Properties

Label 4080.2.m.q.2449.8
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(2449,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-2,0,0,0,-10,0,-10,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 8x^{8} + 12x^{7} + 17x^{6} - 28x^{5} + 85x^{4} + 300x^{3} - 1000x^{2} - 1250x + 3125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2040)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.8
Root \(-2.21950 - 0.271668i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.q.2449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-0.271668 + 2.21950i) q^{5} -1.68096i q^{7} -1.00000 q^{9} -4.22430 q^{11} -6.41187i q^{13} +(-2.21950 - 0.271668i) q^{15} -1.00000i q^{17} +3.51721 q^{19} +1.68096 q^{21} +0.922922i q^{23} +(-4.85239 - 1.20594i) q^{25} -1.00000i q^{27} +6.59429 q^{29} -5.86854 q^{31} -4.22430i q^{33} +(3.73091 + 0.456664i) q^{35} +9.19705i q^{37} +6.41187 q^{39} +7.74039 q^{41} +4.95006i q^{43} +(0.271668 - 2.21950i) q^{45} +10.1523i q^{47} +4.17436 q^{49} +1.00000 q^{51} +8.46283i q^{53} +(1.14761 - 9.37585i) q^{55} +3.51721i q^{57} +4.44860 q^{59} +7.86854 q^{61} +1.68096i q^{63} +(14.2312 + 1.74190i) q^{65} -10.2753i q^{67} -0.922922 q^{69} +1.49339 q^{71} +10.4275i q^{73} +(1.20594 - 4.85239i) q^{75} +7.10090i q^{77} -15.8332 q^{79} +1.00000 q^{81} +8.60276i q^{83} +(2.21950 + 0.271668i) q^{85} +6.59429i q^{87} +10.3398 q^{89} -10.7781 q^{91} -5.86854i q^{93} +(-0.955514 + 7.80647i) q^{95} +6.06457i q^{97} +4.22430 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} + 2 q^{15} - 6 q^{19} - 14 q^{21} - 20 q^{25} + 38 q^{29} - 12 q^{31} + 20 q^{35} + 16 q^{39} + 10 q^{41} + 2 q^{45} - 4 q^{49} + 10 q^{51} + 40 q^{55} - 20 q^{59}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.271668 + 2.21950i −0.121494 + 0.992592i
\(6\) 0 0
\(7\) 1.68096i 0.635345i −0.948201 0.317672i \(-0.897099\pi\)
0.948201 0.317672i \(-0.102901\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.22430 −1.27367 −0.636837 0.770998i \(-0.719758\pi\)
−0.636837 + 0.770998i \(0.719758\pi\)
\(12\) 0 0
\(13\) 6.41187i 1.77833i −0.457584 0.889167i \(-0.651285\pi\)
0.457584 0.889167i \(-0.348715\pi\)
\(14\) 0 0
\(15\) −2.21950 0.271668i −0.573073 0.0701444i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 3.51721 0.806904 0.403452 0.915001i \(-0.367810\pi\)
0.403452 + 0.915001i \(0.367810\pi\)
\(20\) 0 0
\(21\) 1.68096 0.366817
\(22\) 0 0
\(23\) 0.922922i 0.192443i 0.995360 + 0.0962213i \(0.0306756\pi\)
−0.995360 + 0.0962213i \(0.969324\pi\)
\(24\) 0 0
\(25\) −4.85239 1.20594i −0.970479 0.241187i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.59429 1.22453 0.612265 0.790653i \(-0.290259\pi\)
0.612265 + 0.790653i \(0.290259\pi\)
\(30\) 0 0
\(31\) −5.86854 −1.05402 −0.527010 0.849859i \(-0.676687\pi\)
−0.527010 + 0.849859i \(0.676687\pi\)
\(32\) 0 0
\(33\) 4.22430i 0.735356i
\(34\) 0 0
\(35\) 3.73091 + 0.456664i 0.630638 + 0.0771903i
\(36\) 0 0
\(37\) 9.19705i 1.51199i 0.654580 + 0.755993i \(0.272846\pi\)
−0.654580 + 0.755993i \(0.727154\pi\)
\(38\) 0 0
\(39\) 6.41187 1.02672
\(40\) 0 0
\(41\) 7.74039 1.20885 0.604423 0.796664i \(-0.293404\pi\)
0.604423 + 0.796664i \(0.293404\pi\)
\(42\) 0 0
\(43\) 4.95006i 0.754877i 0.926035 + 0.377438i \(0.123195\pi\)
−0.926035 + 0.377438i \(0.876805\pi\)
\(44\) 0 0
\(45\) 0.271668 2.21950i 0.0404979 0.330864i
\(46\) 0 0
\(47\) 10.1523i 1.48086i 0.672134 + 0.740429i \(0.265378\pi\)
−0.672134 + 0.740429i \(0.734622\pi\)
\(48\) 0 0
\(49\) 4.17436 0.596337
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 8.46283i 1.16246i 0.813740 + 0.581229i \(0.197428\pi\)
−0.813740 + 0.581229i \(0.802572\pi\)
\(54\) 0 0
\(55\) 1.14761 9.37585i 0.154743 1.26424i
\(56\) 0 0
\(57\) 3.51721i 0.465866i
\(58\) 0 0
\(59\) 4.44860 0.579159 0.289579 0.957154i \(-0.406485\pi\)
0.289579 + 0.957154i \(0.406485\pi\)
\(60\) 0 0
\(61\) 7.86854 1.00746 0.503731 0.863860i \(-0.331960\pi\)
0.503731 + 0.863860i \(0.331960\pi\)
\(62\) 0 0
\(63\) 1.68096i 0.211782i
\(64\) 0 0
\(65\) 14.2312 + 1.74190i 1.76516 + 0.216056i
\(66\) 0 0
\(67\) 10.2753i 1.25532i −0.778487 0.627661i \(-0.784012\pi\)
0.778487 0.627661i \(-0.215988\pi\)
\(68\) 0 0
\(69\) −0.922922 −0.111107
\(70\) 0 0
\(71\) 1.49339 0.177233 0.0886166 0.996066i \(-0.471755\pi\)
0.0886166 + 0.996066i \(0.471755\pi\)
\(72\) 0 0
\(73\) 10.4275i 1.22045i 0.792229 + 0.610224i \(0.208921\pi\)
−0.792229 + 0.610224i \(0.791079\pi\)
\(74\) 0 0
\(75\) 1.20594 4.85239i 0.139249 0.560306i
