Properties

Label 4080.2.m.t.2449.10
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(2449,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-12,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 2 x^{10} + 6 x^{9} - 14 x^{8} - 34 x^{7} + 114 x^{6} - 290 x^{5} + 529 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 2040)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.10
Root \(-2.16636 + 1.04179i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.t.2449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(0.634216 + 2.14424i) q^{5} +0.237858i q^{7} -1.00000 q^{9} -5.46771 q^{11} -0.941367i q^{13} +(-2.14424 + 0.634216i) q^{15} +1.00000i q^{17} -3.46771 q^{19} -0.237858 q^{21} -2.95988i q^{23} +(-4.19554 + 2.71982i) q^{25} -1.00000i q^{27} -1.17922 q^{29} +3.43560 q^{31} -5.46771i q^{33} +(-0.510025 + 0.150853i) q^{35} -0.870677i q^{37} +0.941367 q^{39} +2.71762 q^{41} +5.10854i q^{43} +(-0.634216 - 2.14424i) q^{45} -12.1717i q^{47} +6.94342 q^{49} -1.00000 q^{51} -9.27643i q^{53} +(-3.46771 - 11.7241i) q^{55} -3.46771i q^{57} -4.55440 q^{59} +0.0645705 q^{61} -0.237858i q^{63} +(2.01852 - 0.597030i) q^{65} -10.0552i q^{67} +2.95988 q^{69} -11.8771 q^{71} +5.42165i q^{73} +(-2.71982 - 4.19554i) q^{75} -1.30054i q^{77} +0.248382 q^{79} +1.00000 q^{81} -7.97651i q^{83} +(-2.14424 + 0.634216i) q^{85} -1.17922i q^{87} +5.20386 q^{89} +0.223912 q^{91} +3.43560i q^{93} +(-2.19928 - 7.43560i) q^{95} +7.64540i q^{97} +5.46771 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} - 4 q^{11} + 20 q^{19} + 4 q^{21} - 4 q^{29} - 16 q^{31} + 12 q^{35} + 8 q^{39} - 4 q^{41} + 8 q^{49} - 12 q^{51} + 20 q^{55} - 8 q^{59} + 8 q^{61} - 16 q^{65} - 8 q^{69} - 32 q^{71} + 4 q^{75}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.634216 + 2.14424i 0.283630 + 0.958934i
\(6\) 0 0
\(7\) 0.237858i 0.0899019i 0.998989 + 0.0449510i \(0.0143132\pi\)
−0.998989 + 0.0449510i \(0.985687\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.46771 −1.64858 −0.824288 0.566171i \(-0.808424\pi\)
−0.824288 + 0.566171i \(0.808424\pi\)
\(12\) 0 0
\(13\) 0.941367i 0.261088i −0.991443 0.130544i \(-0.958328\pi\)
0.991443 0.130544i \(-0.0416724\pi\)
\(14\) 0 0
\(15\) −2.14424 + 0.634216i −0.553641 + 0.163754i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −3.46771 −0.795547 −0.397773 0.917484i \(-0.630217\pi\)
−0.397773 + 0.917484i \(0.630217\pi\)
\(20\) 0 0
\(21\) −0.237858 −0.0519049
\(22\) 0 0
\(23\) 2.95988i 0.617179i −0.951195 0.308589i \(-0.900143\pi\)
0.951195 0.308589i \(-0.0998569\pi\)
\(24\) 0 0
\(25\) −4.19554 + 2.71982i −0.839108 + 0.543965i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.17922 −0.218977 −0.109488 0.993988i \(-0.534921\pi\)
−0.109488 + 0.993988i \(0.534921\pi\)
\(30\) 0 0
\(31\) 3.43560 0.617052 0.308526 0.951216i \(-0.400164\pi\)
0.308526 + 0.951216i \(0.400164\pi\)
\(32\) 0 0
\(33\) 5.46771i 0.951806i
\(34\) 0 0
\(35\) −0.510025 + 0.150853i −0.0862100 + 0.0254989i
\(36\) 0 0
\(37\) 0.870677i 0.143138i −0.997436 0.0715692i \(-0.977199\pi\)
0.997436 0.0715692i \(-0.0228007\pi\)
\(38\) 0 0
\(39\) 0.941367 0.150739
\(40\) 0 0
\(41\) 2.71762 0.424421 0.212211 0.977224i \(-0.431934\pi\)
0.212211 + 0.977224i \(0.431934\pi\)
\(42\) 0 0
\(43\) 5.10854i 0.779044i 0.921017 + 0.389522i \(0.127360\pi\)
−0.921017 + 0.389522i \(0.872640\pi\)
\(44\) 0 0
\(45\) −0.634216 2.14424i −0.0945433 0.319645i
\(46\) 0 0
\(47\) 12.1717i 1.77543i −0.460393 0.887715i \(-0.652291\pi\)
0.460393 0.887715i \(-0.347709\pi\)
\(48\) 0 0
\(49\) 6.94342 0.991918
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 9.27643i 1.27422i −0.770775 0.637108i \(-0.780131\pi\)
0.770775 0.637108i \(-0.219869\pi\)
\(54\) 0 0
\(55\) −3.46771 11.7241i −0.467586 1.58088i
\(56\) 0 0
\(57\) 3.46771i 0.459309i
\(58\) 0 0
\(59\) −4.55440 −0.592932 −0.296466 0.955043i \(-0.595808\pi\)
−0.296466 + 0.955043i \(0.595808\pi\)
\(60\) 0 0
\(61\) 0.0645705 0.00826741 0.00413371 0.999991i \(-0.498684\pi\)
0.00413371 + 0.999991i \(0.498684\pi\)
\(62\) 0 0
\(63\) 0.237858i 0.0299673i
\(64\) 0 0
\(65\) 2.01852 0.597030i 0.250366 0.0740524i
\(66\) 0 0
\(67\) 10.0552i 1.22844i −0.789136 0.614219i \(-0.789471\pi\)
0.789136 0.614219i \(-0.210529\pi\)
\(68\) 0 0
\(69\) 2.95988 0.356328
\(70\) 0 0
\(71\) −11.8771 −1.40956 −0.704779 0.709427i \(-0.748954\pi\)
−0.704779 + 0.709427i \(0.748954\pi\)
\(72\) 0 0
\(73\) 5.42165i 0.634557i 0.948332 + 0.317278i \(0.102769\pi\)
−0.948332 + 0.317278i \(0.897231\pi\)
\(74\) 0 0
