Properties

Label 4080.2.a.bt.1.4
Level $4080$
Weight $2$
Character 4080.1
Self dual yes
Analytic conductor $32.579$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(1,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,-4,0,-4,0,4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13768.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.849256\) of defining polynomial
Character \(\chi\) \(=\) 4080.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +4.48302 q^{7} +1.00000 q^{9} -1.47153 q^{11} -4.55753 q^{13} +1.00000 q^{15} -1.00000 q^{17} -8.48302 q^{19} -4.48302 q^{21} +6.40852 q^{23} +1.00000 q^{25} -1.00000 q^{27} +6.48302 q^{29} +3.01149 q^{31} +1.47153 q^{33} -4.48302 q^{35} +9.04055 q^{37} +4.55753 q^{39} -3.53996 q^{41} -3.39702 q^{43} -1.00000 q^{45} +1.47153 q^{47} +13.0975 q^{49} +1.00000 q^{51} +3.53996 q^{53} +1.47153 q^{55} +8.48302 q^{57} +6.55753 q^{59} -4.55753 q^{61} +4.48302 q^{63} +4.55753 q^{65} -7.16050 q^{67} -6.40852 q^{69} +7.39702 q^{71} -3.92549 q^{73} -1.00000 q^{75} -6.59690 q^{77} -0.453964 q^{79} +1.00000 q^{81} +7.39702 q^{83} +1.00000 q^{85} -6.48302 q^{87} -3.50059 q^{89} -20.4315 q^{91} -3.01149 q^{93} +8.48302 q^{95} +12.0230 q^{97} -1.47153 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{5} - 4 q^{7} + 4 q^{9} - 2 q^{11} - 2 q^{13} + 4 q^{15} - 4 q^{17} - 12 q^{19} + 4 q^{21} - 2 q^{23} + 4 q^{25} - 4 q^{27} + 4 q^{29} - 6 q^{31} + 2 q^{33} + 4 q^{35} - 2 q^{37} + 2 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.48302 1.69442 0.847212 0.531256i \(-0.178280\pi\)
0.847212 + 0.531256i \(0.178280\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.47153 −0.443683 −0.221842 0.975083i \(-0.571207\pi\)
−0.221842 + 0.975083i \(0.571207\pi\)
\(12\) 0 0
\(13\) −4.55753 −1.26403 −0.632015 0.774956i \(-0.717772\pi\)
−0.632015 + 0.774956i \(0.717772\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −8.48302 −1.94614 −0.973069 0.230512i \(-0.925960\pi\)
−0.973069 + 0.230512i \(0.925960\pi\)
\(20\) 0 0
\(21\) −4.48302 −0.978276
\(22\) 0 0
\(23\) 6.40852 1.33627 0.668134 0.744041i \(-0.267093\pi\)
0.668134 + 0.744041i \(0.267093\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.48302 1.20387 0.601934 0.798546i \(-0.294397\pi\)
0.601934 + 0.798546i \(0.294397\pi\)
\(30\) 0 0
\(31\) 3.01149 0.540880 0.270440 0.962737i \(-0.412831\pi\)
0.270440 + 0.962737i \(0.412831\pi\)
\(32\) 0 0
\(33\) 1.47153 0.256161
\(34\) 0 0
\(35\) −4.48302 −0.757769
\(36\) 0 0
\(37\) 9.04055 1.48626 0.743129 0.669149i \(-0.233341\pi\)
0.743129 + 0.669149i \(0.233341\pi\)
\(38\) 0 0