\(76\) 0 0
\(77\) 7.10090i 0.809223i
\(78\) 0 0
\(79\) −15.8332 −1.78138 −0.890688 0.454614i \(-0.849777\pi\)
−0.890688 + 0.454614i \(0.849777\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.60276i 0.944275i 0.881525 + 0.472138i \(0.156517\pi\)
−0.881525 + 0.472138i \(0.843483\pi\)
\(84\) 0 0
\(85\) 2.21950 + 0.271668i 0.240739 + 0.0294665i
\(86\) 0 0
\(87\) 6.59429i 0.706982i
\(88\) 0 0
\(89\) 10.3398 1.09602 0.548010 0.836472i \(-0.315386\pi\)
0.548010 + 0.836472i \(0.315386\pi\)
\(90\) 0 0
\(91\) −10.7781 −1.12985
\(92\) 0 0
\(93\) 5.86854i 0.608539i
\(94\) 0 0
\(95\) −0.955514 + 7.80647i −0.0980337 + 0.800927i
\(96\) 0 0
\(97\) 6.06457i 0.615764i 0.951425 + 0.307882i \(0.0996202\pi\)
−0.951425 + 0.307882i \(0.900380\pi\)
\(98\) 0 0
\(99\) 4.22430 0.424558
\(100\) 0 0
\(101\) 3.51609 0.349864 0.174932 0.984581i \(-0.444030\pi\)
0.174932 + 0.984581i \(0.444030\pi\)
\(102\) 0 0
\(103\) 0.739371i 0.0728524i 0.999336 + 0.0364262i \(0.0115974\pi\)
−0.999336 + 0.0364262i \(0.988403\pi\)
\(104\) 0 0
\(105\) −0.456664 + 3.73091i −0.0445659 + 0.364099i
\(106\) 0 0
\(107\) 5.06672i 0.489818i 0.969546 + 0.244909i \(0.0787581\pi\)
−0.969546 + 0.244909i \(0.921242\pi\)
\(108\) 0 0
\(109\) 1.28271 0.122861 0.0614305 0.998111i \(-0.480434\pi\)
0.0614305 + 0.998111i \(0.480434\pi\)
\(110\) 0 0
\(111\) −9.19705 −0.872945
\(112\) 0 0
\(113\) 10.7561i 1.01185i 0.862577 + 0.505926i \(0.168849\pi\)
−0.862577 + 0.505926i \(0.831151\pi\)
\(114\) 0 0
\(115\) −2.04843 0.250728i −0.191017 0.0233805i
\(116\) 0 0
\(117\) 6.41187i 0.592778i
\(118\) 0 0
\(119\) −1.68096 −0.154094
\(120\) 0 0
\(121\) 6.84471 0.622247
\(122\) 0 0
\(123\) 7.74039i 0.697927i
\(124\) 0 0
\(125\) 3.99482 10.4423i 0.357307 0.933987i
\(126\) 0 0
\(127\) 0.722443i 0.0641064i −0.999486 0.0320532i \(-0.989795\pi\)
0.999486 0.0320532i \(-0.0102046\pi\)
\(128\) 0 0
\(129\) −4.95006 −0.435828
\(130\) 0 0
\(131\) 11.0146 0.962353 0.481176 0.876624i \(-0.340210\pi\)
0.481176 + 0.876624i \(0.340210\pi\)
\(132\) 0 0
\(133\) 5.91231i 0.512663i
\(134\) 0 0
\(135\) 2.21950 + 0.271668i 0.191024 + 0.0233815i
\(136\) 0 0
\(137\) 9.72284i 0.830679i −0.909667 0.415339i \(-0.863663\pi\)
0.909667 0.415339i \(-0.136337\pi\)
\(138\) 0 0
\(139\) −3.67250 −0.311497 −0.155749 0.987797i \(-0.549779\pi\)
−0.155749 + 0.987797i \(0.549779\pi\)
\(140\) 0 0
\(141\) −10.1523 −0.854974
\(142\) 0 0
\(143\) 27.0857i 2.26502i
\(144\) 0 0
\(145\) −1.79146 + 14.6361i −0.148772 + 1.21546i
\(146\) 0 0
\(147\) 4.17436i 0.344295i
\(148\) 0 0
\(149\) −7.15124 −0.585853 −0.292926 0.956135i \(-0.594629\pi\)
−0.292926 + 0.956135i \(0.594629\pi\)
\(150\) 0 0
\(151\) 11.8601 0.965159 0.482579 0.875852i \(-0.339700\pi\)
0.482579 + 0.875852i \(0.339700\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 1.59429 13.0252i 0.128057 1.04621i
\(156\) 0 0
\(157\) 18.1489i 1.44844i −0.689567 0.724222i \(-0.742199\pi\)
0.689567 0.724222i \(-0.257801\pi\)
\(158\) 0 0
\(159\) −8.46283 −0.671146
\(160\) 0 0
\(161\) 1.55140 0.122267
\(162\) 0 0
\(163\) 7.54950i 0.591323i 0.955293 + 0.295661i \(0.0955400\pi\)
−0.955293 + 0.295661i \(0.904460\pi\)
\(164\) 0 0
\(165\) 9.37585 + 1.14761i 0.729909 + 0.0893411i
\(166\) 0 0
\(167\) 4.65999i 0.360601i 0.983612 + 0.180301i \(0.0577070\pi\)
−0.983612 + 0.180301i \(0.942293\pi\)
\(168\) 0 0
\(169\) −28.1121 −2.16247
\(170\) 0 0
\(171\) −3.51721 −0.268968
\(172\) 0 0
\(173\) 12.8141i 0.974242i −0.873335 0.487121i \(-0.838047\pi\)
0.873335 0.487121i \(-0.161953\pi\)
\(174\) 0 0
\(175\) −2.02714 + 8.15670i −0.153237 + 0.616589i
\(176\) 0 0
\(177\) 4.44860i 0.334377i
\(178\) 0 0
\(179\) −7.18859 −0.537300 −0.268650 0.963238i \(-0.586578\pi\)
−0.268650 + 0.963238i \(0.586578\pi\)
\(180\) 0 0
\(181\) 8.58006 0.637751 0.318876 0.947797i \(-0.396695\pi\)
0.318876 + 0.947797i \(0.396695\pi\)
\(182\) 0 0
\(183\) 7.86854i 0.581659i
\(184\) 0 0
\(185\) −20.4129 2.49854i −1.50079 0.183697i
\(186\) 0 0
\(187\) 4.22430i 0.308911i
\(188\) 0 0
\(189\) −1.68096 −0.122272
\(190\) 0 0
\(191\) −18.8427 −1.36341 −0.681705 0.731627i \(-0.738761\pi\)
−0.681705 + 0.731627i \(0.738761\pi\)
\(192\) 0 0
\(193\) 9.03217i 0.650150i 0.945688 + 0.325075i \(0.105390\pi\)
−0.945688 + 0.325075i \(0.894610\pi\)
\(194\) 0 0
\(195\) −1.74190 + 14.2312i −0.124740 + 1.01912i
\(196\) 0 0
\(197\) 20.9895i 1.49544i −0.664013 0.747721i \(-0.731148\pi\)
0.664013 0.747721i \(-0.268852\pi\)
\(198\) 0 0