\(75\) −2.71982 4.19554i −0.314058 0.484459i
\(76\) 0 0
\(77\) 1.30054i 0.148210i
\(78\) 0 0
\(79\) 0.248382 0.0279451 0.0139726 0.999902i \(-0.495552\pi\)
0.0139726 + 0.999902i \(0.495552\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.97651i 0.875536i −0.899088 0.437768i \(-0.855769\pi\)
0.899088 0.437768i \(-0.144231\pi\)
\(84\) 0 0
\(85\) −2.14424 + 0.634216i −0.232576 + 0.0687904i
\(86\) 0 0
\(87\) 1.17922i 0.126426i
\(88\) 0 0
\(89\) 5.20386 0.551608 0.275804 0.961214i \(-0.411056\pi\)
0.275804 + 0.961214i \(0.411056\pi\)
\(90\) 0 0
\(91\) 0.223912 0.0234723
\(92\) 0 0
\(93\) 3.43560i 0.356255i
\(94\) 0 0
\(95\) −2.19928 7.43560i −0.225641 0.762877i
\(96\) 0 0
\(97\) 7.64540i 0.776273i 0.921602 + 0.388136i \(0.126881\pi\)
−0.921602 + 0.388136i \(0.873119\pi\)
\(98\) 0 0
\(99\) 5.46771 0.549525
\(100\) 0 0
\(101\) 8.36374 0.832224 0.416112 0.909313i \(-0.363393\pi\)
0.416112 + 0.909313i \(0.363393\pi\)
\(102\) 0 0
\(103\) 7.19702i 0.709144i 0.935029 + 0.354572i \(0.115373\pi\)
−0.935029 + 0.354572i \(0.884627\pi\)
\(104\) 0 0
\(105\) −0.150853 0.510025i −0.0147218 0.0497734i
\(106\) 0 0
\(107\) 2.96331i 0.286474i 0.989688 + 0.143237i \(0.0457511\pi\)
−0.989688 + 0.143237i \(0.954249\pi\)
\(108\) 0 0
\(109\) −0.131115 −0.0125586 −0.00627928 0.999980i \(-0.501999\pi\)
−0.00627928 + 0.999980i \(0.501999\pi\)
\(110\) 0 0
\(111\) 0.870677 0.0826410
\(112\) 0 0
\(113\) 16.4424i 1.54677i −0.633935 0.773387i \(-0.718561\pi\)
0.633935 0.773387i \(-0.281439\pi\)
\(114\) 0 0
\(115\) 6.34671 1.87721i 0.591833 0.175050i
\(116\) 0 0
\(117\) 0.941367i 0.0870294i
\(118\) 0 0
\(119\) −0.237858 −0.0218044
\(120\) 0 0
\(121\) 18.8958 1.71780
\(122\) 0 0
\(123\) 2.71762i 0.245040i
\(124\) 0 0
\(125\) −8.49284 7.27129i −0.759622 0.650364i
\(126\) 0 0
\(127\) 7.84882i 0.696470i −0.937407 0.348235i \(-0.886781\pi\)
0.937407 0.348235i \(-0.113219\pi\)
\(128\) 0 0
\(129\) −5.10854 −0.449781
\(130\) 0 0
\(131\) −7.73839 −0.676107 −0.338053 0.941127i \(-0.609768\pi\)
−0.338053 + 0.941127i \(0.609768\pi\)
\(132\) 0 0
\(133\) 0.824822i 0.0715212i
\(134\) 0 0
\(135\) 2.14424 0.634216i 0.184547 0.0545846i
\(136\) 0 0
\(137\) 7.63928i 0.652668i −0.945255 0.326334i \(-0.894187\pi\)
0.945255 0.326334i \(-0.105813\pi\)
\(138\) 0 0
\(139\) −6.45970 −0.547904 −0.273952 0.961743i \(-0.588331\pi\)
−0.273952 + 0.961743i \(0.588331\pi\)
\(140\) 0 0
\(141\) 12.1717 1.02505
\(142\) 0 0
\(143\) 5.14712i 0.430424i
\(144\) 0 0
\(145\) −0.747883 2.52854i −0.0621083 0.209984i
\(146\) 0 0
\(147\) 6.94342i 0.572684i
\(148\) 0 0
\(149\) −4.91285 −0.402476 −0.201238 0.979542i \(-0.564497\pi\)
−0.201238 + 0.979542i \(0.564497\pi\)
\(150\) 0 0
\(151\) −0.0521719 −0.00424569 −0.00212285 0.999998i \(-0.500676\pi\)
−0.00212285 + 0.999998i \(0.500676\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 2.17891 + 7.36676i 0.175014 + 0.591712i
\(156\) 0 0
\(157\) 12.5482i 1.00145i 0.865605 + 0.500727i \(0.166934\pi\)
−0.865605 + 0.500727i \(0.833066\pi\)
\(158\) 0 0
\(159\) 9.27643 0.735668
\(160\) 0 0
\(161\) 0.704033 0.0554855
\(162\) 0 0
\(163\) 20.1316i 1.57683i −0.615144 0.788415i \(-0.710902\pi\)
0.615144 0.788415i \(-0.289098\pi\)
\(164\) 0 0
\(165\) 11.7241 3.46771i 0.912719 0.269961i
\(166\) 0 0
\(167\) 14.8093i 1.14598i 0.819562 + 0.572990i \(0.194217\pi\)
−0.819562 + 0.572990i \(0.805783\pi\)
\(168\) 0 0
\(169\) 12.1138 0.931833
\(170\) 0 0
\(171\) 3.46771 0.265182
\(172\) 0 0
\(173\) 3.04012i 0.231136i −0.993300 0.115568i \(-0.963131\pi\)
0.993300 0.115568i \(-0.0368688\pi\)
\(174\) 0 0
\(175\) −0.646932 0.997943i −0.0489035 0.0754374i
\(176\) 0 0
\(177\) 4.55440i 0.342330i
\(178\) 0 0
\(179\) −19.6620 −1.46961 −0.734804 0.678280i \(-0.762726\pi\)
−0.734804 + 0.678280i \(0.762726\pi\)
\(180\) 0 0
\(181\) −22.2908 −1.65686 −0.828430 0.560092i \(-0.810766\pi\)
−0.828430 + 0.560092i \(0.810766\pi\)
\(182\) 0 0
\(183\) 0.0645705i 0.00477319i
\(184\) 0 0
\(185\) 1.86694 0.552197i 0.137260 0.0405984i
\(186\) 0 0
\(187\) 5.46771i 0.399838i
\(188\) 0 0
\(189\) 0.237858 0.0173016
\(190\) 0 0
\(191\) 21.5548 1.55965 0.779826 0.625997i \(-0.215308\pi\)
0.779826 + 0.625997i \(0.215308\pi\)
\(192\) 0 0
\(193\) 0.185329i 0.0133403i 0.999978 + 0.00667013i \(0.00212319\pi\)
−0.999978 + 0.00667013i \(0.997877\pi\)
\(194\) 0 0
\(195\) 0.597030 + 2.01852i 0.0427542 + 0.144549i
\(196\) 0 0
\(197\) 3.32896i 0.237178i 0.992943 + 0.118589i \(0.0378371\pi\)
−0.992943 + 0.118589i \(0.962163\pi\)
\(198\) 0 0
