Properties

Label 409.2.a.b.1.12
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(0.573477\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.573477 q^{2} +1.77005 q^{3} -1.67112 q^{4} +1.27661 q^{5} +1.01508 q^{6} +2.77278 q^{7} -2.10531 q^{8} +0.133085 q^{9} +0.732108 q^{10} +3.42880 q^{11} -2.95798 q^{12} -0.246307 q^{13} +1.59012 q^{14} +2.25967 q^{15} +2.13490 q^{16} +1.18272 q^{17} +0.0763210 q^{18} +2.42449 q^{19} -2.13338 q^{20} +4.90796 q^{21} +1.96634 q^{22} -5.54747 q^{23} -3.72650 q^{24} -3.37026 q^{25} -0.141252 q^{26} -5.07459 q^{27} -4.63365 q^{28} +7.40574 q^{29} +1.29587 q^{30} -0.466653 q^{31} +5.43493 q^{32} +6.06916 q^{33} +0.678263 q^{34} +3.53976 q^{35} -0.222401 q^{36} +0.524788 q^{37} +1.39039 q^{38} -0.435977 q^{39} -2.68766 q^{40} +1.85544 q^{41} +2.81460 q^{42} -7.88904 q^{43} -5.72995 q^{44} +0.169898 q^{45} -3.18135 q^{46} -11.9084 q^{47} +3.77889 q^{48} +0.688284 q^{49} -1.93277 q^{50} +2.09348 q^{51} +0.411610 q^{52} -8.20771 q^{53} -2.91016 q^{54} +4.37725 q^{55} -5.83754 q^{56} +4.29148 q^{57} +4.24702 q^{58} -7.67709 q^{59} -3.77619 q^{60} +9.34587 q^{61} -0.267615 q^{62} +0.369014 q^{63} -1.15300 q^{64} -0.314439 q^{65} +3.48052 q^{66} +12.1402 q^{67} -1.97647 q^{68} -9.81931 q^{69} +2.02997 q^{70} -1.75984 q^{71} -0.280184 q^{72} -12.2331 q^{73} +0.300954 q^{74} -5.96553 q^{75} -4.05163 q^{76} +9.50730 q^{77} -0.250023 q^{78} -4.02729 q^{79} +2.72545 q^{80} -9.38154 q^{81} +1.06405 q^{82} +9.60080 q^{83} -8.20181 q^{84} +1.50988 q^{85} -4.52418 q^{86} +13.1085 q^{87} -7.21867 q^{88} +8.66515 q^{89} +0.0974324 q^{90} -0.682955 q^{91} +9.27051 q^{92} -0.826000 q^{93} -6.82921 q^{94} +3.09514 q^{95} +9.62011 q^{96} -18.2223 q^{97} +0.394715 q^{98} +0.456321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.573477 0.405509 0.202755 0.979230i \(-0.435011\pi\)
0.202755 + 0.979230i \(0.435011\pi\)
\(3\) 1.77005 1.02194 0.510970 0.859599i \(-0.329286\pi\)
0.510970 + 0.859599i \(0.329286\pi\)
\(4\) −1.67112 −0.835562
\(5\) 1.27661 0.570919 0.285459 0.958391i \(-0.407854\pi\)
0.285459 + 0.958391i \(0.407854\pi\)
\(6\) 1.01508 0.414406
\(7\) 2.77278 1.04801 0.524005 0.851715i \(-0.324437\pi\)
0.524005 + 0.851715i \(0.324437\pi\)
\(8\) −2.10531 −0.744338
\(9\) 0.133085 0.0443616
\(10\) 0.732108 0.231513
\(11\) 3.42880 1.03382 0.516911 0.856039i \(-0.327082\pi\)
0.516911 + 0.856039i \(0.327082\pi\)
\(12\) −2.95798 −0.853894
\(13\) −0.246307 −0.0683134 −0.0341567 0.999416i \(-0.510875\pi\)
−0.0341567 + 0.999416i \(0.510875\pi\)
\(14\) 1.59012 0.424978
\(15\) 2.25967 0.583445
\(16\) 2.13490 0.533726
\(17\) 1.18272 0.286852 0.143426 0.989661i \(-0.454188\pi\)
0.143426 + 0.989661i \(0.454188\pi\)
\(18\) 0.0763210 0.0179890
\(19\) 2.42449 0.556217 0.278109 0.960550i \(-0.410292\pi\)
0.278109 + 0.960550i \(0.410292\pi\)
\(20\) −2.13338 −0.477038
\(21\) 4.90796 1.07100
\(22\) 1.96634 0.419225
\(23\) −5.54747 −1.15673 −0.578364 0.815779i \(-0.696309\pi\)
−0.578364 + 0.815779i \(0.696309\pi\)
\(24\) −3.72650 −0.760669
\(25\) −3.37026 −0.674052
\(26\) −0.141252 −0.0277017
\(27\) −5.07459 −0.976605
\(28\) −4.63365 −0.875678
\(29\) 7.40574 1.37521 0.687606 0.726084i \(-0.258662\pi\)
0.687606 + 0.726084i \(0.258662\pi\)
\(30\) 1.29587 0.236592
\(31\) −0.466653 −0.0838133 −0.0419067 0.999122i \(-0.513343\pi\)
−0.0419067 + 0.999122i \(0.513343\pi\)
\(32\) 5.43493 0.960769
\(33\) 6.06916 1.05650
\(34\) 0.678263 0.116321
\(35\) 3.53976 0.598329
\(36\) −0.222401 −0.0370668
\(37\) 0.524788 0.0862747 0.0431373 0.999069i \(-0.486265\pi\)
0.0431373 + 0.999069i \(0.486265\pi\)
\(38\) 1.39039 0.225551
\(39\) −0.435977 −0.0698122
\(40\) −2.68766 −0.424956
\(41\) 1.85544 0.289771 0.144885 0.989448i \(-0.453719\pi\)
0.144885 + 0.989448i \(0.453719\pi\)
\(42\) 2.81460 0.434302
\(43\) −7.88904 −1.20307 −0.601534 0.798847i \(-0.705443\pi\)
−0.601534 + 0.798847i \(0.705443\pi\)
\(44\) −5.72995 −0.863823
\(45\) 0.169898 0.0253269
\(46\) −3.18135 −0.469064
\(47\) −11.9084 −1.73702 −0.868511 0.495670i \(-0.834922\pi\)
−0.868511 + 0.495670i \(0.834922\pi\)
\(48\) 3.77889 0.545436
\(49\) 0.688284 0.0983263
\(50\) −1.93277 −0.273334
\(51\) 2.09348 0.293145
\(52\) 0.411610 0.0570801
\(53\) −8.20771 −1.12742 −0.563708 0.825974i \(-0.690626\pi\)
−0.563708 + 0.825974i \(0.690626\pi\)
\(54\) −2.91016 −0.396023
\(55\) 4.37725 0.590229
\(56\) −5.83754 −0.780074
\(57\) 4.29148 0.568421
\(58\) 4.24702 0.557661
\(59\) −7.67709 −0.999472 −0.499736 0.866178i \(-0.666570\pi\)
−0.499736 + 0.866178i \(0.666570\pi\)
\(60\) −3.77619 −0.487504
\(61\) 9.34587 1.19662 0.598308 0.801266i \(-0.295840\pi\)
0.598308 + 0.801266i \(0.295840\pi\)
\(62\) −0.267615 −0.0339871
\(63\) 0.369014 0.0464914
\(64\) −1.15300 −0.144125
\(65\) −0.314439 −0.0390014
\(66\) 3.48052 0.428423
\(67\) 12.1402 1.48316 0.741581 0.670863i \(-0.234076\pi\)
0.741581 + 0.670863i \(0.234076\pi\)
\(68\) −1.97647 −0.239682
\(69\) −9.81931 −1.18211
\(70\) 2.02997 0.242628
\(71\) −1.75984 −0.208855 −0.104427 0.994533i \(-0.533301\pi\)
−0.104427 + 0.994533i \(0.533301\pi\)
\(72\) −0.280184 −0.0330200
\(73\) −12.2331 −1.43177 −0.715887 0.698216i \(-0.753977\pi\)