\(199\) −10.9552 −0.776594 −0.388297 0.921534i \(-0.626937\pi\)
−0.388297 + 0.921534i \(0.626937\pi\)
\(200\) 0 0
\(201\) 10.2753 0.724761
\(202\) 0 0
\(203\) 11.0848i 0.777999i
\(204\) 0 0
\(205\) −2.10281 + 17.1798i −0.146867 + 1.19989i
\(206\) 0 0
\(207\) 0.922922i 0.0641475i
\(208\) 0 0
\(209\) −14.8578 −1.02773
\(210\) 0 0
\(211\) 25.3912 1.74800 0.874001 0.485925i \(-0.161517\pi\)
0.874001 + 0.485925i \(0.161517\pi\)
\(212\) 0 0
\(213\) 1.49339i 0.102326i
\(214\) 0 0
\(215\) −10.9867 1.34477i −0.749285 0.0917127i
\(216\) 0 0
\(217\) 9.86480i 0.669666i
\(218\) 0 0
\(219\) −10.4275 −0.704626
\(220\) 0 0
\(221\) −6.41187 −0.431309
\(222\) 0 0
\(223\) 13.6717i 0.915522i −0.889075 0.457761i \(-0.848652\pi\)
0.889075 0.457761i \(-0.151348\pi\)
\(224\) 0 0
\(225\) 4.85239 + 1.20594i 0.323493 + 0.0803957i
\(226\) 0 0
\(227\) 10.7372i 0.712652i −0.934362 0.356326i \(-0.884029\pi\)
0.934362 0.356326i \(-0.115971\pi\)
\(228\) 0 0
\(229\) 26.1646 1.72900 0.864502 0.502629i \(-0.167634\pi\)
0.864502 + 0.502629i \(0.167634\pi\)
\(230\) 0 0
\(231\) −7.10090 −0.467205
\(232\) 0 0
\(233\) 9.24006i 0.605336i 0.953096 + 0.302668i \(0.0978774\pi\)
−0.953096 + 0.302668i \(0.902123\pi\)
\(234\) 0 0
\(235\) −22.5330 2.75804i −1.46989 0.179915i
\(236\) 0 0
\(237\) 15.8332i 1.02848i
\(238\) 0 0
\(239\) 1.91042 0.123574 0.0617872 0.998089i \(-0.480320\pi\)
0.0617872 + 0.998089i \(0.480320\pi\)
\(240\) 0 0
\(241\) −3.63719 −0.234292 −0.117146 0.993115i \(-0.537375\pi\)
−0.117146 + 0.993115i \(0.537375\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −1.13404 + 9.26500i −0.0724511 + 0.591919i
\(246\) 0 0
\(247\) 22.5519i 1.43494i
\(248\) 0 0
\(249\) −8.60276 −0.545178
\(250\) 0 0
\(251\) 5.74370 0.362539 0.181270 0.983433i \(-0.441979\pi\)
0.181270 + 0.983433i \(0.441979\pi\)
\(252\) 0 0
\(253\) 3.89870i 0.245109i
\(254\) 0 0
\(255\) −0.271668 + 2.21950i −0.0170125 + 0.138991i
\(256\) 0 0
\(257\) 4.16649i 0.259898i 0.991521 + 0.129949i \(0.0414814\pi\)
−0.991521 + 0.129949i \(0.958519\pi\)
\(258\) 0 0
\(259\) 15.4599 0.960632
\(260\) 0 0
\(261\) −6.59429 −0.408176
\(262\) 0 0
\(263\) 18.0877i 1.11533i 0.830065 + 0.557667i \(0.188303\pi\)
−0.830065 + 0.557667i \(0.811697\pi\)
\(264\) 0 0
\(265\) −18.7833 2.29908i −1.15385 0.141231i
\(266\) 0 0
\(267\) 10.3398i 0.632787i
\(268\) 0 0
\(269\) 24.1574 1.47290 0.736452 0.676490i \(-0.236500\pi\)
0.736452 + 0.676490i \(0.236500\pi\)
\(270\) 0 0
\(271\) 24.1181 1.46507 0.732534 0.680730i \(-0.238337\pi\)
0.732534 + 0.680730i \(0.238337\pi\)
\(272\) 0 0
\(273\) 10.7781i 0.652322i
\(274\) 0 0
\(275\) 20.4980 + 5.09424i 1.23607 + 0.307194i
\(276\) 0 0
\(277\) 28.6047i 1.71869i 0.511395 + 0.859346i \(0.329129\pi\)
−0.511395 + 0.859346i \(0.670871\pi\)
\(278\) 0 0
\(279\) 5.86854 0.351340
\(280\) 0 0
\(281\) −1.44263 −0.0860599 −0.0430300 0.999074i \(-0.513701\pi\)
−0.0430300 + 0.999074i \(0.513701\pi\)
\(282\) 0 0
\(283\) 12.9467i 0.769604i 0.922999 + 0.384802i \(0.125730\pi\)
−0.922999 + 0.384802i \(0.874270\pi\)
\(284\) 0 0
\(285\) −7.80647 0.955514i −0.462415 0.0565998i
\(286\) 0 0
\(287\) 13.0113i 0.768034i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −6.06457 −0.355511
\(292\) 0 0
\(293\) 15.1390i 0.884432i −0.896908 0.442216i \(-0.854192\pi\)
0.896908 0.442216i \(-0.145808\pi\)
\(294\) 0 0
\(295\) −1.20854 + 9.87369i −0.0703640 + 0.574868i
\(296\) 0 0
\(297\) 4.22430i 0.245119i
\(298\) 0 0
\(299\) 5.91766 0.342227
\(300\) 0 0
\(301\) 8.32087 0.479607
\(302\) 0 0
\(303\) 3.51609i 0.201994i
\(304\) 0 0
\(305\) −2.13763 + 17.4642i −0.122400 + 1.00000i
\(306\) 0 0
\(307\) 12.8450i 0.733101i 0.930398 + 0.366550i \(0.119461\pi\)
−0.930398 + 0.366550i \(0.880539\pi\)
\(308\) 0 0
\(309\) −0.739371 −0.0420614
\(310\) 0 0
\(311\) 22.9341 1.30047 0.650237 0.759731i \(-0.274669\pi\)
0.650237 + 0.759731i \(0.274669\pi\)
\(312\) 0 0
\(313\) 12.2734i 0.693731i 0.937915 + 0.346866i \(0.112754\pi\)
−0.937915 + 0.346866i \(0.887246\pi\)
\(314\) 0 0
\(315\) −3.73091 0.456664i −0.210213 0.0257301i
\(316\) 0 0
\(317\) 27.6791i 1.55461i 0.629123 + 0.777306i \(0.283414\pi\)
−0.629123 + 0.777306i \(0.716586\pi\)
\(318\) 0 0
\(319\) −27.8563 −1.55965
\(320\) 0 0
\(321\) −5.06672 −0.282796
\(322\) 0 0
\(323\) 3.51721i 0.195703i
\(324\) 0 0
\(325\) −7.73231 + 31.1129i −0.428911 + 1.72583i
\(326\) 0 0
\(327\) 1.28271i 0.0709339i
\(328\) 0 0
\(329\) 17.0656 0.940856
\(330\) 0 0
\(331\) −17.0083 −0.934860 −0.467430 0.884030i \(-0.654820\pi\)