\(199\) 13.7768 0.976610 0.488305 0.872673i \(-0.337615\pi\)
0.488305 + 0.872673i \(0.337615\pi\)
\(200\) 0 0
\(201\) 10.0552 0.709239
\(202\) 0 0
\(203\) 0.280488i 0.0196864i
\(204\) 0 0
\(205\) 1.72356 + 5.82724i 0.120379 + 0.406992i
\(206\) 0 0
\(207\) 2.95988i 0.205726i
\(208\) 0 0
\(209\) 18.9604 1.31152
\(210\) 0 0
\(211\) −11.2327 −0.773292 −0.386646 0.922228i \(-0.626366\pi\)
−0.386646 + 0.922228i \(0.626366\pi\)
\(212\) 0 0
\(213\) 11.8771i 0.813808i
\(214\) 0 0
\(215\) −10.9539 + 3.23991i −0.747052 + 0.220960i
\(216\) 0 0
\(217\) 0.817186i 0.0554742i
\(218\) 0 0
\(219\) −5.42165 −0.366361
\(220\) 0 0
\(221\) 0.941367 0.0633232
\(222\) 0 0
\(223\) 15.5450i 1.04097i 0.853870 + 0.520486i \(0.174249\pi\)
−0.853870 + 0.520486i \(0.825751\pi\)
\(224\) 0 0
\(225\) 4.19554 2.71982i 0.279703 0.181322i
\(226\) 0 0
\(227\) 11.8480i 0.786379i 0.919457 + 0.393190i \(0.128628\pi\)
−0.919457 + 0.393190i \(0.871372\pi\)
\(228\) 0 0
\(229\) −1.84802 −0.122121 −0.0610604 0.998134i \(-0.519448\pi\)
−0.0610604 + 0.998134i \(0.519448\pi\)
\(230\) 0 0
\(231\) 1.30054 0.0855692
\(232\) 0 0
\(233\) 21.5297i 1.41045i −0.708981 0.705227i \(-0.750845\pi\)
0.708981 0.705227i \(-0.249155\pi\)
\(234\) 0 0
\(235\) 26.0991 7.71951i 1.70252 0.503565i
\(236\) 0 0
\(237\) 0.248382i 0.0161341i
\(238\) 0 0
\(239\) 23.6721 1.53122 0.765610 0.643305i \(-0.222437\pi\)
0.765610 + 0.643305i \(0.222437\pi\)
\(240\) 0 0
\(241\) −1.95306 −0.125808 −0.0629038 0.998020i \(-0.520036\pi\)
−0.0629038 + 0.998020i \(0.520036\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 4.40363 + 14.8884i 0.281338 + 0.951183i
\(246\) 0 0
\(247\) 3.26438i 0.207708i
\(248\) 0 0
\(249\) 7.97651 0.505491
\(250\) 0 0
\(251\) −6.76133 −0.426771 −0.213386 0.976968i \(-0.568449\pi\)
−0.213386 + 0.976968i \(0.568449\pi\)
\(252\) 0 0
\(253\) 16.1838i 1.01747i
\(254\) 0 0
\(255\) −0.634216 2.14424i −0.0397161 0.134278i
\(256\) 0 0
\(257\) 0.502790i 0.0313632i 0.999877 + 0.0156816i \(0.00499181\pi\)
−0.999877 + 0.0156816i \(0.995008\pi\)
\(258\) 0 0
\(259\) 0.207098 0.0128684
\(260\) 0 0
\(261\) 1.17922 0.0729922
\(262\) 0 0
\(263\) 17.5859i 1.08440i −0.840251 0.542198i \(-0.817592\pi\)
0.840251 0.542198i \(-0.182408\pi\)
\(264\) 0 0
\(265\) 19.8909 5.88326i 1.22189 0.361406i
\(266\) 0 0
\(267\) 5.20386i 0.318471i
\(268\) 0 0
\(269\) −13.6430 −0.831831 −0.415915 0.909403i \(-0.636539\pi\)
−0.415915 + 0.909403i \(0.636539\pi\)
\(270\) 0 0
\(271\) −26.5514 −1.61288 −0.806442 0.591314i \(-0.798609\pi\)
−0.806442 + 0.591314i \(0.798609\pi\)
\(272\) 0 0
\(273\) 0.223912i 0.0135518i
\(274\) 0 0
\(275\) 22.9400 14.8712i 1.38333 0.896767i
\(276\) 0 0
\(277\) 16.3523i 0.982514i −0.871015 0.491257i \(-0.836538\pi\)
0.871015 0.491257i \(-0.163462\pi\)
\(278\) 0 0
\(279\) −3.43560 −0.205684
\(280\) 0 0
\(281\) −30.0849 −1.79472 −0.897359 0.441302i \(-0.854517\pi\)
−0.897359 + 0.441302i \(0.854517\pi\)
\(282\) 0 0
\(283\) 6.11059i 0.363237i −0.983369 0.181619i \(-0.941866\pi\)
0.983369 0.181619i \(-0.0581336\pi\)
\(284\) 0 0
\(285\) 7.43560 2.19928i 0.440447 0.130274i
\(286\) 0 0
\(287\) 0.646408i 0.0381563i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −7.64540 −0.448181
\(292\) 0 0
\(293\) 23.7212i 1.38581i −0.721031 0.692903i \(-0.756331\pi\)
0.721031 0.692903i \(-0.243669\pi\)
\(294\) 0 0
\(295\) −2.88847 9.76573i −0.168173 0.568583i
\(296\) 0 0
\(297\) 5.46771i 0.317269i
\(298\) 0 0
\(299\) −2.78634 −0.161138
\(300\) 0 0
\(301\) −1.21511 −0.0700376
\(302\) 0 0
\(303\) 8.36374i 0.480484i
\(304\) 0 0
\(305\) 0.0409517 + 0.138455i 0.00234489 + 0.00792790i
\(306\) 0 0
\(307\) 13.9842i 0.798123i −0.916924 0.399062i \(-0.869336\pi\)
0.916924 0.399062i \(-0.130664\pi\)
\(308\) 0 0
\(309\) −7.19702 −0.409424
\(310\) 0 0
\(311\) −17.3286 −0.982613 −0.491306 0.870987i \(-0.663480\pi\)
−0.491306 + 0.870987i \(0.663480\pi\)
\(312\) 0 0
\(313\) 12.1159i 0.684830i 0.939549 + 0.342415i \(0.111245\pi\)
−0.939549 + 0.342415i \(0.888755\pi\)
\(314\) 0 0
\(315\) 0.510025 0.150853i 0.0287367 0.00849963i
\(316\) 0 0
\(317\) 16.3901i 0.920560i 0.887774 + 0.460280i \(0.152251\pi\)
−0.887774 + 0.460280i \(0.847749\pi\)
\(318\) 0 0
\(319\) 6.44766 0.360999
\(320\) 0 0
\(321\) −2.96331 −0.165396
\(322\) 0 0
\(323\) 3.46771i 0.192948i
\(324\) 0 0
\(325\) 2.56035 + 3.94954i 0.142023 + 0.219081i
\(326\) 0 0
\(327\) 0.131115i 0.00725069i
\(328\) 0 0
\(329\) 2.89515 0.159615
\(330\) 0 0
\(331\) 22.7926 1.25279 0.626397 0.779504i \(-0.284529\pi\)
0.626397 + 0.779504i \(0.284529\pi\)