−0.715887 + 0.698216i \(0.753977\pi\)
\(74\) 0.300954 0.0349852
\(75\) −5.96553 −0.688840
\(76\) −4.05163 −0.464754
\(77\) 9.50730 1.08346
\(78\) −0.250023 −0.0283095
\(79\) −4.02729 −0.453106 −0.226553 0.973999i \(-0.572746\pi\)
−0.226553 + 0.973999i \(0.572746\pi\)
\(80\) 2.72545 0.304714
\(81\) −9.38154 −1.04239
\(82\) 1.06405 0.117505
\(83\) 9.60080 1.05382 0.526912 0.849920i \(-0.323350\pi\)
0.526912 + 0.849920i \(0.323350\pi\)
\(84\) −8.20181 −0.894890
\(85\) 1.50988 0.163769
\(86\) −4.52418 −0.487855
\(87\) 13.1085 1.40538
\(88\) −7.21867 −0.769513
\(89\) 8.66515 0.918504 0.459252 0.888306i \(-0.348117\pi\)
0.459252 + 0.888306i \(0.348117\pi\)
\(90\) 0.0974324 0.0102703
\(91\) −0.682955 −0.0715932
\(92\) 9.27051 0.966517
\(93\) −0.826000 −0.0856522
\(94\) −6.82921 −0.704379
\(95\) 3.09514 0.317555
\(96\) 9.62011 0.981848
\(97\) −18.2223 −1.85020 −0.925098 0.379727i \(-0.876018\pi\)
−0.925098 + 0.379727i \(0.876018\pi\)
\(98\) 0.394715 0.0398723
\(99\) 0.456321 0.0458620
\(100\) 5.63212 0.563212
\(101\) 2.89279 0.287844 0.143922 0.989589i \(-0.454029\pi\)
0.143922 + 0.989589i \(0.454029\pi\)
\(102\) 1.20056 0.118873
\(103\) 1.82539 0.179861 0.0899303 0.995948i \(-0.471336\pi\)
0.0899303 + 0.995948i \(0.471336\pi\)
\(104\) 0.518552 0.0508482
\(105\) 6.26556 0.611456
\(106\) −4.70693 −0.457178
\(107\) −3.79646 −0.367018 −0.183509 0.983018i \(-0.558746\pi\)
−0.183509 + 0.983018i \(0.558746\pi\)
\(108\) 8.48027 0.816014
\(109\) −8.82032 −0.844834 −0.422417 0.906402i \(-0.638818\pi\)
−0.422417 + 0.906402i \(0.638818\pi\)
\(110\) 2.51025 0.239343
\(111\) 0.928903 0.0881676
\(112\) 5.91961 0.559351
\(113\) −1.09202 −0.102729 −0.0513643 0.998680i \(-0.516357\pi\)
−0.0513643 + 0.998680i \(0.516357\pi\)
\(114\) 2.46107 0.230500
\(115\) −7.08197 −0.660397
\(116\) −12.3759 −1.14907
\(117\) −0.0327798 −0.00303049
\(118\) −4.40263 −0.405295
\(119\) 3.27942 0.300624
\(120\) −4.75730 −0.434280
\(121\) 0.756678 0.0687889
\(122\) 5.35964 0.485239
\(123\) 3.28422 0.296128
\(124\) 0.779835 0.0700312
\(125\) −10.6856 −0.955748
\(126\) 0.211621 0.0188527
\(127\) 3.47315 0.308192 0.154096 0.988056i \(-0.450754\pi\)
0.154096 + 0.988056i \(0.450754\pi\)
\(128\) −11.5311 −1.01921
\(129\) −13.9640 −1.22946
\(130\) −0.180324 −0.0158154
\(131\) 9.51456 0.831291 0.415646 0.909527i \(-0.363556\pi\)
0.415646 + 0.909527i \(0.363556\pi\)
\(132\) −10.1423 −0.882775
\(133\) 6.72258 0.582922
\(134\) 6.96213 0.601436
\(135\) −6.47829 −0.557562
\(136\) −2.48999 −0.213515
\(137\) 18.3320 1.56621 0.783105 0.621889i \(-0.213635\pi\)
0.783105 + 0.621889i \(0.213635\pi\)
\(138\) −5.63115 −0.479355
\(139\) 17.1943 1.45840 0.729200 0.684300i \(-0.239892\pi\)
0.729200 + 0.684300i \(0.239892\pi\)
\(140\) −5.91538 −0.499941
\(141\) −21.0785 −1.77513
\(142\) −1.00923 −0.0846926
\(143\) −0.844539 −0.0706239
\(144\) 0.284123 0.0236769
\(145\) 9.45427 0.785134
\(146\) −7.01539 −0.580598
\(147\) 1.21830 0.100484
\(148\) −0.876987 −0.0720879
\(149\) −5.03995 −0.412889 −0.206444 0.978458i \(-0.566189\pi\)
−0.206444 + 0.978458i \(0.566189\pi\)
\(150\) −3.42110 −0.279331
\(151\) −2.19479 −0.178610 −0.0893049 0.996004i \(-0.528465\pi\)
−0.0893049 + 0.996004i \(0.528465\pi\)
\(152\) −5.10430 −0.414013
\(153\) 0.157402 0.0127252
\(154\) 5.45222 0.439352
\(155\) −0.595735 −0.0478506
\(156\) 0.728572 0.0583324
\(157\) −1.39949 −0.111692 −0.0558458 0.998439i \(-0.517786\pi\)
−0.0558458 + 0.998439i \(0.517786\pi\)
\(158\) −2.30956 −0.183739
\(159\) −14.5281 −1.15215
\(160\) 6.93830 0.548521
\(161\) −15.3819 −1.21226
\(162\) −5.38010 −0.422701
\(163\) −16.7402 −1.31119 −0.655595 0.755113i \(-0.727582\pi\)
−0.655595 + 0.755113i \(0.727582\pi\)
\(164\) −3.10067 −0.242122
\(165\) 7.74797 0.603178
\(166\) 5.50584 0.427336
\(167\) 20.9314 1.61972 0.809858 0.586625i \(-0.199544\pi\)
0.809858 + 0.586625i \(0.199544\pi\)
\(168\) −10.3327 −0.797189
\(169\) −12.9393 −0.995333
\(170\) 0.865880 0.0664099
\(171\) 0.322663 0.0246747
\(172\) 13.1836 1.00524
\(173\) 15.9066 1.20936 0.604679 0.796469i \(-0.293301\pi\)
0.604679 + 0.796469i \(0.293301\pi\)
\(174\) 7.51745 0.569897
\(175\) −9.34497 −0.706413
\(176\) 7.32016 0.551778
\(177\) −13.5888 −1.02140
\(178\) 4.96926 0.372462
\(179\) 11.5412 0.862631 0.431315 0.902201i \(-0.358050\pi\)
0.431315 + 0.902201i \(0.358050\pi\)
\(180\) −0.283920 −0.0211622
\(181\) 1.78604 0.132756 0.0663778 0.997795i \(-0.478856\pi\)
0.0663778 + 0.997795i \(0.478856\pi\)
\(182\) −0.391659 −0.0290317
\(183\) 16.5427 1.22287
\(184\) 11.6791 0.860996
\(185\) 0.669952 0.0492558
\(186\) −0.473692 −0.0347328
\(187\) 4.05531 0.296554
\(188\) 19.9004 1.45139
\(189\) −14.0707 −1.02349
\(190\) 1.77499 0.128772
\(191\) 12.8325 0.928530 0.464265 0.885696i \(-0.346319\pi\)
0.464265 + 0.885696i \(0.346319\pi\)
\(192\) −2.04087 −0.147287
\(193\) 6.50538 0.468268 0.234134 0.972204i \(-0.424775\pi\)
0.234134 + 0.972204i \(0.424775\pi\)
\(194\) −10.4501 −0.750272
\(195\) −0.556574 −0.0398571
\(196\) −1.15021 −0.0821577
\(197\) 11.7886 0.839904 0.419952 0.907546i \(-0.362047\pi\)
0.419952 + 0.907546i \(0.362047\pi\)