−0.467430 + 0.884030i \(0.654820\pi\)
\(332\) 0 0
\(333\) 9.19705i 0.503995i
\(334\) 0 0
\(335\) 22.8060 + 2.79146i 1.24602 + 0.152514i
\(336\) 0 0
\(337\) 19.1199i 1.04152i 0.853702 + 0.520762i \(0.174352\pi\)
−0.853702 + 0.520762i \(0.825648\pi\)
\(338\) 0 0
\(339\) −10.7561 −0.584194
\(340\) 0 0
\(341\) 24.7905 1.34248
\(342\) 0 0
\(343\) 18.7837i 1.01422i
\(344\) 0 0
\(345\) 0.250728 2.04843i 0.0134988 0.110284i
\(346\) 0 0
\(347\) 20.8550i 1.11956i 0.828642 + 0.559778i \(0.189114\pi\)
−0.828642 + 0.559778i \(0.810886\pi\)
\(348\) 0 0
\(349\) −15.8901 −0.850577 −0.425289 0.905058i \(-0.639827\pi\)
−0.425289 + 0.905058i \(0.639827\pi\)
\(350\) 0 0
\(351\) −6.41187 −0.342240
\(352\) 0 0
\(353\) 34.9950i 1.86259i 0.364261 + 0.931297i \(0.381322\pi\)
−0.364261 + 0.931297i \(0.618678\pi\)
\(354\) 0 0
\(355\) −0.405707 + 3.31459i −0.0215327 + 0.175920i
\(356\) 0 0
\(357\) 1.68096i 0.0889661i
\(358\) 0 0
\(359\) 8.54163 0.450810 0.225405 0.974265i \(-0.427629\pi\)
0.225405 + 0.974265i \(0.427629\pi\)
\(360\) 0 0
\(361\) −6.62920 −0.348905
\(362\) 0 0
\(363\) 6.84471i 0.359254i
\(364\) 0 0
\(365\) −23.1439 2.83282i −1.21141 0.148277i
\(366\) 0 0
\(367\) 34.8134i 1.81724i −0.417620 0.908622i \(-0.637136\pi\)
0.417620 0.908622i \(-0.362864\pi\)
\(368\) 0 0
\(369\) −7.74039 −0.402948
\(370\) 0 0
\(371\) 14.2257 0.738562
\(372\) 0 0
\(373\) 37.0306i 1.91737i −0.284464 0.958687i \(-0.591816\pi\)
0.284464 0.958687i \(-0.408184\pi\)
\(374\) 0 0
\(375\) 10.4423 + 3.99482i 0.539238 + 0.206292i
\(376\) 0 0
\(377\) 42.2818i 2.17762i
\(378\) 0 0
\(379\) 33.8602 1.73928 0.869641 0.493685i \(-0.164350\pi\)
0.869641 + 0.493685i \(0.164350\pi\)
\(380\) 0 0
\(381\) 0.722443 0.0370119
\(382\) 0 0
\(383\) 33.1493i 1.69385i 0.531710 + 0.846926i \(0.321549\pi\)
−0.531710 + 0.846926i \(0.678451\pi\)
\(384\) 0 0
\(385\) −15.7605 1.92909i −0.803228 0.0983154i
\(386\) 0 0
\(387\) 4.95006i 0.251626i
\(388\) 0 0
\(389\) −17.2178 −0.872979 −0.436490 0.899709i \(-0.643778\pi\)
−0.436490 + 0.899709i \(0.643778\pi\)
\(390\) 0 0
\(391\) 0.922922 0.0466742
\(392\) 0 0
\(393\) 11.0146i 0.555615i
\(394\) 0 0
\(395\) 4.30138 35.1419i 0.216426 1.76818i
\(396\) 0 0
\(397\) 4.42095i 0.221881i −0.993827 0.110941i \(-0.964614\pi\)
0.993827 0.110941i \(-0.0353863\pi\)
\(398\) 0 0
\(399\) 5.91231 0.295986
\(400\) 0 0
\(401\) 10.4330 0.520997 0.260499 0.965474i \(-0.416113\pi\)
0.260499 + 0.965474i \(0.416113\pi\)
\(402\) 0 0
\(403\) 37.6283i 1.87440i
\(404\) 0 0
\(405\) −0.271668 + 2.21950i −0.0134993 + 0.110288i
\(406\) 0 0
\(407\) 38.8511i 1.92578i
\(408\) 0 0
\(409\) −6.98566 −0.345419 −0.172709 0.984973i \(-0.555252\pi\)
−0.172709 + 0.984973i \(0.555252\pi\)
\(410\) 0 0
\(411\) 9.72284 0.479593
\(412\) 0 0
\(413\) 7.47794i 0.367965i
\(414\) 0 0
\(415\) −19.0939 2.33709i −0.937280 0.114723i
\(416\) 0 0
\(417\) 3.67250i 0.179843i
\(418\) 0 0
\(419\) 22.7197 1.10993 0.554965 0.831874i \(-0.312732\pi\)
0.554965 + 0.831874i \(0.312732\pi\)
\(420\) 0 0
\(421\) −5.27324 −0.257002 −0.128501 0.991709i \(-0.541017\pi\)
−0.128501 + 0.991709i \(0.541017\pi\)
\(422\) 0 0
\(423\) 10.1523i 0.493620i
\(424\) 0 0
\(425\) −1.20594 + 4.85239i −0.0584965 + 0.235376i
\(426\) 0 0
\(427\) 13.2267i 0.640086i
\(428\) 0 0
\(429\) −27.0857 −1.30771
\(430\) 0 0
\(431\) 27.7191 1.33518 0.667591 0.744528i \(-0.267325\pi\)
0.667591 + 0.744528i \(0.267325\pi\)
\(432\) 0 0
\(433\) 2.20547i 0.105988i 0.998595 + 0.0529941i \(0.0168765\pi\)
−0.998595 + 0.0529941i \(0.983124\pi\)
\(434\) 0 0
\(435\) −14.6361 1.79146i −0.701745 0.0858938i
\(436\) 0 0
\(437\) 3.24611i 0.155283i
\(438\) 0 0
\(439\) −13.6960 −0.653674 −0.326837 0.945081i \(-0.605983\pi\)
−0.326837 + 0.945081i \(0.605983\pi\)
\(440\) 0 0
\(441\) −4.17436 −0.198779
\(442\) 0 0
\(443\) 14.0999i 0.669906i 0.942235 + 0.334953i \(0.108720\pi\)
−0.942235 + 0.334953i \(0.891280\pi\)
\(444\) 0 0
\(445\) −2.80900 + 22.9493i −0.133159 + 1.08790i
\(446\) 0 0
\(447\) 7.15124i 0.338242i
\(448\) 0 0
\(449\) −13.0514 −0.615932 −0.307966 0.951397i \(-0.599648\pi\)
−0.307966 + 0.951397i \(0.599648\pi\)
\(450\) 0 0
\(451\) −32.6977 −1.53968
\(452\) 0 0
\(453\) 11.8601i 0.557235i
\(454\) 0 0
\(455\) 2.92807 23.9221i 0.137270 1.12149i
\(456\) 0 0
\(457\) 41.6466i 1.94815i 0.226230 + 0.974074i \(0.427360\pi\)
−0.226230 + 0.974074i \(0.572640\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 6.16649 0.287202 0.143601 0.989636i \(-0.454132\pi\)
0.143601 + 0.989636i \(0.454132\pi\)