\(332\) 0 0
\(333\) 0.870677i 0.0477128i
\(334\) 0 0
\(335\) 21.5608 6.37717i 1.17799 0.348422i
\(336\) 0 0
\(337\) 20.5355i 1.11864i −0.828952 0.559320i \(-0.811062\pi\)
0.828952 0.559320i \(-0.188938\pi\)
\(338\) 0 0
\(339\) 16.4424 0.893030
\(340\) 0 0
\(341\) −18.7849 −1.01726
\(342\) 0 0
\(343\) 3.31656i 0.179077i
\(344\) 0 0
\(345\) 1.87721 + 6.34671i 0.101065 + 0.341695i
\(346\) 0 0
\(347\) 10.5140i 0.564421i −0.959352 0.282211i \(-0.908932\pi\)
0.959352 0.282211i \(-0.0910677\pi\)
\(348\) 0 0
\(349\) −16.4847 −0.882405 −0.441203 0.897407i \(-0.645448\pi\)
−0.441203 + 0.897407i \(0.645448\pi\)
\(350\) 0 0
\(351\) −0.941367 −0.0502464
\(352\) 0 0
\(353\) 22.1798i 1.18051i −0.807216 0.590257i \(-0.799027\pi\)
0.807216 0.590257i \(-0.200973\pi\)
\(354\) 0 0
\(355\) −7.53267 25.4674i −0.399793 1.35167i
\(356\) 0 0
\(357\) 0.237858i 0.0125888i
\(358\) 0 0
\(359\) 16.6102 0.876654 0.438327 0.898816i \(-0.355571\pi\)
0.438327 + 0.898816i \(0.355571\pi\)
\(360\) 0 0
\(361\) −6.97501 −0.367106
\(362\) 0 0
\(363\) 18.8958i 0.991773i
\(364\) 0 0
\(365\) −11.6253 + 3.43850i −0.608498 + 0.179979i
\(366\) 0 0
\(367\) 23.9411i 1.24971i −0.780740 0.624857i \(-0.785157\pi\)
0.780740 0.624857i \(-0.214843\pi\)
\(368\) 0 0
\(369\) −2.71762 −0.141474
\(370\) 0 0
\(371\) 2.20647 0.114554
\(372\) 0 0
\(373\) 10.4789i 0.542579i −0.962498 0.271290i \(-0.912550\pi\)
0.962498 0.271290i \(-0.0874501\pi\)
\(374\) 0 0
\(375\) 7.27129 8.49284i 0.375488 0.438568i
\(376\) 0 0
\(377\) 1.11008i 0.0571722i
\(378\) 0 0
\(379\) 31.9399 1.64064 0.820320 0.571904i \(-0.193795\pi\)
0.820320 + 0.571904i \(0.193795\pi\)
\(380\) 0 0
\(381\) 7.84882 0.402107
\(382\) 0 0
\(383\) 18.7728i 0.959246i 0.877475 + 0.479623i \(0.159227\pi\)
−0.877475 + 0.479623i \(0.840773\pi\)
\(384\) 0 0
\(385\) 2.78867 0.824822i 0.142124 0.0420368i
\(386\) 0 0
\(387\) 5.10854i 0.259681i
\(388\) 0 0
\(389\) 16.7608 0.849809 0.424904 0.905238i \(-0.360308\pi\)
0.424904 + 0.905238i \(0.360308\pi\)
\(390\) 0 0
\(391\) 2.95988 0.149688
\(392\) 0 0
\(393\) 7.73839i 0.390350i
\(394\) 0 0
\(395\) 0.157528 + 0.532590i 0.00792607 + 0.0267975i
\(396\) 0 0
\(397\) 25.2347i 1.26649i 0.773950 + 0.633246i \(0.218278\pi\)
−0.773950 + 0.633246i \(0.781722\pi\)
\(398\) 0 0
\(399\) 0.824822 0.0412928
\(400\) 0 0
\(401\) −34.4003 −1.71787 −0.858935 0.512085i \(-0.828873\pi\)
−0.858935 + 0.512085i \(0.828873\pi\)
\(402\) 0 0
\(403\) 3.23416i 0.161105i
\(404\) 0 0
\(405\) 0.634216 + 2.14424i 0.0315144 + 0.106548i
\(406\) 0 0
\(407\) 4.76061i 0.235975i
\(408\) 0 0
\(409\) −16.2056 −0.801317 −0.400658 0.916228i \(-0.631219\pi\)
−0.400658 + 0.916228i \(0.631219\pi\)
\(410\) 0 0
\(411\) 7.63928 0.376818
\(412\) 0 0
\(413\) 1.08330i 0.0533058i
\(414\) 0 0
\(415\) 17.1036 5.05883i 0.839581 0.248328i
\(416\) 0 0
\(417\) 6.45970i 0.316333i
\(418\) 0 0
\(419\) −31.0412 −1.51646 −0.758232 0.651985i \(-0.773936\pi\)
−0.758232 + 0.651985i \(0.773936\pi\)
\(420\) 0 0
\(421\) −20.4277 −0.995583 −0.497792 0.867297i \(-0.665856\pi\)
−0.497792 + 0.867297i \(0.665856\pi\)
\(422\) 0 0
\(423\) 12.1717i 0.591810i
\(424\) 0 0
\(425\) −2.71982 4.19554i −0.131931 0.203514i
\(426\) 0 0
\(427\) 0.0153586i 0.000743256i
\(428\) 0 0
\(429\) −5.14712 −0.248505
\(430\) 0 0
\(431\) 2.38091 0.114685 0.0573423 0.998355i \(-0.481737\pi\)
0.0573423 + 0.998355i \(0.481737\pi\)
\(432\) 0 0
\(433\) 29.2344i 1.40492i −0.711726 0.702458i \(-0.752086\pi\)
0.711726 0.702458i \(-0.247914\pi\)
\(434\) 0 0
\(435\) 2.52854 0.747883i 0.121234 0.0358583i
\(436\) 0 0
\(437\) 10.2640i 0.490994i
\(438\) 0 0
\(439\) 30.8338 1.47162 0.735808 0.677190i \(-0.236803\pi\)
0.735808 + 0.677190i \(0.236803\pi\)
\(440\) 0 0
\(441\) −6.94342 −0.330639
\(442\) 0 0
\(443\) 3.07751i 0.146217i −0.997324 0.0731084i \(-0.976708\pi\)
0.997324 0.0731084i \(-0.0232919\pi\)
\(444\) 0 0
\(445\) 3.30037 + 11.1583i 0.156453 + 0.528956i
\(446\) 0 0
\(447\) 4.91285i 0.232370i
\(448\) 0 0
\(449\) −16.7147 −0.788815 −0.394408 0.918936i \(-0.629050\pi\)
−0.394408 + 0.918936i \(0.629050\pi\)
\(450\) 0 0
\(451\) −14.8592 −0.699691
\(452\) 0 0
\(453\) 0.0521719i 0.00245125i
\(454\) 0 0
\(455\) 0.142008 + 0.480121i 0.00665746 + 0.0225084i
\(456\) 0 0
\(457\) 1.86106i 0.0870566i 0.999052 + 0.0435283i \(0.0138599\pi\)
−0.999052 + 0.0435283i \(0.986140\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −9.99434 −0.465483 −0.232741 0.972539i \(-0.574770\pi\)
−0.232741 + 0.972539i \(0.574770\pi\)
\(462\) 0 0