\(198\) 0.261690 0.0185975
\(199\) 7.24812 0.513806 0.256903 0.966437i \(-0.417298\pi\)
0.256903 + 0.966437i \(0.417298\pi\)
\(200\) 7.09542 0.501722
\(201\) 21.4888 1.51570
\(202\) 1.65895 0.116723
\(203\) 20.5345 1.44124
\(204\) −3.49846 −0.244941
\(205\) 2.36868 0.165436
\(206\) 1.04682 0.0729352
\(207\) −0.738283 −0.0513142
\(208\) −0.525843 −0.0364606
\(209\) 8.31311 0.575030
\(210\) 3.59316 0.247951
\(211\) 1.10505 0.0760745 0.0380373 0.999276i \(-0.487889\pi\)
0.0380373 + 0.999276i \(0.487889\pi\)
\(212\) 13.7161 0.942025
\(213\) −3.11501 −0.213437
\(214\) −2.17718 −0.148829
\(215\) −10.0713 −0.686854
\(216\) 10.6836 0.726924
\(217\) −1.29392 −0.0878373
\(218\) −5.05825 −0.342588
\(219\) −21.6532 −1.46319
\(220\) −7.31493 −0.493173
\(221\) −0.291313 −0.0195958
\(222\) 0.532704 0.0357528
\(223\) 7.06708 0.473246 0.236623 0.971601i \(-0.423959\pi\)
0.236623 + 0.971601i \(0.423959\pi\)
\(224\) 15.0698 1.00690
\(225\) −0.448530 −0.0299020
\(226\) −0.626248 −0.0416574
\(227\) 16.9741 1.12661 0.563305 0.826249i \(-0.309529\pi\)
0.563305 + 0.826249i \(0.309529\pi\)
\(228\) −7.17160 −0.474951
\(229\) 18.0733 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(230\) −4.06135 −0.267797
\(231\) 16.8284 1.10723
\(232\) −15.5913 −1.02362
\(233\) −9.51914 −0.623619 −0.311810 0.950145i \(-0.600935\pi\)
−0.311810 + 0.950145i \(0.600935\pi\)
\(234\) −0.0187984 −0.00122889
\(235\) −15.2024 −0.991698
\(236\) 12.8294 0.835121
\(237\) −7.12852 −0.463047
\(238\) 1.88067 0.121906
\(239\) −1.41813 −0.0917309 −0.0458654 0.998948i \(-0.514605\pi\)
−0.0458654 + 0.998948i \(0.514605\pi\)
\(240\) 4.82418 0.311400
\(241\) −19.7371 −1.27138 −0.635688 0.771946i \(-0.719283\pi\)
−0.635688 + 0.771946i \(0.719283\pi\)
\(242\) 0.433938 0.0278946
\(243\) −1.38205 −0.0886586
\(244\) −15.6181 −0.999847
\(245\) 0.878673 0.0561363
\(246\) 1.88343 0.120083
\(247\) −0.597171 −0.0379971
\(248\) 0.982447 0.0623854
\(249\) 16.9939 1.07695
\(250\) −6.12794 −0.387565
\(251\) −8.60203 −0.542955 −0.271478 0.962445i \(-0.587512\pi\)
−0.271478 + 0.962445i \(0.587512\pi\)
\(252\) −0.616668 −0.0388464
\(253\) −19.0212 −1.19585
\(254\) 1.99177 0.124975
\(255\) 2.67256 0.167362
\(256\) −4.30681 −0.269175
\(257\) 20.5073 1.27921 0.639604 0.768705i \(-0.279098\pi\)
0.639604 + 0.768705i \(0.279098\pi\)
\(258\) −8.00804 −0.498559
\(259\) 1.45512 0.0904168
\(260\) 0.525467 0.0325881
\(261\) 0.985591 0.0610065
\(262\) 5.45638 0.337096
\(263\) −0.314295 −0.0193803 −0.00969013 0.999953i \(-0.503085\pi\)
−0.00969013 + 0.999953i \(0.503085\pi\)
\(264\) −12.7774 −0.786396
\(265\) −10.4781 −0.643663
\(266\) 3.85524 0.236380
\(267\) 15.3378 0.938656
\(268\) −20.2878 −1.23927
\(269\) 20.5769 1.25459 0.627296 0.778781i \(-0.284161\pi\)
0.627296 + 0.778781i \(0.284161\pi\)
\(270\) −3.71515 −0.226097
\(271\) 8.32793 0.505886 0.252943 0.967481i \(-0.418602\pi\)
0.252943 + 0.967481i \(0.418602\pi\)
\(272\) 2.52499 0.153100
\(273\) −1.20887 −0.0731639
\(274\) 10.5130 0.635113
\(275\) −11.5559 −0.696850
\(276\) 16.4093 0.987723
\(277\) 19.2658 1.15757 0.578784 0.815481i \(-0.303527\pi\)
0.578784 + 0.815481i \(0.303527\pi\)
\(278\) 9.86053 0.591395
\(279\) −0.0621043 −0.00371809
\(280\) −7.45228 −0.445359
\(281\) 11.0940 0.661811 0.330905 0.943664i \(-0.392646\pi\)
0.330905 + 0.943664i \(0.392646\pi\)
\(282\) −12.0880 −0.719833
\(283\) −4.41826 −0.262638 −0.131319 0.991340i \(-0.541921\pi\)
−0.131319 + 0.991340i \(0.541921\pi\)
\(284\) 2.94092 0.174511
\(285\) 5.47856 0.324522
\(286\) −0.484324 −0.0286387
\(287\) 5.14472 0.303683
\(288\) 0.723306 0.0426212
\(289\) −15.6012 −0.917716
\(290\) 5.42181 0.318379
\(291\) −32.2545 −1.89079
\(292\) 20.4430 1.19634
\(293\) −13.7647 −0.804143 −0.402072 0.915608i \(-0.631710\pi\)
−0.402072 + 0.915608i \(0.631710\pi\)
\(294\) 0.698667 0.0407471
\(295\) −9.80067 −0.570617
\(296\) −1.10484 −0.0642175
\(297\) −17.3998 −1.00964
\(298\) −2.89029 −0.167430
\(299\) 1.36638 0.0790200
\(300\) 9.96915 0.575569
\(301\) −21.8745 −1.26083
\(302\) −1.25866 −0.0724280
\(303\) 5.12040 0.294159
\(304\) 5.17606 0.296868
\(305\) 11.9311 0.683170
\(306\) 0.0902664 0.00516019
\(307\) −14.0406 −0.801337 −0.400669 0.916223i \(-0.631222\pi\)
−0.400669 + 0.916223i \(0.631222\pi\)
\(308\) −15.8879 −0.905296
\(309\) 3.23103 0.183807
\(310\) −0.341640 −0.0194039
\(311\) 26.9644 1.52901 0.764505 0.644618i \(-0.222984\pi\)
0.764505 + 0.644618i \(0.222984\pi\)
\(312\) 0.917865 0.0519639
\(313\) −23.9253 −1.35234 −0.676170 0.736746i \(-0.736361\pi\)
−0.676170 + 0.736746i \(0.736361\pi\)
\(314\) −0.802576 −0.0452920
\(315\) 0.471088 0.0265428
\(316\) 6.73010 0.378598
\(317\) −6.91444 −0.388354 −0.194177 0.980967i \(-0.562204\pi\)
−0.194177 + 0.980967i \(0.562204\pi\)
\(318\) −8.33151 −0.467208
\(319\) 25.3928 1.42172
\(320\) −1.47194 −0.0822837
\(321\) −6.71994 −0.375070
\(322\) −8.82116 −0.491584
\(323\) 2.86750 0.159552
\(324\) 15.6777 0.870985
\(325\) 0.830120 0.0460468
\(326\) −9.60009 −0.531700
\(327\) −15.6124 −0.863369
\(328\) −3.90627 −0.215687
\(329\) −33.0194 −1.82042
\(330\) 4.44328 0.244595