\(462\) 0 0
\(463\) 6.29219i 0.292423i −0.989253 0.146211i \(-0.953292\pi\)
0.989253 0.146211i \(-0.0467080\pi\)
\(464\) 0 0
\(465\) 13.0252 + 1.59429i 0.604031 + 0.0739336i
\(466\) 0 0
\(467\) 25.2392i 1.16793i −0.811779 0.583964i \(-0.801501\pi\)
0.811779 0.583964i \(-0.198499\pi\)
\(468\) 0 0
\(469\) −17.2723 −0.797563
\(470\) 0 0
\(471\) 18.1489 0.836259
\(472\) 0 0
\(473\) 20.9105i 0.961467i
\(474\) 0 0
\(475\) −17.0669 4.24154i −0.783083 0.194615i
\(476\) 0 0
\(477\) 8.46283i 0.387486i
\(478\) 0 0
\(479\) −30.8501 −1.40958 −0.704789 0.709417i \(-0.748958\pi\)
−0.704789 + 0.709417i \(0.748958\pi\)
\(480\) 0 0
\(481\) 58.9703 2.68881
\(482\) 0 0
\(483\) 1.55140i 0.0705911i
\(484\) 0 0
\(485\) −13.4603 1.64755i −0.611202 0.0748114i
\(486\) 0 0
\(487\) 18.1983i 0.824643i 0.911038 + 0.412322i \(0.135282\pi\)
−0.911038 + 0.412322i \(0.864718\pi\)
\(488\) 0 0
\(489\) −7.54950 −0.341400
\(490\) 0 0
\(491\) 30.5959 1.38077 0.690387 0.723440i \(-0.257440\pi\)
0.690387 + 0.723440i \(0.257440\pi\)
\(492\) 0 0
\(493\) 6.59429i 0.296992i
\(494\) 0 0
\(495\) −1.14761 + 9.37585i −0.0515811 + 0.421413i
\(496\) 0 0
\(497\) 2.51034i 0.112604i
\(498\) 0 0
\(499\) 29.7663 1.33252 0.666262 0.745718i \(-0.267893\pi\)
0.666262 + 0.745718i \(0.267893\pi\)
\(500\) 0 0
\(501\) −4.65999 −0.208193
\(502\) 0 0
\(503\) 30.4160i 1.35618i 0.734977 + 0.678092i \(0.237193\pi\)
−0.734977 + 0.678092i \(0.762807\pi\)
\(504\) 0 0
\(505\) −0.955208 + 7.80396i −0.0425062 + 0.347272i
\(506\) 0 0
\(507\) 28.1121i 1.24850i
\(508\) 0 0
\(509\) 24.7047 1.09502 0.547508 0.836801i \(-0.315577\pi\)
0.547508 + 0.836801i \(0.315577\pi\)
\(510\) 0 0
\(511\) 17.5283 0.775406
\(512\) 0 0
\(513\) 3.51721i 0.155289i
\(514\) 0 0
\(515\) −1.64104 0.200863i −0.0723127 0.00885110i
\(516\) 0 0
\(517\) 42.8862i 1.88613i
\(518\) 0 0
\(519\) 12.8141 0.562479
\(520\) 0 0
\(521\) 3.25670 0.142679 0.0713393 0.997452i \(-0.477273\pi\)
0.0713393 + 0.997452i \(0.477273\pi\)
\(522\) 0 0
\(523\) 24.4733i 1.07014i −0.844807 0.535070i \(-0.820285\pi\)
0.844807 0.535070i \(-0.179715\pi\)
\(524\) 0 0
\(525\) −8.15670 2.02714i −0.355988 0.0884714i
\(526\) 0 0
\(527\) 5.86854i 0.255637i
\(528\) 0 0
\(529\) 22.1482 0.962966
\(530\) 0 0
\(531\) −4.44860 −0.193053
\(532\) 0 0
\(533\) 49.6304i 2.14973i
\(534\) 0 0
\(535\) −11.2456 1.37646i −0.486189 0.0595097i
\(536\) 0 0
\(537\) 7.18859i 0.310210i
\(538\) 0 0
\(539\) −17.6337 −0.759539
\(540\) 0 0
\(541\) −18.3010 −0.786822 −0.393411 0.919363i \(-0.628705\pi\)
−0.393411 + 0.919363i \(0.628705\pi\)
\(542\) 0 0
\(543\) 8.58006i 0.368206i
\(544\) 0 0
\(545\) −0.348470 + 2.84697i −0.0149268 + 0.121951i
\(546\) 0 0
\(547\) 20.8400i 0.891054i 0.895268 + 0.445527i \(0.146984\pi\)
−0.895268 + 0.445527i \(0.853016\pi\)
\(548\) 0 0
\(549\) −7.86854 −0.335821
\(550\) 0 0
\(551\) 23.1935 0.988078
\(552\) 0 0
\(553\) 26.6151i 1.13179i
\(554\) 0 0
\(555\) 2.49854 20.4129i 0.106057 0.866479i
\(556\) 0 0
\(557\) 38.0878i 1.61383i −0.590666 0.806916i \(-0.701135\pi\)
0.590666 0.806916i \(-0.298865\pi\)
\(558\) 0 0
\(559\) 31.7391 1.34242
\(560\) 0 0
\(561\) −4.22430 −0.178350
\(562\) 0 0
\(563\) 40.6382i 1.71270i 0.516399 + 0.856348i \(0.327272\pi\)
−0.516399 + 0.856348i \(0.672728\pi\)
\(564\) 0 0
\(565\) −23.8733 2.92210i −1.00436 0.122934i
\(566\) 0 0
\(567\) 1.68096i 0.0705939i
\(568\) 0 0
\(569\) 17.2098 0.721472 0.360736 0.932668i \(-0.382525\pi\)
0.360736 + 0.932668i \(0.382525\pi\)
\(570\) 0 0
\(571\) −22.7239 −0.950964 −0.475482 0.879725i \(-0.657726\pi\)
−0.475482 + 0.879725i \(0.657726\pi\)
\(572\) 0 0
\(573\) 18.8427i 0.787165i
\(574\) 0 0
\(575\) 1.11298 4.47838i 0.0464147 0.186761i
\(576\) 0 0
\(577\) 19.5198i 0.812618i 0.913736 + 0.406309i \(0.133184\pi\)
−0.913736 + 0.406309i \(0.866816\pi\)
\(578\) 0 0
\(579\) −9.03217 −0.375364
\(580\) 0 0
\(581\) 14.4609 0.599940
\(582\) 0 0
\(583\) 35.7495i 1.48059i
\(584\) 0 0
\(585\) −14.2312 1.74190i −0.588387 0.0720187i
\(586\) 0 0
\(587\) 13.1324i 0.542033i 0.962575 + 0.271016i \(0.0873598\pi\)
−0.962575 + 0.271016i \(0.912640\pi\)
\(588\) 0 0
\(589\) −20.6409 −0.850494
\(590\) 0 0
\(591\) 20.9895 0.863394
\(592\) 0 0
\(593\) 36.6132i 1.50352i −0.659435 0.751762i \(-0.729204\pi\)
0.659435 0.751762i \(-0.270796\pi\)
\(594\) 0 0
\(595\) 0.456664 3.73091i 0.0187214 0.152952i
\(596\) 0 0
\(597\) 10.9552i 0.448367i
\(598\) 0 0
\(599\) −13.9624 −0.570489 −0.285245 0.958455i \(-0.592075\pi\)
−0.285245 + 0.958455i \(0.592075\pi\)