\(463\) 2.47098i 0.114836i 0.998350 + 0.0574181i \(0.0182868\pi\)
−0.998350 + 0.0574181i \(0.981713\pi\)
\(464\) 0 0
\(465\) −7.36676 + 2.17891i −0.341625 + 0.101045i
\(466\) 0 0
\(467\) 24.0755i 1.11408i −0.830485 0.557040i \(-0.811937\pi\)
0.830485 0.557040i \(-0.188063\pi\)
\(468\) 0 0
\(469\) 2.39171 0.110439
\(470\) 0 0
\(471\) −12.5482 −0.578190
\(472\) 0 0
\(473\) 27.9320i 1.28431i
\(474\) 0 0
\(475\) 14.5489 9.43155i 0.667550 0.432749i
\(476\) 0 0
\(477\) 9.27643i 0.424738i
\(478\) 0 0
\(479\) −4.48365 −0.204863 −0.102432 0.994740i \(-0.532662\pi\)
−0.102432 + 0.994740i \(0.532662\pi\)
\(480\) 0 0
\(481\) −0.819627 −0.0373718
\(482\) 0 0
\(483\) 0.704033i 0.0320346i
\(484\) 0 0
\(485\) −16.3936 + 4.84883i −0.744394 + 0.220174i
\(486\) 0 0
\(487\) 3.11573i 0.141187i −0.997505 0.0705937i \(-0.977511\pi\)
0.997505 0.0705937i \(-0.0224894\pi\)
\(488\) 0 0
\(489\) 20.1316 0.910383
\(490\) 0 0
\(491\) −37.6749 −1.70025 −0.850123 0.526584i \(-0.823472\pi\)
−0.850123 + 0.526584i \(0.823472\pi\)
\(492\) 0 0
\(493\) 1.17922i 0.0531096i
\(494\) 0 0
\(495\) 3.46771 + 11.7241i 0.155862 + 0.526958i
\(496\) 0 0
\(497\) 2.82507i 0.126722i
\(498\) 0 0
\(499\) 19.6519 0.879742 0.439871 0.898061i \(-0.355024\pi\)
0.439871 + 0.898061i \(0.355024\pi\)
\(500\) 0 0
\(501\) −14.8093 −0.661632
\(502\) 0 0
\(503\) 29.1386i 1.29923i 0.760264 + 0.649614i \(0.225069\pi\)
−0.760264 + 0.649614i \(0.774931\pi\)
\(504\) 0 0
\(505\) 5.30442 + 17.9339i 0.236044 + 0.798047i
\(506\) 0 0
\(507\) 12.1138i 0.537994i
\(508\) 0 0
\(509\) 10.4267 0.462155 0.231078 0.972935i \(-0.425775\pi\)
0.231078 + 0.972935i \(0.425775\pi\)
\(510\) 0 0
\(511\) −1.28958 −0.0570479
\(512\) 0 0
\(513\) 3.46771i 0.153103i
\(514\) 0 0
\(515\) −15.4321 + 4.56447i −0.680022 + 0.201134i
\(516\) 0 0
\(517\) 66.5515i 2.92693i
\(518\) 0 0
\(519\) 3.04012 0.133446
\(520\) 0 0
\(521\) −35.5147 −1.55593 −0.777964 0.628309i \(-0.783747\pi\)
−0.777964 + 0.628309i \(0.783747\pi\)
\(522\) 0 0
\(523\) 27.3395i 1.19548i 0.801692 + 0.597738i \(0.203934\pi\)
−0.801692 + 0.597738i \(0.796066\pi\)
\(524\) 0 0
\(525\) 0.997943 0.646932i 0.0435538 0.0282344i
\(526\) 0 0
\(527\) 3.43560i 0.149657i
\(528\) 0 0
\(529\) 14.2391 0.619091
\(530\) 0 0
\(531\) 4.55440 0.197644
\(532\) 0 0
\(533\) 2.55828i 0.110811i
\(534\) 0 0
\(535\) −6.35405 + 1.87938i −0.274709 + 0.0812525i
\(536\) 0 0
\(537\) 19.6620i 0.848478i
\(538\) 0 0
\(539\) −37.9646 −1.63525
\(540\) 0 0
\(541\) 17.8793 0.768690 0.384345 0.923189i \(-0.374427\pi\)
0.384345 + 0.923189i \(0.374427\pi\)
\(542\) 0 0
\(543\) 22.2908i 0.956589i
\(544\) 0 0
\(545\) −0.0831554 0.281143i −0.00356199 0.0120428i
\(546\) 0 0
\(547\) 7.18432i 0.307179i 0.988135 + 0.153590i \(0.0490834\pi\)
−0.988135 + 0.153590i \(0.950917\pi\)
\(548\) 0 0
\(549\) −0.0645705 −0.00275580
\(550\) 0 0
\(551\) 4.08921 0.174206
\(552\) 0 0
\(553\) 0.0590796i 0.00251232i
\(554\) 0 0
\(555\) 0.552197 + 1.86694i 0.0234395 + 0.0792473i
\(556\) 0 0
\(557\) 34.8845i 1.47810i −0.673650 0.739051i \(-0.735274\pi\)
0.673650 0.739051i \(-0.264726\pi\)
\(558\) 0 0
\(559\) 4.80901 0.203399
\(560\) 0 0
\(561\) 5.46771 0.230847
\(562\) 0 0
\(563\) 9.06376i 0.381992i 0.981591 + 0.190996i \(0.0611717\pi\)
−0.981591 + 0.190996i \(0.938828\pi\)
\(564\) 0 0
\(565\) 35.2565 10.4280i 1.48325 0.438711i
\(566\) 0 0
\(567\) 0.237858i 0.00998910i
\(568\) 0 0
\(569\) 0.974497 0.0408531 0.0204265 0.999791i \(-0.493498\pi\)
0.0204265 + 0.999791i \(0.493498\pi\)
\(570\) 0 0
\(571\) 8.29549 0.347155 0.173578 0.984820i \(-0.444467\pi\)
0.173578 + 0.984820i \(0.444467\pi\)
\(572\) 0 0
\(573\) 21.5548i 0.900465i
\(574\) 0 0
\(575\) 8.05036 + 12.4183i 0.335723 + 0.517879i
\(576\) 0 0
\(577\) 0.745840i 0.0310497i 0.999879 + 0.0155249i \(0.00494192\pi\)
−0.999879 + 0.0155249i \(0.995058\pi\)
\(578\) 0 0
\(579\) −0.185329 −0.00770201
\(580\) 0 0
\(581\) 1.89728 0.0787124
\(582\) 0 0
\(583\) 50.7208i 2.10064i
\(584\) 0 0
\(585\) −2.01852 + 0.597030i −0.0834554 + 0.0246841i
\(586\) 0 0
\(587\) 28.9061i 1.19308i 0.802583 + 0.596541i \(0.203459\pi\)
−0.802583 + 0.596541i \(0.796541\pi\)
\(588\) 0 0
\(589\) −11.9137 −0.490894
\(590\) 0 0
\(591\) −3.32896 −0.136935
\(592\) 0 0
\(593\) 42.7973i 1.75748i −0.477305 0.878738i \(-0.658386\pi\)
0.477305 0.878738i \(-0.341614\pi\)
\(594\) 0 0
\(595\) −0.150853 0.510025i −0.00618439 0.0209090i
\(596\) 0 0
\(597\) 13.7768i 0.563846i
\(598\) 0 0
\(599\) −23.4692 −0.958926 −0.479463 0.877562i \(-0.659169\pi\)
−0.479463 + 0.877562i \(0.659169\pi\)