\(331\) −16.8176 −0.924376 −0.462188 0.886782i \(-0.652936\pi\)
−0.462188 + 0.886782i \(0.652936\pi\)
\(332\) −16.0441 −0.880536
\(333\) 0.0698413 0.00382728
\(334\) 12.0036 0.656811
\(335\) 15.4983 0.846765
\(336\) 10.4780 0.571623
\(337\) 0.0242532 0.00132115 0.000660577 1.00000i \(-0.499790\pi\)
0.000660577 1.00000i \(0.499790\pi\)
\(338\) −7.42041 −0.403617
\(339\) −1.93293 −0.104982
\(340\) −2.52319 −0.136839
\(341\) −1.60006 −0.0866481
\(342\) 0.185040 0.0100058
\(343\) −17.5010 −0.944964
\(344\) 16.6088 0.895489
\(345\) −12.5355 −0.674887
\(346\) 9.12209 0.490406
\(347\) −18.7892 −1.00866 −0.504328 0.863512i \(-0.668260\pi\)
−0.504328 + 0.863512i \(0.668260\pi\)
\(348\) −21.9060 −1.17429
\(349\) −17.2684 −0.924355 −0.462177 0.886788i \(-0.652932\pi\)
−0.462177 + 0.886788i \(0.652932\pi\)
\(350\) −5.35913 −0.286457
\(351\) 1.24991 0.0667152
\(352\) 18.6353 0.993264
\(353\) 29.9434 1.59372 0.796862 0.604161i \(-0.206492\pi\)
0.796862 + 0.604161i \(0.206492\pi\)
\(354\) −7.79289 −0.414188
\(355\) −2.24664 −0.119239
\(356\) −14.4805 −0.767467
\(357\) 5.80474 0.307219
\(358\) 6.61862 0.349805
\(359\) 2.59722 0.137076 0.0685380 0.997649i \(-0.478167\pi\)
0.0685380 + 0.997649i \(0.478167\pi\)
\(360\) −0.357687 −0.0188517
\(361\) −13.1218 −0.690622
\(362\) 1.02426 0.0538337
\(363\) 1.33936 0.0702982
\(364\) 1.14130 0.0598205
\(365\) −15.6169 −0.817427
\(366\) 9.48684 0.495885
\(367\) 12.5717 0.656238 0.328119 0.944636i \(-0.393585\pi\)
0.328119 + 0.944636i \(0.393585\pi\)
\(368\) −11.8433 −0.617375
\(369\) 0.246930 0.0128547
\(370\) 0.384202 0.0199737
\(371\) −22.7581 −1.18154
\(372\) 1.38035 0.0715677
\(373\) 3.92511 0.203234 0.101617 0.994824i \(-0.467598\pi\)
0.101617 + 0.994824i \(0.467598\pi\)
\(374\) 2.32563 0.120255
\(375\) −18.9140 −0.976717
\(376\) 25.0709 1.29293
\(377\) −1.82409 −0.0939454
\(378\) −8.06922 −0.415036
\(379\) 25.1999 1.29443 0.647216 0.762306i \(-0.275933\pi\)
0.647216 + 0.762306i \(0.275933\pi\)
\(380\) −5.17237 −0.265337
\(381\) 6.14765 0.314954
\(382\) 7.35917 0.376528
\(383\) −0.136582 −0.00697902 −0.00348951 0.999994i \(-0.501111\pi\)
−0.00348951 + 0.999994i \(0.501111\pi\)
\(384\) −20.4106 −1.04157
\(385\) 12.1371 0.618566
\(386\) 3.73069 0.189887
\(387\) −1.04991 −0.0533700
\(388\) 30.4518 1.54595
\(389\) −6.18694 −0.313690 −0.156845 0.987623i \(-0.550132\pi\)
−0.156845 + 0.987623i \(0.550132\pi\)
\(390\) −0.319182 −0.0161624
\(391\) −6.56111 −0.331809
\(392\) −1.44905 −0.0731880
\(393\) 16.8413 0.849530
\(394\) 6.76050 0.340589
\(395\) −5.14129 −0.258687
\(396\) −0.762569 −0.0383205
\(397\) −33.0741 −1.65994 −0.829971 0.557806i \(-0.811643\pi\)
−0.829971 + 0.557806i \(0.811643\pi\)
\(398\) 4.15663 0.208353
\(399\) 11.8993 0.595711
\(400\) −7.19518 −0.359759
\(401\) −24.8422 −1.24056 −0.620279 0.784381i \(-0.712981\pi\)
−0.620279 + 0.784381i \(0.712981\pi\)
\(402\) 12.3233 0.614632
\(403\) 0.114940 0.00572557
\(404\) −4.83422 −0.240511
\(405\) −11.9766 −0.595122
\(406\) 11.7760 0.584435
\(407\) 1.79940 0.0891927
\(408\) −4.40741 −0.218199
\(409\) 1.00000 0.0494468
\(410\) 1.35838 0.0670857
\(411\) 32.4486 1.60057
\(412\) −3.05045 −0.150285
\(413\) −21.2868 −1.04746
\(414\) −0.423388 −0.0208084
\(415\) 12.2565 0.601648
\(416\) −1.33866 −0.0656334
\(417\) 30.4348 1.49040
\(418\) 4.76738 0.233180
\(419\) 7.87576 0.384756 0.192378 0.981321i \(-0.438380\pi\)
0.192378 + 0.981321i \(0.438380\pi\)
\(420\) −10.4705 −0.510910
\(421\) 16.6789 0.812880 0.406440 0.913677i \(-0.366770\pi\)
0.406440 + 0.913677i \(0.366770\pi\)
\(422\) 0.633719 0.0308489
\(423\) −1.58483 −0.0770570
\(424\) 17.2797 0.839178
\(425\) −3.98607 −0.193353
\(426\) −1.78639 −0.0865508
\(427\) 25.9140 1.25407
\(428\) 6.34436 0.306666
\(429\) −1.49488 −0.0721734
\(430\) −5.77563 −0.278526
\(431\) −10.3551 −0.498787 −0.249393 0.968402i \(-0.580231\pi\)
−0.249393 + 0.968402i \(0.580231\pi\)
\(432\) −10.8338 −0.521240
\(433\) −32.6854 −1.57076 −0.785379 0.619015i \(-0.787532\pi\)
−0.785379 + 0.619015i \(0.787532\pi\)
\(434\) −0.742035 −0.0356188
\(435\) 16.7345 0.802360
\(436\) 14.7399 0.705911
\(437\) −13.4498 −0.643392
\(438\) −12.4176 −0.593336
\(439\) −21.6730 −1.03440 −0.517198 0.855866i \(-0.673025\pi\)
−0.517198 + 0.855866i \(0.673025\pi\)
\(440\) −9.21545 −0.439330
\(441\) 0.0916001 0.00436191
\(442\) −0.167061 −0.00794629
\(443\) 38.9039 1.84838 0.924191 0.381931i \(-0.124741\pi\)
0.924191 + 0.381931i \(0.124741\pi\)
\(444\) −1.55231 −0.0736695
\(445\) 11.0620 0.524391
\(446\) 4.05281 0.191906
\(447\) −8.92097 −0.421947
\(448\) −3.19701 −0.151045
\(449\) 4.26934 0.201483 0.100741 0.994913i \(-0.467879\pi\)
0.100741 + 0.994913i \(0.467879\pi\)
\(450\) −0.257222 −0.0121255
\(451\) 6.36193 0.299572
\(452\) 1.82490 0.0858361
\(453\) −3.88490 −0.182529
\(454\) 9.73426 0.456851
\(455\) −0.871870 −0.0408739
\(456\) −9.03488 −0.423097
\(457\) −39.6438 −1.85446 −0.927230 0.374493i \(-0.877817\pi\)
−0.927230 + 0.374493i \(0.877817\pi\)
\(458\) 10.3646 0.484307
\(459\) −6.00182 −0.280141
\(460\) 11.8349 0.551803
\(461\) −11.8114 −0.550111 −0.275055 0.961428i \(-0.588696\pi\)
−0.275055 + 0.961428i \(0.588696\pi\)