\(600\) 0 0
\(601\) −2.13803 −0.0872121 −0.0436060 0.999049i \(-0.513885\pi\)
−0.0436060 + 0.999049i \(0.513885\pi\)
\(602\) 0 0
\(603\) 10.2753i 0.418441i
\(604\) 0 0
\(605\) −1.85949 + 15.1919i −0.0755990 + 0.617637i
\(606\) 0 0
\(607\) 26.2085i 1.06377i 0.846817 + 0.531885i \(0.178516\pi\)
−0.846817 + 0.531885i \(0.821484\pi\)
\(608\) 0 0
\(609\) 11.0848 0.449178
\(610\) 0 0
\(611\) 65.0950 2.63346
\(612\) 0 0
\(613\) 35.8777i 1.44909i −0.689228 0.724544i \(-0.742050\pi\)
0.689228 0.724544i \(-0.257950\pi\)
\(614\) 0 0
\(615\) −17.1798 2.10281i −0.692757 0.0847937i
\(616\) 0 0
\(617\) 25.1444i 1.01227i 0.862453 + 0.506137i \(0.168927\pi\)
−0.862453 + 0.506137i \(0.831073\pi\)
\(618\) 0 0
\(619\) 22.1050 0.888474 0.444237 0.895909i \(-0.353475\pi\)
0.444237 + 0.895909i \(0.353475\pi\)
\(620\) 0 0
\(621\) 0.922922 0.0370356
\(622\) 0 0
\(623\) 17.3809i 0.696351i
\(624\) 0 0
\(625\) 22.0914 + 11.7033i 0.883657 + 0.468134i
\(626\) 0 0
\(627\) 14.8578i 0.593362i
\(628\) 0 0
\(629\) 9.19705 0.366710
\(630\) 0 0
\(631\) 34.5052 1.37363 0.686815 0.726832i \(-0.259008\pi\)
0.686815 + 0.726832i \(0.259008\pi\)
\(632\) 0 0
\(633\) 25.3912i 1.00921i
\(634\) 0 0
\(635\) 1.60346 + 0.196265i 0.0636316 + 0.00778852i
\(636\) 0 0
\(637\) 26.7654i 1.06049i
\(638\) 0 0
\(639\) −1.49339 −0.0590777
\(640\) 0 0
\(641\) −16.9108 −0.667937 −0.333969 0.942584i \(-0.608388\pi\)
−0.333969 + 0.942584i \(0.608388\pi\)
\(642\) 0 0
\(643\) 35.5434i 1.40170i −0.713310 0.700848i \(-0.752805\pi\)
0.713310 0.700848i \(-0.247195\pi\)
\(644\) 0 0
\(645\) 1.34477 10.9867i 0.0529503 0.432600i
\(646\) 0 0
\(647\) 2.92222i 0.114884i −0.998349 0.0574421i \(-0.981706\pi\)
0.998349 0.0574421i \(-0.0182944\pi\)
\(648\) 0 0
\(649\) −18.7922 −0.737659
\(650\) 0 0
\(651\) −9.86480 −0.386632
\(652\) 0 0
\(653\) 4.95881i 0.194053i −0.995282 0.0970266i \(-0.969067\pi\)
0.995282 0.0970266i \(-0.0309332\pi\)
\(654\) 0 0
\(655\) −2.99232 + 24.4470i −0.116920 + 0.955224i
\(656\) 0 0
\(657\) 10.4275i 0.406816i
\(658\) 0 0
\(659\) −24.2732 −0.945551 −0.472775 0.881183i \(-0.656748\pi\)
−0.472775 + 0.881183i \(0.656748\pi\)
\(660\) 0 0
\(661\) −40.2637 −1.56608 −0.783038 0.621974i \(-0.786331\pi\)
−0.783038 + 0.621974i \(0.786331\pi\)
\(662\) 0 0
\(663\) 6.41187i 0.249016i
\(664\) 0 0
\(665\) 13.1224 + 1.60619i 0.508865 + 0.0622852i
\(666\) 0 0
\(667\) 6.08602i 0.235652i
\(668\) 0 0
\(669\) 13.6717 0.528577
\(670\) 0 0
\(671\) −33.2391 −1.28318
\(672\) 0 0
\(673\) 31.1010i 1.19886i −0.800428 0.599428i \(-0.795395\pi\)
0.800428 0.599428i \(-0.204605\pi\)
\(674\) 0 0
\(675\) −1.20594 + 4.85239i −0.0464165 + 0.186769i
\(676\) 0 0
\(677\) 34.3264i 1.31927i 0.751585 + 0.659636i \(0.229290\pi\)
−0.751585 + 0.659636i \(0.770710\pi\)
\(678\) 0 0
\(679\) 10.1943 0.391222
\(680\) 0 0
\(681\) 10.7372 0.411450
\(682\) 0 0
\(683\) 13.1144i 0.501807i 0.968012 + 0.250903i \(0.0807277\pi\)
−0.968012 + 0.250903i \(0.919272\pi\)
\(684\) 0 0
\(685\) 21.5799 + 2.64138i 0.824525 + 0.100922i
\(686\) 0 0
\(687\) 26.1646i 0.998241i
\(688\) 0 0
\(689\) 54.2626 2.06724
\(690\) 0 0
\(691\) 29.3846 1.11784 0.558921 0.829221i \(-0.311216\pi\)
0.558921 + 0.829221i \(0.311216\pi\)
\(692\) 0 0
\(693\) 7.10090i 0.269741i
\(694\) 0 0
\(695\) 0.997701 8.15113i 0.0378449 0.309190i
\(696\) 0 0
\(697\) 7.74039i 0.293188i
\(698\) 0 0
\(699\) −9.24006 −0.349491
\(700\) 0 0
\(701\) 13.3427 0.503948 0.251974 0.967734i \(-0.418920\pi\)
0.251974 + 0.967734i \(0.418920\pi\)
\(702\) 0 0
\(703\) 32.3480i 1.22003i
\(704\) 0 0
\(705\) 2.75804 22.5330i 0.103874 0.848641i
\(706\) 0 0
\(707\) 5.91042i 0.222284i
\(708\) 0 0
\(709\) −43.3788 −1.62912 −0.814562 0.580076i \(-0.803023\pi\)
−0.814562 + 0.580076i \(0.803023\pi\)
\(710\) 0 0
\(711\) 15.8332 0.593792
\(712\) 0 0
\(713\) 5.41620i 0.202838i
\(714\) 0 0
\(715\) −60.1168 7.35831i −2.24824 0.275185i
\(716\) 0 0
\(717\) 1.91042i 0.0713458i
\(718\) 0 0
\(719\) −34.8997 −1.30154 −0.650769 0.759276i \(-0.725553\pi\)
−0.650769 + 0.759276i \(0.725553\pi\)
\(720\) 0 0
\(721\) 1.24286 0.0462864
\(722\) 0 0
\(723\) 3.63719i 0.135268i
\(724\) 0 0
\(725\) −31.9981 7.95229i −1.18838 0.295341i
\(726\) 0 0
\(727\) 18.8258i 0.698209i −0.937084 0.349105i \(-0.886486\pi\)
0.937084 0.349105i \(-0.113514\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 4.95006 0.183084
\(732\) 0 0
\(733\) 8.20406i 0.303024i 0.988455 + 0.151512i \(0.0484142\pi\)
−0.988455 + 0.151512i \(0.951586\pi\)
\(734\) 0 0