\(600\) 0 0
\(601\) −28.5231 −1.16348 −0.581742 0.813374i \(-0.697629\pi\)
−0.581742 + 0.813374i \(0.697629\pi\)
\(602\) 0 0
\(603\) 10.0552i 0.409479i
\(604\) 0 0
\(605\) 11.9840 + 40.5172i 0.487220 + 1.64726i
\(606\) 0 0
\(607\) 6.76033i 0.274393i 0.990544 + 0.137197i \(0.0438092\pi\)
−0.990544 + 0.137197i \(0.956191\pi\)
\(608\) 0 0
\(609\) 0.280488 0.0113660
\(610\) 0 0
\(611\) −11.4581 −0.463544
\(612\) 0 0
\(613\) 8.74154i 0.353067i 0.984295 + 0.176534i \(0.0564885\pi\)
−0.984295 + 0.176534i \(0.943512\pi\)
\(614\) 0 0
\(615\) −5.82724 + 1.72356i −0.234977 + 0.0695006i
\(616\) 0 0
\(617\) 3.01764i 0.121486i 0.998153 + 0.0607429i \(0.0193470\pi\)
−0.998153 + 0.0607429i \(0.980653\pi\)
\(618\) 0 0
\(619\) 25.1179 1.00958 0.504788 0.863244i \(-0.331571\pi\)
0.504788 + 0.863244i \(0.331571\pi\)
\(620\) 0 0
\(621\) −2.95988 −0.118776
\(622\) 0 0
\(623\) 1.23778i 0.0495906i
\(624\) 0 0
\(625\) 10.2051 22.8223i 0.408205 0.912890i
\(626\) 0 0
\(627\) 18.9604i 0.757206i
\(628\) 0 0
\(629\) 0.870677 0.0347162
\(630\) 0 0
\(631\) −0.585256 −0.0232987 −0.0116493 0.999932i \(-0.503708\pi\)
−0.0116493 + 0.999932i \(0.503708\pi\)
\(632\) 0 0
\(633\) 11.2327i 0.446460i
\(634\) 0 0
\(635\) 16.8298 4.97785i 0.667869 0.197540i
\(636\) 0 0
\(637\) 6.53631i 0.258978i
\(638\) 0 0
\(639\) 11.8771 0.469852
\(640\) 0 0
\(641\) 7.15321 0.282535 0.141267 0.989971i \(-0.454882\pi\)
0.141267 + 0.989971i \(0.454882\pi\)
\(642\) 0 0
\(643\) 20.4232i 0.805411i 0.915330 + 0.402706i \(0.131930\pi\)
−0.915330 + 0.402706i \(0.868070\pi\)
\(644\) 0 0
\(645\) −3.23991 10.9539i −0.127572 0.431311i
\(646\) 0 0
\(647\) 19.1766i 0.753910i −0.926232 0.376955i \(-0.876971\pi\)
0.926232 0.376955i \(-0.123029\pi\)
\(648\) 0 0
\(649\) 24.9021 0.977494
\(650\) 0 0
\(651\) −0.817186 −0.0320280
\(652\) 0 0
\(653\) 37.0109i 1.44835i 0.689617 + 0.724174i \(0.257779\pi\)
−0.689617 + 0.724174i \(0.742221\pi\)
\(654\) 0 0
\(655\) −4.90781 16.5930i −0.191764 0.648341i
\(656\) 0 0
\(657\) 5.42165i 0.211519i
\(658\) 0 0
\(659\) −19.4076 −0.756013 −0.378007 0.925803i \(-0.623390\pi\)
−0.378007 + 0.925803i \(0.623390\pi\)
\(660\) 0 0
\(661\) −13.1741 −0.512413 −0.256206 0.966622i \(-0.582473\pi\)
−0.256206 + 0.966622i \(0.582473\pi\)
\(662\) 0 0
\(663\) 0.941367i 0.0365597i
\(664\) 0 0
\(665\) 1.76862 0.523116i 0.0685841 0.0202855i
\(666\) 0 0
\(667\) 3.49037i 0.135148i
\(668\) 0 0
\(669\) −15.5450 −0.601006
\(670\) 0 0
\(671\) −0.353053 −0.0136295
\(672\) 0 0
\(673\) 34.7871i 1.34094i −0.741935 0.670471i \(-0.766092\pi\)
0.741935 0.670471i \(-0.233908\pi\)
\(674\) 0 0
\(675\) 2.71982 + 4.19554i 0.104686 + 0.161486i
\(676\) 0 0
\(677\) 0.132559i 0.00509465i 0.999997 + 0.00254733i \(0.000810840\pi\)
−0.999997 + 0.00254733i \(0.999189\pi\)
\(678\) 0 0
\(679\) −1.81852 −0.0697884
\(680\) 0 0
\(681\) −11.8480 −0.454016
\(682\) 0 0
\(683\) 28.5717i 1.09327i 0.837372 + 0.546633i \(0.184091\pi\)
−0.837372 + 0.546633i \(0.815909\pi\)
\(684\) 0 0
\(685\) 16.3805 4.84495i 0.625865 0.185116i
\(686\) 0 0
\(687\) 1.84802i 0.0705065i
\(688\) 0 0
\(689\) −8.73252 −0.332683
\(690\) 0 0
\(691\) 29.6645 1.12849 0.564246 0.825607i \(-0.309167\pi\)
0.564246 + 0.825607i \(0.309167\pi\)
\(692\) 0 0
\(693\) 1.30054i 0.0494034i
\(694\) 0 0
\(695\) −4.09684 13.8512i −0.155402 0.525404i
\(696\) 0 0
\(697\) 2.71762i 0.102937i
\(698\) 0 0
\(699\) 21.5297 0.814326
\(700\) 0 0
\(701\) −51.7973 −1.95636 −0.978179 0.207763i \(-0.933382\pi\)
−0.978179 + 0.207763i \(0.933382\pi\)
\(702\) 0 0
\(703\) 3.01925i 0.113873i
\(704\) 0 0
\(705\) 7.71951 + 26.0991i 0.290734 + 0.982951i
\(706\) 0 0
\(707\) 1.98938i 0.0748185i
\(708\) 0 0
\(709\) −30.9913 −1.16390 −0.581952 0.813223i \(-0.697711\pi\)
−0.581952 + 0.813223i \(0.697711\pi\)
\(710\) 0 0
\(711\) −0.248382 −0.00931504
\(712\) 0 0
\(713\) 10.1690i 0.380831i
\(714\) 0 0
\(715\) −11.0367 + 3.26438i −0.412748 + 0.122081i
\(716\) 0 0
\(717\) 23.6721i 0.884050i
\(718\) 0 0
\(719\) −53.3625 −1.99009 −0.995043 0.0994473i \(-0.968293\pi\)
−0.995043 + 0.0994473i \(0.968293\pi\)
\(720\) 0 0
\(721\) −1.71187 −0.0637534
\(722\) 0 0
\(723\) 1.95306i 0.0726350i
\(724\) 0 0
\(725\) 4.94749 3.20728i 0.183745 0.119116i
\(726\) 0 0
\(727\) 25.8597i 0.959085i 0.877519 + 0.479542i \(0.159197\pi\)
−0.877519 + 0.479542i \(0.840803\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −5.10854 −0.188946
\(732\) 0 0
\(733\) 2.96042i 0.109346i −0.998504 0.0546728i \(-0.982588\pi\)
0.998504 0.0546728i \(-0.0174116\pi\)
\(734\) 0 0