\(462\) 9.65071 0.448992
\(463\) −29.1995 −1.35702 −0.678509 0.734592i \(-0.737373\pi\)
−0.678509 + 0.734592i \(0.737373\pi\)
\(464\) 15.8105 0.733986
\(465\) −1.05448 −0.0489004
\(466\) −5.45901 −0.252884
\(467\) −28.2659 −1.30799 −0.653995 0.756499i \(-0.726908\pi\)
−0.653995 + 0.756499i \(0.726908\pi\)
\(468\) 0.0547790 0.00253216
\(469\) 33.6621 1.55437
\(470\) −8.71825 −0.402143
\(471\) −2.47717 −0.114142
\(472\) 16.1626 0.743945
\(473\) −27.0500 −1.24376
\(474\) −4.08804 −0.187770
\(475\) −8.17117 −0.374919
\(476\) −5.48031 −0.251190
\(477\) −1.09232 −0.0500139
\(478\) −0.813262 −0.0371977
\(479\) −22.6623 −1.03547 −0.517733 0.855542i \(-0.673224\pi\)
−0.517733 + 0.855542i \(0.673224\pi\)
\(480\) 12.2812 0.560556
\(481\) −0.129259 −0.00589372
\(482\) −11.3187 −0.515555
\(483\) −27.2267 −1.23886
\(484\) −1.26450 −0.0574774
\(485\) −23.2629 −1.05631
\(486\) −0.792574 −0.0359519
\(487\) 30.0041 1.35961 0.679807 0.733391i \(-0.262063\pi\)
0.679807 + 0.733391i \(0.262063\pi\)
\(488\) −19.6759 −0.890686
\(489\) −29.6309 −1.33996
\(490\) 0.503899 0.0227638
\(491\) 16.9366 0.764339 0.382169 0.924092i \(-0.375177\pi\)
0.382169 + 0.924092i \(0.375177\pi\)
\(492\) −5.48834 −0.247434
\(493\) 8.75892 0.394482
\(494\) −0.342464 −0.0154082
\(495\) 0.582545 0.0261835
\(496\) −0.996259 −0.0447333
\(497\) −4.87965 −0.218882
\(498\) 9.74562 0.436712
\(499\) −5.75380 −0.257575 −0.128788 0.991672i \(-0.541109\pi\)
−0.128788 + 0.991672i \(0.541109\pi\)
\(500\) 17.8569 0.798586
\(501\) 37.0496 1.65525
\(502\) −4.93307 −0.220174
\(503\) 6.56987 0.292936 0.146468 0.989215i \(-0.453209\pi\)
0.146468 + 0.989215i \(0.453209\pi\)
\(504\) −0.776887 −0.0346053
\(505\) 3.69298 0.164335
\(506\) −10.9082 −0.484929
\(507\) −22.9033 −1.01717
\(508\) −5.80406 −0.257513
\(509\) −9.82750 −0.435596 −0.217798 0.975994i \(-0.569887\pi\)
−0.217798 + 0.975994i \(0.569887\pi\)
\(510\) 1.53265 0.0678670
\(511\) −33.9196 −1.50051
\(512\) 20.5923 0.910060
\(513\) −12.3033 −0.543205
\(514\) 11.7604 0.518731
\(515\) 2.33031 0.102686
\(516\) 23.3356 1.02729
\(517\) −40.8316 −1.79577
\(518\) 0.834478 0.0366649
\(519\) 28.1556 1.23589
\(520\) 0.661991 0.0290302
\(521\) 16.7766 0.734995 0.367497 0.930025i \(-0.380215\pi\)
0.367497 + 0.930025i \(0.380215\pi\)
\(522\) 0.565214 0.0247387
\(523\) −13.1326 −0.574251 −0.287125 0.957893i \(-0.592700\pi\)
−0.287125 + 0.957893i \(0.592700\pi\)
\(524\) −15.9000 −0.694595
\(525\) −16.5411 −0.721912
\(526\) −0.180241 −0.00785888
\(527\) −0.551920 −0.0240420
\(528\) 12.9571 0.563884
\(529\) 7.77442 0.338018
\(530\) −6.00893 −0.261011
\(531\) −1.02170 −0.0443381
\(532\) −11.2343 −0.487067
\(533\) −0.457008 −0.0197952
\(534\) 8.79586 0.380634
\(535\) −4.84661 −0.209537
\(536\) −25.5588 −1.10397
\(537\) 20.4285 0.881557
\(538\) 11.8004 0.508749
\(539\) 2.35999 0.101652
\(540\) 10.8260 0.465878
\(541\) 40.3606 1.73524 0.867619 0.497229i \(-0.165649\pi\)
0.867619 + 0.497229i \(0.165649\pi\)
\(542\) 4.77588 0.205142
\(543\) 3.16139 0.135668
\(544\) 6.42800 0.275598
\(545\) −11.2601 −0.482331
\(546\) −0.693257 −0.0296687
\(547\) 7.92586 0.338885 0.169443 0.985540i \(-0.445803\pi\)
0.169443 + 0.985540i \(0.445803\pi\)
\(548\) −30.6351 −1.30867
\(549\) 1.24379 0.0530837
\(550\) −6.62707 −0.282579
\(551\) 17.9552 0.764916
\(552\) 20.6726 0.879886
\(553\) −11.1668 −0.474860
\(554\) 11.0485 0.469405
\(555\) 1.18585 0.0503365
\(556\) −28.7338 −1.21858
\(557\) −22.4202 −0.949973 −0.474986 0.879993i \(-0.657547\pi\)
−0.474986 + 0.879993i \(0.657547\pi\)
\(558\) −0.0356154 −0.00150772
\(559\) 1.94313 0.0821856
\(560\) 7.55705 0.319344
\(561\) 7.17812 0.303060
\(562\) 6.36214 0.268371
\(563\) 12.6061 0.531285 0.265643 0.964072i \(-0.414416\pi\)
0.265643 + 0.964072i \(0.414416\pi\)
\(564\) 35.2248 1.48323
\(565\) −1.39409 −0.0586497
\(566\) −2.53377 −0.106502
\(567\) −26.0129 −1.09244
\(568\) 3.70501 0.155459
\(569\) −43.0625 −1.80528 −0.902638 0.430401i \(-0.858372\pi\)
−0.902638 + 0.430401i \(0.858372\pi\)
\(570\) 3.14183 0.131597
\(571\) 31.9454 1.33687 0.668436 0.743769i \(-0.266964\pi\)
0.668436 + 0.743769i \(0.266964\pi\)
\(572\) 1.41133 0.0590107
\(573\) 22.7143 0.948902
\(574\) 2.95038 0.123146
\(575\) 18.6964 0.779694
\(576\) −0.153447 −0.00639362
\(577\) −19.9680 −0.831279 −0.415639 0.909529i \(-0.636442\pi\)
−0.415639 + 0.909529i \(0.636442\pi\)
\(578\) −8.94691 −0.372143
\(579\) 11.5149 0.478542
\(580\) −15.7993 −0.656028
\(581\) 26.6209 1.10442
\(582\) −18.4972 −0.766733
\(583\) −28.1426 −1.16555
\(584\) 25.7544 1.06572
\(585\) −0.0418471 −0.00173016
\(586\) −7.89375 −0.326088
\(587\) −15.3253 −0.632542 −0.316271 0.948669i \(-0.602431\pi\)
−0.316271 + 0.948669i \(0.602431\pi\)
\(588\) −2.03593 −0.0839603
\(589\) −1.13140 −0.0466184
\(590\) −5.62046 −0.231391
\(591\) 20.8665 0.858331
\(592\) 1.12037 0.0460470
\(593\) −3.23571 −0.132875 −0.0664374 0.997791i \(-0.521163\pi\)
−0.0664374 + 0.997791i \(0.521163\pi\)
\(594\) −9.97836 −0.409417
\(595\) 4.18655 0.171632
\(596\) 8.42238 0.344994
\(597\) 12.8296 0.525079
\(598\) 0.783589 0.0320433
\(599\) 6.87340 0.280839 0.140420 0.990092i \(-0.455155\pi\)