\(735\) −9.26500 1.13404i −0.341745 0.0418297i
\(736\) 0 0
\(737\) 43.4058i 1.59887i
\(738\) 0 0
\(739\) −4.69134 −0.172574 −0.0862869 0.996270i \(-0.527500\pi\)
−0.0862869 + 0.996270i \(0.527500\pi\)
\(740\) 0 0
\(741\) 22.5519 0.828466
\(742\) 0 0
\(743\) 27.2313i 0.999018i −0.866309 0.499509i \(-0.833514\pi\)
0.866309 0.499509i \(-0.166486\pi\)
\(744\) 0 0
\(745\) 1.94276 15.8722i 0.0711773 0.581513i
\(746\) 0 0
\(747\) 8.60276i 0.314758i
\(748\) 0 0
\(749\) 8.51697 0.311203
\(750\) 0 0
\(751\) 20.8723 0.761639 0.380820 0.924649i \(-0.375642\pi\)
0.380820 + 0.924649i \(0.375642\pi\)
\(752\) 0 0
\(753\) 5.74370i 0.209312i
\(754\) 0 0
\(755\) −3.22200 + 26.3235i −0.117261 + 0.958009i
\(756\) 0 0
\(757\) 0.903828i 0.0328502i −0.999865 0.0164251i \(-0.994771\pi\)
0.999865 0.0164251i \(-0.00522850\pi\)
\(758\) 0 0
\(759\) 3.89870 0.141514
\(760\) 0 0
\(761\) 22.7597 0.825040 0.412520 0.910949i \(-0.364649\pi\)
0.412520 + 0.910949i \(0.364649\pi\)
\(762\) 0 0
\(763\) 2.15619i 0.0780592i
\(764\) 0 0
\(765\) −2.21950 0.271668i −0.0802463 0.00982217i
\(766\) 0 0
\(767\) 28.5239i 1.02994i
\(768\) 0 0
\(769\) −33.9781 −1.22528 −0.612642 0.790361i \(-0.709893\pi\)
−0.612642 + 0.790361i \(0.709893\pi\)
\(770\) 0 0
\(771\) −4.16649 −0.150052
\(772\) 0 0
\(773\) 42.6844i 1.53525i −0.640899 0.767625i \(-0.721438\pi\)
0.640899 0.767625i \(-0.278562\pi\)
\(774\) 0 0
\(775\) 28.4764 + 7.07708i 1.02290 + 0.254216i
\(776\) 0 0
\(777\) 15.4599i 0.554621i
\(778\) 0 0
\(779\) 27.2246 0.975423
\(780\) 0 0
\(781\) −6.30854 −0.225737
\(782\) 0 0
\(783\) 6.59429i 0.235661i
\(784\) 0 0
\(785\) 40.2816 + 4.93049i 1.43771 + 0.175977i
\(786\) 0 0
\(787\) 39.5265i 1.40897i −0.709720 0.704484i \(-0.751178\pi\)
0.709720 0.704484i \(-0.248822\pi\)
\(788\) 0 0
\(789\) −18.0877 −0.643939
\(790\) 0 0
\(791\) 18.0807 0.642876
\(792\) 0 0
\(793\) 50.4520i 1.79160i
\(794\) 0 0
\(795\) 2.29908 18.7833i 0.0815399 0.666174i
\(796\) 0 0
\(797\) 25.4335i 0.900900i 0.892802 + 0.450450i \(0.148737\pi\)
−0.892802 + 0.450450i \(0.851263\pi\)
\(798\) 0 0
\(799\) 10.1523 0.359161
\(800\) 0 0
\(801\) −10.3398 −0.365340
\(802\) 0 0
\(803\) 44.0490i 1.55445i
\(804\) 0 0
\(805\) −0.421465 + 3.44334i −0.0148547 + 0.121362i
\(806\) 0 0
\(807\) 24.1574i 0.850381i
\(808\) 0 0
\(809\) −35.3507 −1.24286 −0.621432 0.783468i \(-0.713449\pi\)
−0.621432 + 0.783468i \(0.713449\pi\)
\(810\) 0 0
\(811\) −16.2979 −0.572296 −0.286148 0.958185i \(-0.592375\pi\)
−0.286148 + 0.958185i \(0.592375\pi\)
\(812\) 0 0
\(813\) 24.1181i 0.845858i
\(814\) 0 0
\(815\) −16.7561 2.05096i −0.586942 0.0718419i
\(816\) 0 0
\(817\) 17.4104i 0.609113i
\(818\) 0 0
\(819\) 10.7781 0.376618
\(820\) 0 0
\(821\) −46.2052 −1.61257 −0.806286 0.591526i \(-0.798526\pi\)
−0.806286 + 0.591526i \(0.798526\pi\)
\(822\) 0 0
\(823\) 27.2657i 0.950422i 0.879872 + 0.475211i \(0.157628\pi\)
−0.879872 + 0.475211i \(0.842372\pi\)
\(824\) 0 0
\(825\) −5.09424 + 20.4980i −0.177359 + 0.713648i
\(826\) 0 0
\(827\) 3.00191i 0.104387i −0.998637 0.0521934i \(-0.983379\pi\)
0.998637 0.0521934i \(-0.0166212\pi\)
\(828\) 0 0
\(829\) −31.7915 −1.10416 −0.552082 0.833790i \(-0.686166\pi\)
−0.552082 + 0.833790i \(0.686166\pi\)
\(830\) 0 0
\(831\) −28.6047 −0.992287
\(832\) 0 0
\(833\) 4.17436i 0.144633i
\(834\) 0 0
\(835\) −10.3429 1.26597i −0.357930 0.0438107i
\(836\) 0 0
\(837\) 5.86854i 0.202846i
\(838\) 0 0
\(839\) −20.9043 −0.721695 −0.360847 0.932625i \(-0.617512\pi\)
−0.360847 + 0.932625i \(0.617512\pi\)
\(840\) 0 0
\(841\) 14.4847 0.499472
\(842\) 0 0
\(843\) 1.44263i 0.0496867i
\(844\) 0 0
\(845\) 7.63716 62.3949i 0.262726 2.14645i
\(846\) 0 0
\(847\) 11.5057i 0.395341i
\(848\) 0 0
\(849\) −12.9467 −0.444331
\(850\) 0 0
\(851\) −8.48816 −0.290970
\(852\) 0 0
\(853\) 12.8134i 0.438722i 0.975644 + 0.219361i \(0.0703972\pi\)
−0.975644 + 0.219361i \(0.929603\pi\)
\(854\) 0 0
\(855\) 0.955514 7.80647i 0.0326779 0.266976i
\(856\) 0 0
\(857\) 14.2761i 0.487661i −0.969818 0.243830i \(-0.921596\pi\)
0.969818 0.243830i \(-0.0784040\pi\)
\(858\) 0 0
\(859\) −41.7915 −1.42591 −0.712953 0.701211i \(-0.752643\pi\)
−0.712953 + 0.701211i \(0.752643\pi\)
\(860\) 0 0
\(861\) 13.0113 0.443424
\(862\) 0 0
\(863\) 44.5448i 1.51632i −0.652067 0.758162i \(-0.726098\pi\)
0.652067 0.758162i \(-0.273902\pi\)
\(864\) 0 0
\(865\) 28.4411 + 3.48119i 0.967025 + 0.118364i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 66.8843 2.26889
\(870\) 0 0
\(871\) −65.8836 −2.23238