\(735\) −14.8884 + 4.40363i −0.549166 + 0.162430i
\(736\) 0 0
\(737\) 54.9789i 2.02517i
\(738\) 0 0
\(739\) 30.7761 1.13212 0.566059 0.824365i \(-0.308467\pi\)
0.566059 + 0.824365i \(0.308467\pi\)
\(740\) 0 0
\(741\) −3.26438 −0.119920
\(742\) 0 0
\(743\) 14.6599i 0.537818i −0.963166 0.268909i \(-0.913337\pi\)
0.963166 0.268909i \(-0.0866631\pi\)
\(744\) 0 0
\(745\) −3.11581 10.5343i −0.114154 0.385948i
\(746\) 0 0
\(747\) 7.97651i 0.291845i
\(748\) 0 0
\(749\) −0.704847 −0.0257545
\(750\) 0 0
\(751\) −31.3676 −1.14462 −0.572310 0.820038i \(-0.693952\pi\)
−0.572310 + 0.820038i \(0.693952\pi\)
\(752\) 0 0
\(753\) 6.76133i 0.246397i
\(754\) 0 0
\(755\) −0.0330883 0.111869i −0.00120421 0.00407134i
\(756\) 0 0
\(757\) 25.4449i 0.924812i −0.886668 0.462406i \(-0.846986\pi\)
0.886668 0.462406i \(-0.153014\pi\)
\(758\) 0 0
\(759\) −16.1838 −0.587434
\(760\) 0 0
\(761\) −3.67791 −0.133324 −0.0666620 0.997776i \(-0.521235\pi\)
−0.0666620 + 0.997776i \(0.521235\pi\)
\(762\) 0 0
\(763\) 0.0311868i 0.00112904i
\(764\) 0 0
\(765\) 2.14424 0.634216i 0.0775252 0.0229301i
\(766\) 0 0
\(767\) 4.28736i 0.154808i
\(768\) 0 0
\(769\) −13.8136 −0.498132 −0.249066 0.968486i \(-0.580124\pi\)
−0.249066 + 0.968486i \(0.580124\pi\)
\(770\) 0 0
\(771\) −0.502790 −0.0181075
\(772\) 0 0
\(773\) 45.0463i 1.62020i 0.586290 + 0.810102i \(0.300588\pi\)
−0.586290 + 0.810102i \(0.699412\pi\)
\(774\) 0 0
\(775\) −14.4142 + 9.34423i −0.517773 + 0.335655i
\(776\) 0 0
\(777\) 0.207098i 0.00742959i
\(778\) 0 0
\(779\) −9.42392 −0.337647
\(780\) 0 0
\(781\) 64.9407 2.32376
\(782\) 0 0
\(783\) 1.17922i 0.0421421i
\(784\) 0 0
\(785\) −26.9063 + 7.95826i −0.960328 + 0.284042i
\(786\) 0 0
\(787\) 2.28723i 0.0815309i −0.999169 0.0407655i \(-0.987020\pi\)
0.999169 0.0407655i \(-0.0129796\pi\)
\(788\) 0 0
\(789\) 17.5859 0.626076
\(790\) 0 0
\(791\) 3.91096 0.139058
\(792\) 0 0
\(793\) 0.0607846i 0.00215852i
\(794\) 0 0
\(795\) 5.88326 + 19.8909i 0.208658 + 0.705457i
\(796\) 0 0
\(797\) 4.83940i 0.171420i −0.996320 0.0857101i \(-0.972684\pi\)
0.996320 0.0857101i \(-0.0273159\pi\)
\(798\) 0 0
\(799\) 12.1717 0.430605
\(800\) 0 0
\(801\) −5.20386 −0.183869
\(802\) 0 0
\(803\) 29.6440i 1.04611i
\(804\) 0 0
\(805\) 0.446509 + 1.50962i 0.0157374 + 0.0532070i
\(806\) 0 0
\(807\) 13.6430i 0.480258i
\(808\) 0 0
\(809\) 44.8465 1.57672 0.788360 0.615214i \(-0.210930\pi\)
0.788360 + 0.615214i \(0.210930\pi\)
\(810\) 0 0
\(811\) 11.0525 0.388105 0.194053 0.980991i \(-0.437837\pi\)
0.194053 + 0.980991i \(0.437837\pi\)
\(812\) 0 0
\(813\) 26.5514i 0.931199i
\(814\) 0 0
\(815\) 43.1670 12.7678i 1.51207 0.447236i
\(816\) 0 0
\(817\) 17.7149i 0.619766i
\(818\) 0 0
\(819\) −0.223912 −0.00782411
\(820\) 0 0
\(821\) −47.2122 −1.64772 −0.823859 0.566795i \(-0.808183\pi\)
−0.823859 + 0.566795i \(0.808183\pi\)
\(822\) 0 0
\(823\) 29.5297i 1.02934i −0.857388 0.514670i \(-0.827914\pi\)
0.857388 0.514670i \(-0.172086\pi\)
\(824\) 0 0
\(825\) 14.8712 + 22.9400i 0.517749 + 0.798668i
\(826\) 0 0
\(827\) 43.4607i 1.51128i 0.654989 + 0.755639i \(0.272673\pi\)
−0.654989 + 0.755639i \(0.727327\pi\)
\(828\) 0 0
\(829\) 27.3352 0.949390 0.474695 0.880150i \(-0.342558\pi\)
0.474695 + 0.880150i \(0.342558\pi\)
\(830\) 0 0
\(831\) 16.3523 0.567255
\(832\) 0 0
\(833\) 6.94342i 0.240575i
\(834\) 0 0
\(835\) −31.7548 + 9.39231i −1.09892 + 0.325034i
\(836\) 0 0
\(837\) 3.43560i 0.118752i
\(838\) 0 0
\(839\) −3.99497 −0.137922 −0.0689608 0.997619i \(-0.521968\pi\)
−0.0689608 + 0.997619i \(0.521968\pi\)
\(840\) 0 0
\(841\) −27.6094 −0.952049
\(842\) 0 0
\(843\) 30.0849i 1.03618i
\(844\) 0 0
\(845\) 7.68278 + 25.9750i 0.264296 + 0.893566i
\(846\) 0 0
\(847\) 4.49452i 0.154434i
\(848\) 0 0
\(849\) 6.11059 0.209715
\(850\) 0 0
\(851\) −2.57710 −0.0883420
\(852\) 0 0
\(853\) 50.1057i 1.71559i 0.513995 + 0.857793i \(0.328165\pi\)
−0.513995 + 0.857793i \(0.671835\pi\)
\(854\) 0 0
\(855\) 2.19928 + 7.43560i 0.0752136 + 0.254292i
\(856\) 0 0
\(857\) 39.5138i 1.34977i 0.737925 + 0.674883i \(0.235806\pi\)
−0.737925 + 0.674883i \(0.764194\pi\)
\(858\) 0 0
\(859\) −25.3104 −0.863578 −0.431789 0.901975i \(-0.642118\pi\)
−0.431789 + 0.901975i \(0.642118\pi\)
\(860\) 0 0
\(861\) −0.646408 −0.0220295
\(862\) 0 0
\(863\) 20.6077i 0.701495i 0.936470 + 0.350747i \(0.114072\pi\)
−0.936470 + 0.350747i \(0.885928\pi\)
\(864\) 0 0
\(865\) 6.51874 1.92809i 0.221644 0.0655570i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) −1.35808 −0.0460696
\(870\) 0 0
\(871\) −9.46563 −0.320731