\(39\) 4.55753 0.729789
\(40\) 0 0
\(41\) −3.53996 −0.552849 −0.276425 0.961036i \(-0.589150\pi\)
−0.276425 + 0.961036i \(0.589150\pi\)
\(42\) 0 0
\(43\) −3.39702 −0.518041 −0.259021 0.965872i \(-0.583400\pi\)
−0.259021 + 0.965872i \(0.583400\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 1.47153 0.214645 0.107322 0.994224i \(-0.465772\pi\)
0.107322 + 0.994224i \(0.465772\pi\)
\(48\) 0 0
\(49\) 13.0975 1.87107
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 3.53996 0.486251 0.243126 0.969995i \(-0.421827\pi\)
0.243126 + 0.969995i \(0.421827\pi\)
\(54\) 0 0
\(55\) 1.47153 0.198421
\(56\) 0 0
\(57\) 8.48302 1.12360
\(58\) 0 0
\(59\) 6.55753 0.853717 0.426859 0.904318i \(-0.359620\pi\)
0.426859 + 0.904318i \(0.359620\pi\)
\(60\) 0 0
\(61\) −4.55753 −0.583532 −0.291766 0.956490i \(-0.594243\pi\)
−0.291766 + 0.956490i \(0.594243\pi\)
\(62\) 0 0
\(63\) 4.48302 0.564808
\(64\) 0 0
\(65\) 4.55753 0.565292
\(66\) 0 0
\(67\) −7.16050 −0.874795 −0.437397 0.899268i \(-0.644100\pi\)
−0.437397 + 0.899268i \(0.644100\pi\)
\(68\) 0 0
\(69\) −6.40852 −0.771495
\(70\) 0 0
\(71\) 7.39702 0.877865 0.438933 0.898520i \(-0.355357\pi\)
0.438933 + 0.898520i \(0.355357\pi\)
\(72\) 0 0
\(73\) −3.92549 −0.459444 −0.229722 0.973256i \(-0.573782\pi\)
−0.229722 + 0.973256i \(0.573782\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −6.59690 −0.751787
\(78\) 0 0
\(79\) −0.453964 −0.0510750 −0.0255375 0.999674i \(-0.508130\pi\)
−0.0255375 + 0.999674i \(0.508130\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.39702 0.811929 0.405964 0.913889i \(-0.366936\pi\)
0.405964 + 0.913889i \(0.366936\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −6.48302 −0.695053
\(88\) 0 0
\(89\) −3.50059 −0.371062 −0.185531 0.982638i \(-0.559400\pi\)
−0.185531 + 0.982638i \(0.559400\pi\)
\(90\) 0 0
\(91\) −20.4315 −2.14180
\(92\) 0 0
\(93\) −3.01149 −0.312277
\(94\) 0 0
\(95\) 8.48302 0.870340
\(96\) 0 0
\(97\) 12.0230 1.22075 0.610375 0.792113i \(-0.291019\pi\)
0.610375 + 0.792113i \(0.291019\pi\)
\(98\) 0 0
\(99\) −1.47153 −0.147894
\(100\) 0 0
\(101\) −7.11506 −0.707975 −0.353987 0.935250i \(-0.615174\pi\)
−0.353987 + 0.935250i \(0.615174\pi\)
\(102\) 0 0
\(103\) −4.51208 −0.444589 −0.222294 0.974980i \(-0.571355\pi\)
−0.222294 + 0.974980i \(0.571355\pi\)
\(104\) 0 0
\(105\) 4.48302 0.437498
\(106\) 0 0
\(107\) 10.0230 0.968959 0.484479 0.874803i \(-0.339009\pi\)
0.484479 + 0.874803i \(0.339009\pi\)
\(108\) 0 0
\(109\) 12.0230 1.15159 0.575797 0.817593i \(-0.304692\pi\)
0.575797 + 0.817593i \(0.304692\pi\)
\(110\) 0 0