0.140420 + 0.990092i \(0.455155\pi\)
\(600\) 12.5593 0.512730
\(601\) 30.6423 1.24992 0.624962 0.780655i \(-0.285115\pi\)
0.624962 + 0.780655i \(0.285115\pi\)
\(602\) −12.5445 −0.511278
\(603\) 1.61568 0.0657954
\(604\) 3.66777 0.149240
\(605\) 0.965985 0.0392729
\(606\) 2.93643 0.119284
\(607\) 38.4923 1.56236 0.781178 0.624308i \(-0.214619\pi\)
0.781178 + 0.624308i \(0.214619\pi\)
\(608\) 13.1770 0.534396
\(609\) 36.3471 1.47286
\(610\) 6.84219 0.277032
\(611\) 2.93313 0.118662
\(612\) −0.263038 −0.0106327
\(613\) 31.6313 1.27758 0.638789 0.769382i \(-0.279436\pi\)
0.638789 + 0.769382i \(0.279436\pi\)
\(614\) −8.05194 −0.324950
\(615\) 4.19268 0.169065
\(616\) −20.0158 −0.806458
\(617\) −14.1816 −0.570930 −0.285465 0.958389i \(-0.592148\pi\)
−0.285465 + 0.958389i \(0.592148\pi\)
\(618\) 1.85292 0.0745354
\(619\) −1.21737 −0.0489303 −0.0244652 0.999701i \(-0.507788\pi\)
−0.0244652 + 0.999701i \(0.507788\pi\)
\(620\) 0.995547 0.0399821
\(621\) 28.1511 1.12967
\(622\) 15.4635 0.620028
\(623\) 24.0265 0.962602
\(624\) −0.930769 −0.0372606
\(625\) 3.20993 0.128397
\(626\) −13.7206 −0.548386
\(627\) 14.7146 0.587646
\(628\) 2.33872 0.0933252
\(629\) 0.620678 0.0247481
\(630\) 0.270158 0.0107634
\(631\) 46.0954 1.83503 0.917515 0.397700i \(-0.130192\pi\)
0.917515 + 0.397700i \(0.130192\pi\)
\(632\) 8.47868 0.337264
\(633\) 1.95599 0.0777436
\(634\) −3.96527 −0.157481
\(635\) 4.43386 0.175953
\(636\) 24.2782 0.962693
\(637\) −0.169530 −0.00671700
\(638\) 14.5622 0.576523
\(639\) −0.234208 −0.00926513
\(640\) −14.7207 −0.581888
\(641\) 16.1409 0.637526 0.318763 0.947834i \(-0.396733\pi\)
0.318763 + 0.947834i \(0.396733\pi\)
\(642\) −3.85373 −0.152095
\(643\) 25.2497 0.995750 0.497875 0.867249i \(-0.334114\pi\)
0.497875 + 0.867249i \(0.334114\pi\)
\(644\) 25.7050 1.01292
\(645\) −17.8266 −0.701924
\(646\) 1.64444 0.0646998
\(647\) 3.27943 0.128928 0.0644638 0.997920i \(-0.479466\pi\)
0.0644638 + 0.997920i \(0.479466\pi\)
\(648\) 19.7510 0.775893
\(649\) −26.3232 −1.03328
\(650\) 0.476055 0.0186724
\(651\) −2.29031 −0.0897644
\(652\) 27.9749 1.09558
\(653\) 23.6623 0.925977 0.462989 0.886364i \(-0.346777\pi\)
0.462989 + 0.886364i \(0.346777\pi\)
\(654\) −8.95337 −0.350105
\(655\) 12.1464 0.474600
\(656\) 3.96118 0.154658
\(657\) −1.62804 −0.0635157
\(658\) −18.9359 −0.738196
\(659\) −8.20730 −0.319711 −0.159855 0.987140i \(-0.551103\pi\)
−0.159855 + 0.987140i \(0.551103\pi\)
\(660\) −12.9478 −0.503993
\(661\) 25.4872 0.991336 0.495668 0.868512i \(-0.334923\pi\)
0.495668 + 0.868512i \(0.334923\pi\)
\(662\) −9.64448 −0.374843
\(663\) −0.515639 −0.0200258
\(664\) −20.2126 −0.784401
\(665\) 8.58213 0.332801
\(666\) 0.0400524 0.00155200
\(667\) −41.0831 −1.59075
\(668\) −34.9789 −1.35337
\(669\) 12.5091 0.483630
\(670\) 8.88795 0.343371
\(671\) 32.0451 1.23709
\(672\) 26.6744 1.02899
\(673\) −7.88779 −0.304052 −0.152026 0.988376i \(-0.548580\pi\)
−0.152026 + 0.988376i \(0.548580\pi\)
\(674\) 0.0139086 0.000535741 0
\(675\) 17.1027 0.658282
\(676\) 21.6232 0.831663
\(677\) −31.8220 −1.22302 −0.611510 0.791237i \(-0.709437\pi\)
−0.611510 + 0.791237i \(0.709437\pi\)
\(678\) −1.10849 −0.0425714
\(679\) −50.5264 −1.93903
\(680\) −3.17875 −0.121900
\(681\) 30.0450 1.15133
\(682\) −0.917598 −0.0351366
\(683\) −32.9917 −1.26239 −0.631196 0.775623i \(-0.717436\pi\)
−0.631196 + 0.775623i \(0.717436\pi\)
\(684\) −0.539210 −0.0206172
\(685\) 23.4029 0.894179
\(686\) −10.0364 −0.383192
\(687\) 31.9907 1.22052
\(688\) −16.8423 −0.642108
\(689\) 2.02162 0.0770176
\(690\) −7.18880 −0.273673
\(691\) 33.4869 1.27390 0.636952 0.770904i \(-0.280195\pi\)
0.636952 + 0.770904i \(0.280195\pi\)
\(692\) −26.5820 −1.01049
\(693\) 1.26528 0.0480638
\(694\) −10.7752 −0.409020
\(695\) 21.9505 0.832629
\(696\) −27.5975 −1.04608
\(697\) 2.19447 0.0831213
\(698\) −9.90301 −0.374835
\(699\) −16.8494 −0.637302
\(700\) 15.6166 0.590252
\(701\) −3.20496 −0.121050 −0.0605249 0.998167i \(-0.519277\pi\)
−0.0605249 + 0.998167i \(0.519277\pi\)
\(702\) 0.716794 0.0270537
\(703\) 1.27235 0.0479875
\(704\) −3.95341 −0.149000
\(705\) −26.9091 −1.01346
\(706\) 17.1718 0.646271
\(707\) 8.02107 0.301663
\(708\) 22.7087 0.853443
\(709\) −7.44076 −0.279444 −0.139722 0.990191i \(-0.544621\pi\)
−0.139722 + 0.990191i \(0.544621\pi\)
\(710\) −1.28840 −0.0483526
\(711\) −0.535971 −0.0201005
\(712\) −18.2428 −0.683677
\(713\) 2.58874 0.0969492
\(714\) 3.32889 0.124580
\(715\) −1.07815 −0.0403205
\(716\) −19.2868 −0.720781
\(717\) −2.51016 −0.0937435
\(718\) 1.48945 0.0555856
\(719\) 6.56216 0.244727 0.122364 0.992485i \(-0.460953\pi\)
0.122364 + 0.992485i \(0.460953\pi\)
\(720\) 0.362715 0.0135176
\(721\) 5.06139 0.188496
\(722\) −7.52507 −0.280054
\(723\) −34.9356 −1.29927
\(724\) −2.98470 −0.110926
\(725\) −24.9593 −0.926964
\(726\) 0.768092 0.0285066
\(727\) 11.4056 0.423009 0.211505 0.977377i \(-0.432164\pi\)
0.211505 + 0.977377i \(0.432164\pi\)
\(728\) 1.43783 0.0532895
\(729\) 25.6983 0.951790
\(730\) −8.95594 −0.331474
\(731\) −9.33053 −0.345102
\(732\) −27.6449 −1.02178
\(733\) −16.4234 −0.606610 −0.303305 0.952893i \(-0.598090\pi\)