\(872\) 0 0
\(873\) 6.06457i 0.205255i
\(874\) 0 0
\(875\) −17.5531 6.71515i −0.593404 0.227013i
\(876\) 0 0
\(877\) 27.1382i 0.916391i 0.888851 + 0.458196i \(0.151504\pi\)
−0.888851 + 0.458196i \(0.848496\pi\)
\(878\) 0 0
\(879\) 15.1390 0.510627
\(880\) 0 0
\(881\) 24.0691 0.810908 0.405454 0.914116i \(-0.367114\pi\)
0.405454 + 0.914116i \(0.367114\pi\)
\(882\) 0 0
\(883\) 4.27005i 0.143698i 0.997416 + 0.0718492i \(0.0228900\pi\)
−0.997416 + 0.0718492i \(0.977110\pi\)
\(884\) 0 0
\(885\) −9.87369 1.20854i −0.331900 0.0406247i
\(886\) 0 0
\(887\) 20.0426i 0.672966i 0.941689 + 0.336483i \(0.109238\pi\)
−0.941689 + 0.336483i \(0.890762\pi\)
\(888\) 0 0
\(889\) −1.21440 −0.0407297
\(890\) 0 0
\(891\) −4.22430 −0.141519
\(892\) 0 0
\(893\) 35.7077i 1.19491i
\(894\) 0 0
\(895\) 1.95291 15.9551i 0.0652785 0.533320i
\(896\) 0 0
\(897\) 5.91766i 0.197585i
\(898\) 0 0
\(899\) −38.6988 −1.29068
\(900\) 0 0
\(901\) 8.46283 0.281938
\(902\) 0 0
\(903\) 8.32087i 0.276901i
\(904\) 0 0
\(905\) −2.33093 + 19.0435i −0.0774827 + 0.633027i
\(906\) 0 0
\(907\) 35.6421i 1.18348i 0.806130 + 0.591739i \(0.201558\pi\)
−0.806130 + 0.591739i \(0.798442\pi\)
\(908\) 0 0
\(909\) −3.51609 −0.116621
\(910\) 0 0
\(911\) 50.1910 1.66290 0.831450 0.555599i \(-0.187511\pi\)
0.831450 + 0.555599i \(0.187511\pi\)
\(912\) 0 0
\(913\) 36.3406i 1.20270i
\(914\) 0 0
\(915\) −17.4642 2.13763i −0.577350 0.0706678i
\(916\) 0 0
\(917\) 18.5152i 0.611426i
\(918\) 0 0
\(919\) −31.4216 −1.03650 −0.518251 0.855229i \(-0.673417\pi\)
−0.518251 + 0.855229i \(0.673417\pi\)
\(920\) 0 0
\(921\) −12.8450 −0.423256
\(922\) 0 0
\(923\) 9.57545i 0.315180i
\(924\) 0 0
\(925\) 11.0911 44.6277i 0.364672 1.46735i
\(926\) 0 0
\(927\) 0.739371i 0.0242841i
\(928\) 0 0
\(929\) −9.18527 −0.301359 −0.150679 0.988583i \(-0.548146\pi\)
−0.150679 + 0.988583i \(0.548146\pi\)
\(930\) 0 0
\(931\) 14.6821 0.481187
\(932\) 0 0
\(933\) 22.9341i 0.750829i
\(934\) 0 0
\(935\) −9.37585 1.14761i −0.306623 0.0375308i
\(936\) 0 0
\(937\) 9.82689i 0.321030i −0.987033 0.160515i \(-0.948684\pi\)
0.987033 0.160515i \(-0.0513156\pi\)
\(938\) 0 0
\(939\) −12.2734 −0.400526
\(940\) 0 0
\(941\) −13.9208 −0.453804 −0.226902 0.973918i \(-0.572860\pi\)
−0.226902 + 0.973918i \(0.572860\pi\)
\(942\) 0 0
\(943\) 7.14377i 0.232633i
\(944\) 0 0
\(945\) 0.456664 3.73091i 0.0148553 0.121366i
\(946\) 0 0
\(947\) 44.0416i 1.43116i −0.698531 0.715580i \(-0.746163\pi\)
0.698531 0.715580i \(-0.253837\pi\)
\(948\) 0 0
\(949\) 66.8599 2.17036
\(950\) 0 0
\(951\) −27.6791 −0.897555
\(952\) 0 0
\(953\) 12.8239i 0.415406i −0.978192 0.207703i \(-0.933401\pi\)
0.978192 0.207703i \(-0.0665988\pi\)
\(954\) 0 0
\(955\) 5.11896 41.8214i 0.165646 1.35331i
\(956\) 0 0
\(957\) 27.8563i 0.900465i
\(958\) 0 0
\(959\) −16.3438 −0.527767
\(960\) 0 0
\(961\) 3.43971 0.110959
\(962\) 0 0
\(963\) 5.06672i 0.163273i
\(964\) 0 0
\(965\) −20.0469 2.45375i −0.645334 0.0789890i
\(966\) 0 0
\(967\) 49.1816i 1.58157i 0.612092 + 0.790787i \(0.290328\pi\)
−0.612092 + 0.790787i \(0.709672\pi\)
\(968\) 0 0
\(969\) 3.51721 0.112989
\(970\) 0 0
\(971\) 1.82892 0.0586927 0.0293463 0.999569i \(-0.490657\pi\)
0.0293463 + 0.999569i \(0.490657\pi\)
\(972\) 0 0
\(973\) 6.17334i 0.197908i
\(974\) 0 0
\(975\) −31.1129 7.73231i −0.996411 0.247632i
\(976\) 0 0
\(977\) 28.2399i 0.903476i −0.892151 0.451738i \(-0.850804\pi\)
0.892151 0.451738i \(-0.149196\pi\)
\(978\) 0 0
\(979\) −43.6785 −1.39597
\(980\) 0 0
\(981\) −1.28271 −0.0409537
\(982\) 0 0
\(983\) 43.4502i 1.38585i −0.721011 0.692923i \(-0.756322\pi\)
0.721011 0.692923i \(-0.243678\pi\)
\(984\) 0 0
\(985\) 46.5863 + 5.70218i 1.48436 + 0.181687i
\(986\) 0 0
\(987\) 17.0656i 0.543204i
\(988\) 0 0
\(989\) −4.56852 −0.145270
\(990\) 0 0
\(991\) −46.3587 −1.47263 −0.736317 0.676637i \(-0.763437\pi\)
−0.736317 + 0.676637i \(0.763437\pi\)
\(992\) 0 0
\(993\) 17.0083i 0.539742i
\(994\) 0 0
\(995\) 2.97618 24.3151i 0.0943512 0.770841i
\(996\) 0 0
\(997\) 6.20099i 0.196387i 0.995167 + 0.0981937i \(0.0313065\pi\)
−0.995167 + 0.0981937i \(0.968694\pi\)
\(998\) 0 0
\(999\) 9.19705 0.290982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.q.2449.8 10
4.3 odd 2 2040.2.m.h.409.3 10
5.4 even 2 inner 4080.2.m.q.2449.3 10
20.19 odd 2 2040.2.m.h.409.8 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.m.h.409.3 10 4.3 odd 2
2040.2.m.h.409.8 yes 10 20.19 odd 2
4080.2.m.q.2449.3 10 5.4 even 2 inner
4080.2.m.q.2449.8 10 1.1 even 1 trivial