\(111\) −9.04055 −0.858091
\(112\) 0 0
\(113\) 15.3516 1.44415 0.722077 0.691812i \(-0.243187\pi\)
0.722077 + 0.691812i \(0.243187\pi\)
\(114\) 0 0
\(115\) −6.40852 −0.597597
\(116\) 0 0
\(117\) −4.55753 −0.421344
\(118\) 0 0
\(119\) −4.48302 −0.410958
\(120\) 0 0
\(121\) −8.83460 −0.803145
\(122\) 0 0
\(123\) 3.53996 0.319188
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.10356 0.541604 0.270802 0.962635i \(-0.412711\pi\)
0.270802 + 0.962635i \(0.412711\pi\)
\(128\) 0 0
\(129\) 3.39702 0.299091
\(130\) 0 0
\(131\) 4.60298 0.402164 0.201082 0.979574i \(-0.435554\pi\)
0.201082 + 0.979574i \(0.435554\pi\)
\(132\) 0 0
\(133\) −38.0296 −3.29758
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −7.44907 −0.636417 −0.318208 0.948021i \(-0.603081\pi\)
−0.318208 + 0.948021i \(0.603081\pi\)
\(138\) 0 0
\(139\) −1.56902 −0.133083 −0.0665413 0.997784i \(-0.521196\pi\)
−0.0665413 + 0.997784i \(0.521196\pi\)
\(140\) 0 0
\(141\) −1.47153 −0.123925
\(142\) 0 0
\(143\) 6.70654 0.560829
\(144\) 0 0
\(145\) −6.48302 −0.538386
\(146\) 0 0
\(147\) −13.0975 −1.08026
\(148\) 0 0
\(149\) 22.5805 1.84987 0.924934 0.380128i \(-0.124120\pi\)
0.924934 + 0.380128i \(0.124120\pi\)
\(150\) 0 0
\(151\) −18.5060 −1.50600 −0.752999 0.658022i \(-0.771393\pi\)
−0.752999 + 0.658022i \(0.771393\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) −3.01149 −0.241889
\(156\) 0 0
\(157\) −7.05694 −0.563205 −0.281603 0.959531i \(-0.590866\pi\)
−0.281603 + 0.959531i \(0.590866\pi\)
\(158\) 0 0
\(159\) −3.53996 −0.280737
\(160\) 0 0
\(161\) 28.7295 2.26420
\(162\) 0 0
\(163\) 0.424906 0.0332812 0.0166406 0.999862i \(-0.494703\pi\)
0.0166406 + 0.999862i \(0.494703\pi\)
\(164\) 0 0
\(165\) −1.47153 −0.114558
\(166\) 0 0
\(167\) −2.94306 −0.227741 −0.113870 0.993496i \(-0.536325\pi\)
−0.113870 + 0.993496i \(0.536325\pi\)
\(168\) 0 0
\(169\) 7.77106 0.597774
\(170\) 0 0
\(171\) −8.48302 −0.648713
\(172\) 0 0
\(173\) 11.5466 0.877869 0.438934 0.898519i \(-0.355356\pi\)
0.438934 + 0.898519i \(0.355356\pi\)
\(174\) 0 0
\(175\) 4.48302 0.338885
\(176\) 0 0
\(177\) −6.55753 −0.492894
\(178\) 0 0
\(179\) 14.9431 1.11690 0.558448 0.829539i \(-0.311397\pi\)
0.558448 + 0.829539i \(0.311397\pi\)
\(180\) 0 0
\(181\) 8.55753 0.636076 0.318038 0.948078i \(-0.396976\pi\)
0.318038 + 0.948078i \(0.396976\pi\)
\(182\) 0 0
\(183\) 4.55753 0.336902
\(184\) 0 0
\(185\) −9.04055 −0.664675
\(186\) 0 0
\(187\) 1.47153 0.107609
\(188\) 0 0
\(189\) −4.48302 −0.326092
\(190\) 0 0
\(191\) 5.44247 0.393803 0.196902 0.980423i \(-0.436912\pi\)
0.196902 + 0.980423i \(0.436912\pi\)
