
−0.874011 + 0.485906i \(0.838490\pi\)
\(888\) −72.3533 −2.42802
\(889\) 4.01005 0.134493
\(890\) −0.0500263 −0.00167688
\(891\) −35.8036 −1.19946
\(892\) −0.472480 −0.0158198
\(893\) −23.1649 −0.775183
\(894\) 1.04627 0.0349925
\(895\) 1.17561 0.0392964
\(896\) −2.08409 −0.0696247
\(897\) 28.7163 0.958811
\(898\) −27.4076 −0.914603
\(899\) 30.7353 1.02508
\(900\) 11.3651 0.378836
\(901\) −0.125684 −0.00418715
\(902\) 15.6190 0.520057
\(903\) 9.21004 0.306491
\(904\) −29.3600 −0.976499
\(905\) 1.87286 0.0622560
\(906\) 32.3506 1.07478
\(907\) 34.5288 1.14651 0.573255 0.819377i \(-0.305680\pi\)
0.573255 + 0.819377i \(0.305680\pi\)
\(908\) −4.63325 −0.153760
\(909\) 49.5701 1.64414
\(910\) 0.0534502 0.00177186
\(911\) −4.22715 −0.140052 −0.0700258 0.997545i \(-0.522308\pi\)
−0.0700258 + 0.997545i \(0.522308\pi\)
\(912\) 30.0308 0.994420
\(913\) 3.47181 0.114900
\(914\) −6.87619 −0.227444
\(915\) 0.182701 0.00603990
\(916\) 0.853082 0.0281866
\(917\) 0.302979 0.0100052
\(918\) −10.1368 −0.334565
\(919\) 28.9654 0.955479 0.477740 0.878501i \(-0.341456\pi\)
0.477740 + 0.878501i \(0.341456\pi\)
\(920\) 1.04602 0.0344864
\(921\) 42.4499 1.39877
\(922\) −15.7362 −0.518245
\(923\) 3.34247 0.110019
\(924\) −0.357431 −0.0117586
\(925\) −37.1006 −1.21986
\(926\) 13.9618 0.458812
\(927\) −1.86050 −0.0611069
\(928\) −9.60989 −0.315460
\(929\) 50.4616 1.65559 0.827796 0.561029i \(-0.189594\pi\)
0.827796 + 0.561029i \(0.189594\pi\)
\(930\) 1.81546 0.0595312
\(931\) 19.4041 0.635945
\(932\) 5.82964 0.190956
\(933\) −72.5741 −2.37597
\(934\) −27.0920 −0.886477
\(935\) −0.0593472 −0.00194086
\(936\) −45.4942 −1.48703
\(937\) 29.4857 0.963255 0.481628 0.876376i \(-0.340046\pi\)
0.481628 + 0.876376i \(0.340046\pi\)
\(938\) −3.48941 −0.113933
\(939\) −81.1355 −2.64776
\(940\) 0.198108 0.00646157
\(941\) −34.8624 −1.13648 −0.568241 0.822862i \(-0.692376\pi\)
−0.568241 + 0.822862i \(0.692376\pi\)
\(942\) 66.1287 2.15459
\(943\) −37.1597 −1.21009
\(944\) −18.0198 −0.586494
\(945\) 0.300647 0.00978003
\(946\) 20.3893 0.662914
\(947\) 20.2228 0.657153 0.328577 0.944477i \(-0.393431\pi\)
0.328577 + 0.944477i \(0.393431\pi\)
\(948\) −5.69655 −0.185015
\(949\) 19.6780 0.638774
\(950\) 18.2111 0.590846
\(951\) 102.510 3.32412
\(952\) −0.407020 −0.0131916
\(953\) −0.996417 −0.0322771 −0.0161386 0.999870i \(-0.505137\pi\)
−0.0161386 + 0.999870i \(0.505137\pi\)
\(954\) 2.34078 0.0757856
\(955\) −1.30610 −0.0422644
\(956\) 0.327802 0.0106019
\(957\) 26.1570 0.845537
\(958\) −51.0178 −1.64831
\(959\) 3.70368 0.119598
\(960\) −2.26956 −0.0732496
\(961\) −1.71905 −0.0554534
\(962\) 19.4727 0.627824
\(963\) 72.5527 2.33798
\(964\) 5.46262 0.175939
\(965\) −1.41422 −0.0455252
\(966\) −4.78485 −0.153950
\(967\) −1.26858 −0.0407947 −0.0203973 0.999792i \(-0.506493\pi\)
−0.0203973 + 0.999792i \(0.506493\pi\)
\(968\) 26.9606 0.866546
\(969\) 4.79391 0.154003
\(970\) −1.18292 −0.0379812
\(971\) −41.1238 −1.31973 −0.659863 0.751386i \(-0.729386\pi\)
−0.659863 + 0.751386i \(0.729386\pi\)
\(972\) −11.3853 −0.365185
\(973\) 5.22866 0.167623
\(974\) 15.8943 0.509286
\(975\) −32.6088 −1.04432
\(976\) 2.34558 0.0750803
\(977\) 15.6610 0.501039 0.250520 0.968112i \(-0.419399\pi\)
0.250520 + 0.968112i \(0.419399\pi\)
\(978\) −82.1649 −2.62734
\(979\) −0.686670 −0.0219461
\(980\) −0.165946 −0.00530094
\(981\) 7.39926 0.236240
\(982\) 32.6928 1.04327
\(983\) −17.6399 −0.562626 −0.281313 0.959616i \(-0.590770\pi\)
−0.281313 + 0.959616i \(0.590770\pi\)
\(984\) 82.2915 2.62336
\(985\) −0.474320 −0.0151131
\(986\) 3.90546 0.124375
\(987\) −6.91144 −0.219993
\(988\) 1.69872 0.0540435
\(989\) −48.5089 −1.54249
\(990\) 1.10530 0.0351288
\(991\) −16.1288 −0.512347 −0.256174 0.966631i \(-0.582462\pi\)
−0.256174 + 0.966631i \(0.582462\pi\)
\(992\) −9.15516 −0.290677
\(993\) −24.7342 −0.784916
\(994\) −0.556939 −0.0176650
\(995\) −2.19795 −0.0696796
\(996\) 2.39838 0.0759955
\(997\) 40.2154 1.27364 0.636818 0.771014i \(-0.280250\pi\)
0.636818 + 0.771014i \(0.280250\pi\)
\(998\) −35.8065 −1.13343
\(999\) 109.530 3.46537
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.13 20
3.2 odd 2 3681.2.a.i.1.8 20
4.3 odd 2 6544.2.a.i.1.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.13 20 1.1 even 1 trivial
3681.2.a.i.1.8 20 3.2 odd 2
6544.2.a.i.1.1 20 4.3 odd 2