−0.303305 + 0.952893i \(0.598090\pi\)
\(734\) 7.20959 0.266111
\(735\) 1.55530 0.0573680
\(736\) −30.1501 −1.11135
\(737\) 41.6264 1.53333
\(738\) 0.141609 0.00521270
\(739\) 35.0610 1.28974 0.644870 0.764292i \(-0.276911\pi\)
0.644870 + 0.764292i \(0.276911\pi\)
\(740\) −1.11957 −0.0411563
\(741\) −1.05702 −0.0388307
\(742\) −13.0513 −0.479127
\(743\) 52.7988 1.93700 0.968501 0.249011i \(-0.0801054\pi\)
0.968501 + 0.249011i \(0.0801054\pi\)
\(744\) 1.73898 0.0637542
\(745\) −6.43406 −0.235726
\(746\) 2.25096 0.0824135
\(747\) 1.27772 0.0467493
\(748\) −6.77693 −0.247789
\(749\) −10.5267 −0.384639
\(750\) −10.8468 −0.396068
\(751\) −38.2376 −1.39531 −0.697655 0.716434i \(-0.745773\pi\)
−0.697655 + 0.716434i \(0.745773\pi\)
\(752\) −25.4233 −0.927094
\(753\) −15.2260 −0.554868
\(754\) −1.04607 −0.0380957
\(755\) −2.80190 −0.101972
\(756\) 23.5139 0.855192
\(757\) −4.62426 −0.168072 −0.0840358 0.996463i \(-0.526781\pi\)
−0.0840358 + 0.996463i \(0.526781\pi\)
\(758\) 14.4516 0.524905
\(759\) −33.6685 −1.22209
\(760\) −6.51622 −0.236368
\(761\) −8.86933 −0.321513 −0.160756 0.986994i \(-0.551393\pi\)
−0.160756 + 0.986994i \(0.551393\pi\)
\(762\) 3.52554 0.127717
\(763\) −24.4568 −0.885395
\(764\) −21.4448 −0.775844
\(765\) 0.200941 0.00726505
\(766\) −0.0783267 −0.00283006
\(767\) 1.89092 0.0682773
\(768\) −7.62327 −0.275081
\(769\) −44.9504 −1.62095 −0.810477 0.585770i \(-0.800792\pi\)
−0.810477 + 0.585770i \(0.800792\pi\)
\(770\) 6.96037 0.250834
\(771\) 36.2989 1.30727
\(772\) −10.8713 −0.391267
\(773\) −11.9734 −0.430653 −0.215327 0.976542i \(-0.569082\pi\)
−0.215327 + 0.976542i \(0.569082\pi\)
\(774\) −0.602100 −0.0216420
\(775\) 1.57274 0.0564945
\(776\) 38.3636 1.37717
\(777\) 2.57564 0.0924005
\(778\) −3.54807 −0.127204
\(779\) 4.49850 0.161176
\(780\) 0.930104 0.0333031
\(781\) −6.03415 −0.215919
\(782\) −3.76264 −0.134552
\(783\) −37.5811 −1.34304
\(784\) 1.46942 0.0524793
\(785\) −1.78661 −0.0637668
\(786\) 9.65808 0.344492
\(787\) −8.37109 −0.298397 −0.149199 0.988807i \(-0.547669\pi\)
−0.149199 + 0.988807i \(0.547669\pi\)
\(788\) −19.7002 −0.701792
\(789\) −0.556318 −0.0198055
\(790\) −2.94841 −0.104900
\(791\) −3.02793 −0.107661
\(792\) −0.960695 −0.0341368
\(793\) −2.30196 −0.0817449
\(794\) −18.9673 −0.673123
\(795\) −18.5467 −0.657785
\(796\) −12.1125 −0.429317
\(797\) 33.6698 1.19265 0.596323 0.802745i \(-0.296628\pi\)
0.596323 + 0.802745i \(0.296628\pi\)
\(798\) 6.82398 0.241566
\(799\) −14.0843 −0.498268
\(800\) −18.3171 −0.647608
\(801\) 1.15320 0.0407463
\(802\) −14.2464 −0.503058
\(803\) −41.9448 −1.48020
\(804\) −35.9105 −1.26646
\(805\) −19.6367 −0.692104
\(806\) 0.0659155 0.00232177
\(807\) 36.4221 1.28212
\(808\) −6.09021 −0.214253
\(809\) 29.2697 1.02907 0.514534 0.857470i \(-0.327965\pi\)
0.514534 + 0.857470i \(0.327965\pi\)
\(810\) −6.86831 −0.241328
\(811\) −3.54465 −0.124469 −0.0622347 0.998062i \(-0.519823\pi\)
−0.0622347 + 0.998062i \(0.519823\pi\)
\(812\) −34.3156 −1.20424
\(813\) 14.7409 0.516985
\(814\) 1.03191 0.0361685
\(815\) −21.3707 −0.748583
\(816\) 4.46937 0.156459
\(817\) −19.1269 −0.669167
\(818\) 0.573477 0.0200512
\(819\) −0.0908909 −0.00317598
\(820\) −3.95835 −0.138232
\(821\) 31.0554 1.08384 0.541921 0.840429i \(-0.317697\pi\)
0.541921 + 0.840429i \(0.317697\pi\)
\(822\) 18.6086 0.649048
\(823\) 43.3865 1.51236 0.756179 0.654365i \(-0.227064\pi\)
0.756179 + 0.654365i \(0.227064\pi\)
\(824\) −3.84300 −0.133877
\(825\) −20.4546 −0.712139
\(826\) −12.2075 −0.424754
\(827\) 33.7383 1.17319 0.586597 0.809879i \(-0.300467\pi\)
0.586597 + 0.809879i \(0.300467\pi\)
\(828\) 1.23376 0.0428762
\(829\) −7.93092 −0.275452 −0.137726 0.990470i \(-0.543979\pi\)
−0.137726 + 0.990470i \(0.543979\pi\)
\(830\) 7.02882 0.243974
\(831\) 34.1014 1.18297
\(832\) 0.283993 0.00984568
\(833\) 0.814048 0.0282051
\(834\) 17.4537 0.604371
\(835\) 26.7212 0.924727
\(836\) −13.8922 −0.480473
\(837\) 2.36807 0.0818525
\(838\) 4.51657 0.156022
\(839\) −0.829060 −0.0286223 −0.0143112 0.999898i \(-0.504556\pi\)
−0.0143112 + 0.999898i \(0.504556\pi\)
\(840\) −13.1909 −0.455130
\(841\) 25.8450 0.891207
\(842\) 9.56497 0.329631
\(843\) 19.6369 0.676331
\(844\) −1.84667 −0.0635650
\(845\) −16.5185 −0.568255
\(846\) −0.908863 −0.0312473
\(847\) 2.09810 0.0720915
\(848\) −17.5227 −0.601731
\(849\) −7.82055 −0.268401
\(850\) −2.28592 −0.0784065
\(851\) −2.91125 −0.0997963
\(852\) 5.20557 0.178340
\(853\) 48.1049 1.64708 0.823541 0.567257i \(-0.191995\pi\)
0.823541 + 0.567257i \(0.191995\pi\)
\(854\) 14.8611 0.508536
\(855\) 0.411916 0.0140872
\(856\) 7.99271 0.273185
\(857\) −27.2391 −0.930470 −0.465235 0.885187i \(-0.654030\pi\)
−0.465235 + 0.885187i \(0.654030\pi\)
\(858\) −0.857279 −0.0292670
\(859\) −38.6029 −1.31711 −0.658557 0.752531i \(-0.728833\pi\)
−0.658557 + 0.752531i \(0.728833\pi\)
\(860\) 16.8303 0.573909
\(861\) 9.10641 0.310346
\(862\) −5.93840 −0.202263
\(863\) 51.0584 1.73805 0.869025 0.494768i \(-0.164747\pi\)
0.869025 + 0.494768i \(0.164747\pi\)
\(864\) −27.5800 −0.938292
\(865\) 20.3066 0.690446
\(866\) −18.7443 −0.636957
\(867\) −27.6149 −0.937851