\(192\) 0 0
\(193\) −1.09207 −0.0786090 −0.0393045 0.999227i \(-0.512514\pi\)
−0.0393045 + 0.999227i \(0.512514\pi\)
\(194\) 0 0
\(195\) −4.55753 −0.326371
\(196\) 0 0
\(197\) 13.0799 0.931906 0.465953 0.884809i \(-0.345712\pi\)
0.465953 + 0.884809i \(0.345712\pi\)
\(198\) 0 0
\(199\) 21.2710 1.50786 0.753931 0.656954i \(-0.228156\pi\)
0.753931 + 0.656954i \(0.228156\pi\)
\(200\) 0 0
\(201\) 7.16050 0.505063
\(202\) 0 0
\(203\) 29.0635 2.03986
\(204\) 0 0
\(205\) 3.53996 0.247242
\(206\) 0 0
\(207\) 6.40852 0.445423
\(208\) 0 0
\(209\) 12.4830 0.863469
\(210\) 0 0
\(211\) 19.4430 1.33851 0.669255 0.743032i \(-0.266613\pi\)
0.669255 + 0.743032i \(0.266613\pi\)
\(212\) 0 0
\(213\) −7.39702 −0.506836
\(214\) 0 0
\(215\) 3.39702 0.231675
\(216\) 0 0
\(217\) 13.5006 0.916480
\(218\) 0 0
\(219\) 3.92549 0.265260
\(220\) 0 0
\(221\) 4.55753 0.306573
\(222\) 0 0
\(223\) −27.5011 −1.84161 −0.920805 0.390023i \(-0.872467\pi\)
−0.920805 + 0.390023i \(0.872467\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 16.7295 1.11038 0.555189 0.831724i \(-0.312646\pi\)
0.555189 + 0.831724i \(0.312646\pi\)
\(228\) 0 0
\(229\) 10.8686 0.718214 0.359107 0.933296i \(-0.383081\pi\)
0.359107 + 0.933296i \(0.383081\pi\)
\(230\) 0 0
\(231\) 6.59690 0.434044
\(232\) 0 0
\(233\) −23.3975 −1.53282 −0.766412 0.642349i \(-0.777960\pi\)
−0.766412 + 0.642349i \(0.777960\pi\)
\(234\) 0 0
\(235\) −1.47153 −0.0959920
\(236\) 0 0
\(237\) 0.453964 0.0294881
\(238\) 0 0
\(239\) 28.4315 1.83908 0.919540 0.392995i \(-0.128561\pi\)
0.919540 + 0.392995i \(0.128561\pi\)
\(240\) 0 0
\(241\) −1.76348 −0.113596 −0.0567979 0.998386i \(-0.518089\pi\)
−0.0567979 + 0.998386i \(0.518089\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −13.0975 −0.836768
\(246\) 0 0
\(247\) 38.6616 2.45998
\(248\) 0 0
\(249\) −7.39702 −0.468767
\(250\) 0 0
\(251\) −13.4884 −0.851383 −0.425691 0.904868i \(-0.639969\pi\)
−0.425691 + 0.904868i \(0.639969\pi\)
\(252\) 0 0
\(253\) −9.43032 −0.592879
\(254\) 0 0
\(255\) −1.00000 −0.0626224
\(256\) 0 0
\(257\) −20.2301 −1.26192 −0.630960 0.775815i \(-0.717339\pi\)
−0.630960 + 0.775815i \(0.717339\pi\)
\(258\) 0 0
\(259\) 40.5290 2.51835
\(260\) 0 0
\(261\) 6.48302 0.401289
\(262\) 0 0
\(263\) 0.505485 0.0311695 0.0155848 0.999879i \(-0.495039\pi\)
0.0155848 + 0.999879i \(0.495039\pi\)
\(264\) 0 0
\(265\) −3.53996 −0.217458
\(266\) 0 0
\(267\) 3.50059 0.214233
\(268\) 0 0
\(269\) 20.5641 1.25382 0.626908 0.779093i \(-0.284320\pi\)
0.626908 + 0.779093i \(0.284320\pi\)
\(270\) 0 0
\(271\) 25.1610 1.52842 0.764212 0.644965i \(-0.223128\pi\)