\(872\) 0 0
\(873\) 7.64540i 0.258758i
\(874\) 0 0
\(875\) 1.72954 2.02009i 0.0584690 0.0682915i
\(876\) 0 0
\(877\) 13.8568i 0.467910i 0.972247 + 0.233955i \(0.0751669\pi\)
−0.972247 + 0.233955i \(0.924833\pi\)
\(878\) 0 0
\(879\) 23.7212 0.800096
\(880\) 0 0
\(881\) 37.8447 1.27502 0.637510 0.770442i \(-0.279965\pi\)
0.637510 + 0.770442i \(0.279965\pi\)
\(882\) 0 0
\(883\) 16.5480i 0.556884i 0.960453 + 0.278442i \(0.0898180\pi\)
−0.960453 + 0.278442i \(0.910182\pi\)
\(884\) 0 0
\(885\) 9.76573 2.88847i 0.328271 0.0970950i
\(886\) 0 0
\(887\) 41.7154i 1.40067i −0.713816 0.700333i \(-0.753035\pi\)
0.713816 0.700333i \(-0.246965\pi\)
\(888\) 0 0
\(889\) 1.86691 0.0626140
\(890\) 0 0
\(891\) −5.46771 −0.183175
\(892\) 0 0
\(893\) 42.2080i 1.41244i
\(894\) 0 0
\(895\) −12.4700 42.1601i −0.416825 1.40926i
\(896\) 0 0
\(897\) 2.78634i 0.0930331i
\(898\) 0 0
\(899\) −4.05135 −0.135120
\(900\) 0 0
\(901\) 9.27643 0.309043
\(902\) 0 0
\(903\) 1.21511i 0.0404362i
\(904\) 0 0
\(905\) −14.1372 47.7968i −0.469935 1.58882i
\(906\) 0 0
\(907\) 13.8959i 0.461404i −0.973024 0.230702i \(-0.925898\pi\)
0.973024 0.230702i \(-0.0741023\pi\)
\(908\) 0 0
\(909\) −8.36374 −0.277408
\(910\) 0 0
\(911\) 21.3295 0.706677 0.353339 0.935495i \(-0.385046\pi\)
0.353339 + 0.935495i \(0.385046\pi\)
\(912\) 0 0
\(913\) 43.6132i 1.44339i
\(914\) 0 0
\(915\) −0.138455 + 0.0409517i −0.00457718 + 0.00135382i
\(916\) 0 0
\(917\) 1.84064i 0.0607833i
\(918\) 0 0
\(919\) −19.1983 −0.633294 −0.316647 0.948543i \(-0.602557\pi\)
−0.316647 + 0.948543i \(0.602557\pi\)
\(920\) 0 0
\(921\) 13.9842 0.460797
\(922\) 0 0
\(923\) 11.1807i 0.368019i
\(924\) 0 0
\(925\) 2.36809 + 3.65296i 0.0778623 + 0.120109i
\(926\) 0 0
\(927\) 7.19702i 0.236381i
\(928\) 0 0
\(929\) 19.6052 0.643227 0.321613 0.946871i \(-0.395775\pi\)
0.321613 + 0.946871i \(0.395775\pi\)
\(930\) 0 0
\(931\) −24.0778 −0.789117
\(932\) 0 0
\(933\) 17.3286i 0.567312i
\(934\) 0 0
\(935\) 11.7241 3.46771i 0.383419 0.113406i
\(936\) 0 0
\(937\) 54.7338i 1.78808i −0.447991 0.894038i \(-0.647860\pi\)
0.447991 0.894038i \(-0.352140\pi\)
\(938\) 0 0
\(939\) −12.1159 −0.395387
\(940\) 0 0
\(941\) 55.5419 1.81061 0.905307 0.424758i \(-0.139641\pi\)
0.905307 + 0.424758i \(0.139641\pi\)
\(942\) 0 0
\(943\) 8.04385i 0.261944i
\(944\) 0 0
\(945\) 0.150853 + 0.510025i 0.00490726 + 0.0165911i
\(946\) 0 0
\(947\) 50.1195i 1.62867i −0.580399 0.814333i \(-0.697103\pi\)
0.580399 0.814333i \(-0.302897\pi\)
\(948\) 0 0
\(949\) 5.10377 0.165675
\(950\) 0 0
\(951\) −16.3901 −0.531485
\(952\) 0 0
\(953\) 41.3154i 1.33834i 0.743111 + 0.669168i \(0.233349\pi\)
−0.743111 + 0.669168i \(0.766651\pi\)
\(954\) 0 0
\(955\) 13.6704 + 46.2187i 0.442364 + 1.49560i
\(956\) 0 0
\(957\) 6.44766i 0.208423i
\(958\) 0 0
\(959\) 1.81706 0.0586761
\(960\) 0 0
\(961\) −19.1966 −0.619247
\(962\) 0 0
\(963\) 2.96331i 0.0954912i
\(964\) 0 0
\(965\) −0.397390 + 0.117539i −0.0127924 + 0.00378370i
\(966\) 0 0
\(967\) 53.3333i 1.71508i 0.514415 + 0.857541i \(0.328009\pi\)
−0.514415 + 0.857541i \(0.671991\pi\)
\(968\) 0 0
\(969\) 3.46771 0.111399
\(970\) 0 0
\(971\) −38.3069 −1.22933 −0.614663 0.788790i \(-0.710708\pi\)
−0.614663 + 0.788790i \(0.710708\pi\)
\(972\) 0 0
\(973\) 1.53649i 0.0492577i
\(974\) 0 0
\(975\) −3.94954 + 2.56035i −0.126487 + 0.0819969i
\(976\) 0 0
\(977\) 46.9301i 1.50143i −0.660629 0.750713i \(-0.729710\pi\)
0.660629 0.750713i \(-0.270290\pi\)
\(978\) 0 0
\(979\) −28.4532 −0.909368
\(980\) 0 0
\(981\) 0.131115 0.00418619
\(982\) 0 0
\(983\) 12.7640i 0.407109i −0.979064 0.203554i \(-0.934751\pi\)
0.979064 0.203554i \(-0.0652494\pi\)
\(984\) 0 0
\(985\) −7.13808 + 2.11128i −0.227438 + 0.0672709i
\(986\) 0 0
\(987\) 2.89515i 0.0921536i
\(988\) 0 0
\(989\) 15.1207 0.480809
\(990\) 0 0
\(991\) −13.4619 −0.427630 −0.213815 0.976874i \(-0.568589\pi\)
−0.213815 + 0.976874i \(0.568589\pi\)
\(992\) 0 0
\(993\) 22.7926i 0.723301i
\(994\) 0 0
\(995\) 8.73745 + 29.5407i 0.276996 + 0.936504i
\(996\) 0 0
\(997\) 62.6082i 1.98282i 0.130790 + 0.991410i \(0.458249\pi\)
−0.130790 + 0.991410i \(0.541751\pi\)
\(998\) 0 0
\(999\) −0.870677 −0.0275470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.t.2449.10 12
4.3 odd 2 2040.2.m.i.409.4 12
5.4 even 2 inner 4080.2.m.t.2449.4 12
20.19 odd 2 2040.2.m.i.409.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.m.i.409.4 12 4.3 odd 2
2040.2.m.i.409.10 yes 12 20.19 odd 2
4080.2.m.t.2449.4 12 5.4 even 2 inner
4080.2.m.t.2449.10 12 1.1 even 1 trivial