\(868\) 2.16231 0.0733935
\(869\) −13.8088 −0.468431
\(870\) 9.59688 0.325365
\(871\) −2.99022 −0.101320
\(872\) 18.5695 0.628842
\(873\) −2.42511 −0.0820776
\(874\) −7.71316 −0.260901
\(875\) −29.6287 −1.00163
\(876\) 36.1852 1.22258
\(877\) 8.73784 0.295056 0.147528 0.989058i \(-0.452868\pi\)
0.147528 + 0.989058i \(0.452868\pi\)
\(878\) −12.4290 −0.419457
\(879\) −24.3643 −0.821786
\(880\) 9.34502 0.315020
\(881\) −51.3824 −1.73112 −0.865559 0.500808i \(-0.833036\pi\)
−0.865559 + 0.500808i \(0.833036\pi\)
\(882\) 0.0525306 0.00176880
\(883\) −41.8244 −1.40750 −0.703752 0.710446i \(-0.748493\pi\)
−0.703752 + 0.710446i \(0.748493\pi\)
\(884\) 0.486820 0.0163735
\(885\) −17.3477 −0.583137
\(886\) 22.3105 0.749536
\(887\) −35.4061 −1.18882 −0.594410 0.804162i \(-0.702614\pi\)
−0.594410 + 0.804162i \(0.702614\pi\)
\(888\) −1.95562 −0.0656265
\(889\) 9.63025 0.322988
\(890\) 6.34383 0.212646
\(891\) −32.1674 −1.07765
\(892\) −11.8100 −0.395427
\(893\) −28.8719 −0.966161
\(894\) −5.11597 −0.171104
\(895\) 14.7337 0.492492
\(896\) −31.9731 −1.06815
\(897\) 2.41857 0.0807537
\(898\) 2.44837 0.0817032
\(899\) −3.45591 −0.115261
\(900\) 0.749549 0.0249850
\(901\) −9.70742 −0.323401
\(902\) 3.64842 0.121479
\(903\) −38.7191 −1.28849
\(904\) 2.29903 0.0764648
\(905\) 2.28009 0.0757927
\(906\) −2.22790 −0.0740170
\(907\) −57.7182 −1.91650 −0.958251 0.285927i \(-0.907699\pi\)
−0.958251 + 0.285927i \(0.907699\pi\)
\(908\) −28.3658 −0.941353
\(909\) 0.384987 0.0127692
\(910\) −0.499997 −0.0165747
\(911\) 16.1671 0.535640 0.267820 0.963469i \(-0.413697\pi\)
0.267820 + 0.963469i \(0.413697\pi\)
\(912\) 9.16190 0.303381
\(913\) 32.9192 1.08947
\(914\) −22.7348 −0.752001
\(915\) 21.1186 0.698159
\(916\) −30.2027 −0.997926
\(917\) 26.3817 0.871202
\(918\) −3.44191 −0.113600
\(919\) 47.8672 1.57899 0.789497 0.613754i \(-0.210342\pi\)
0.789497 + 0.613754i \(0.210342\pi\)
\(920\) 14.9097 0.491559
\(921\) −24.8525 −0.818919
\(922\) −6.77356 −0.223075
\(923\) 0.433462 0.0142676
\(924\) −28.1224 −0.925158
\(925\) −1.76867 −0.0581536
\(926\) −16.7453 −0.550284
\(927\) 0.242931 0.00797890
\(928\) 40.2497 1.32126
\(929\) −15.0151 −0.492629 −0.246315 0.969190i \(-0.579220\pi\)
−0.246315 + 0.969190i \(0.579220\pi\)
\(930\) −0.604721 −0.0198296
\(931\) 1.66874 0.0546908
\(932\) 15.9077 0.521073
\(933\) 47.7284 1.56256
\(934\) −16.2099 −0.530403
\(935\) 5.17707 0.169308
\(936\) 0.0690114 0.00225571
\(937\) 49.8602 1.62886 0.814431 0.580261i \(-0.197049\pi\)
0.814431 + 0.580261i \(0.197049\pi\)
\(938\) 19.3044 0.630312
\(939\) −42.3491 −1.38201
\(940\) 25.4052 0.828625
\(941\) −31.2000 −1.01709 −0.508546 0.861035i \(-0.669817\pi\)
−0.508546 + 0.861035i \(0.669817\pi\)
\(942\) −1.42060 −0.0462857
\(943\) −10.2930 −0.335186
\(944\) −16.3898 −0.533444
\(945\) −17.9628 −0.584331
\(946\) −15.5125 −0.504356
\(947\) −55.5752 −1.80595 −0.902975 0.429693i \(-0.858622\pi\)
−0.902975 + 0.429693i \(0.858622\pi\)
\(948\) 11.9126 0.386904
\(949\) 3.01310 0.0978093
\(950\) −4.68598 −0.152033
\(951\) −12.2389 −0.396874
\(952\) −6.90418 −0.223766
\(953\) 39.9827 1.29517 0.647584 0.761994i \(-0.275780\pi\)
0.647584 + 0.761994i \(0.275780\pi\)
\(954\) −0.626420 −0.0202811
\(955\) 16.3822 0.530115
\(956\) 2.36986 0.0766469
\(957\) 44.9466 1.45292
\(958\) −12.9963 −0.419891
\(959\) 50.8306 1.64141
\(960\) −2.60540 −0.0840891
\(961\) −30.7822 −0.992975
\(962\) −0.0741272 −0.00238996
\(963\) −0.505251 −0.0162815
\(964\) 32.9831 1.06231
\(965\) 8.30486 0.267343
\(966\) −15.6139 −0.502369
\(967\) −40.8834 −1.31472 −0.657361 0.753576i \(-0.728327\pi\)
−0.657361 + 0.753576i \(0.728327\pi\)
\(968\) −1.59304 −0.0512022
\(969\) 5.07562 0.163052
\(970\) −13.3407 −0.428345
\(971\) −32.1188 −1.03074 −0.515371 0.856967i \(-0.672346\pi\)
−0.515371 + 0.856967i \(0.672346\pi\)
\(972\) 2.30958 0.0740798
\(973\) 47.6759 1.52842
\(974\) 17.2066 0.551337
\(975\) 1.46936 0.0470570
\(976\) 19.9525 0.638665
\(977\) 4.87838 0.156073 0.0780366 0.996950i \(-0.475135\pi\)
0.0780366 + 0.996950i \(0.475135\pi\)
\(978\) −16.9927 −0.543366
\(979\) 29.7111 0.949570
\(980\) −1.46837 −0.0469054
\(981\) −1.17385 −0.0374781
\(982\) 9.71276 0.309947
\(983\) −4.93945 −0.157544 −0.0787721 0.996893i \(-0.525100\pi\)
−0.0787721 + 0.996893i \(0.525100\pi\)
\(984\) −6.91429 −0.220420
\(985\) 15.0495 0.479517
\(986\) 5.02304 0.159966
\(987\) −58.4460 −1.86036
\(988\) 0.997947 0.0317489
\(989\) 43.7642 1.39162
\(990\) 0.334076 0.0106176
\(991\) 61.3974 1.95035 0.975177 0.221428i \(-0.0710719\pi\)
0.975177 + 0.221428i \(0.0710719\pi\)
\(992\) −2.53622 −0.0805252
\(993\) −29.7680 −0.944657
\(994\) −2.79837 −0.0887588
\(995\) 9.25305 0.293341
\(996\) −28.3989 −0.899855
\(997\) 1.41985 0.0449672 0.0224836 0.999747i \(-0.492843\pi\)
0.0224836 + 0.999747i \(0.492843\pi\)
\(998\) −3.29967 −0.104449
\(999\) −2.66309 −0.0842563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.12 20
3.2 odd 2 3681.2.a.i.1.9 20
4.3 odd 2 6544.2.a.i.1.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.12 20 1.1 even 1 trivial
3681.2.a.i.1.9 20 3.2 odd 2
6544.2.a.i.1.7 20 4.3 odd 2