0.764212 + 0.644965i \(0.223128\pi\)
\(272\) 0 0
\(273\) 20.4315 1.23657
\(274\) 0 0
\(275\) −1.47153 −0.0887366
\(276\) 0 0
\(277\) 26.2531 1.57740 0.788698 0.614781i \(-0.210756\pi\)
0.788698 + 0.614781i \(0.210756\pi\)
\(278\) 0 0
\(279\) 3.01149 0.180293
\(280\) 0 0
\(281\) −14.1950 −0.846802 −0.423401 0.905942i \(-0.639164\pi\)
−0.423401 + 0.905942i \(0.639164\pi\)
\(282\) 0 0
\(283\) 20.3921 1.21219 0.606093 0.795394i \(-0.292736\pi\)
0.606093 + 0.795394i \(0.292736\pi\)
\(284\) 0 0
\(285\) −8.48302 −0.502491
\(286\) 0 0
\(287\) −15.8697 −0.936761
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −12.0230 −0.704800
\(292\) 0 0
\(293\) −16.5060 −0.964291 −0.482146 0.876091i \(-0.660142\pi\)
−0.482146 + 0.876091i \(0.660142\pi\)
\(294\) 0 0
\(295\) −6.55753 −0.381794
\(296\) 0 0
\(297\) 1.47153 0.0853868
\(298\) 0 0
\(299\) −29.2070 −1.68908
\(300\) 0 0
\(301\) −15.2289 −0.877781
\(302\) 0 0
\(303\) 7.11506 0.408749
\(304\) 0 0
\(305\) 4.55753 0.260963
\(306\) 0 0
\(307\) −10.6260 −0.606456 −0.303228 0.952918i \(-0.598064\pi\)
−0.303228 + 0.952918i \(0.598064\pi\)
\(308\) 0 0
\(309\) 4.51208 0.256683
\(310\) 0 0
\(311\) 10.5285 0.597015 0.298507 0.954407i \(-0.403511\pi\)
0.298507 + 0.954407i \(0.403511\pi\)
\(312\) 0 0
\(313\) 3.30344 0.186722 0.0933608 0.995632i \(-0.470239\pi\)
0.0933608 + 0.995632i \(0.470239\pi\)
\(314\) 0 0
\(315\) −4.48302 −0.252590
\(316\) 0 0
\(317\) 23.6956 1.33088 0.665438 0.746453i \(-0.268245\pi\)
0.665438 + 0.746453i \(0.268245\pi\)
\(318\) 0 0
\(319\) −9.53996 −0.534135
\(320\) 0 0
\(321\) −10.0230 −0.559428
\(322\) 0 0
\(323\) 8.48302 0.472008
\(324\) 0 0
\(325\) −4.55753 −0.252806
\(326\) 0 0
\(327\) −12.0230 −0.664873
\(328\) 0 0
\(329\) 6.59690 0.363699
\(330\) 0 0
\(331\) 15.4721 0.850421 0.425210 0.905095i \(-0.360200\pi\)
0.425210 + 0.905095i \(0.360200\pi\)
\(332\) 0 0
\(333\) 9.04055 0.495419
\(334\) 0 0
\(335\) 7.16050 0.391220
\(336\) 0 0
\(337\) −17.0406 −0.928258 −0.464129 0.885768i \(-0.653633\pi\)
−0.464129 + 0.885768i \(0.653633\pi\)
\(338\) 0 0
\(339\) −15.3516 −0.833783
\(340\) 0 0
\(341\) −4.43150 −0.239979
\(342\) 0 0
\(343\) 27.3352 1.47596
\(344\) 0 0
\(345\) 6.40852 0.345023
\(346\) 0 0
\(347\) −8.53454 −0.458158 −0.229079 0.973408i \(-0.573571\pi\)
−0.229079 + 0.973408i \(0.573571\pi\)
\(348\) 0 0
\(349\) −15.0635 −0.806333 −0.403166 0.915127i \(-0.632090\pi\)
−0.403166 + 0.915127i \(0.632090\pi\)
\(350\) 0 0
\(351\) 4.55753 0.243263
\(352\) 0 0
\(353\) 31.5981 1.68180 0.840898 0.541194i \(-0.182027\pi\)
0.840898 + 0.541194i \(0.182027\pi\)
\(354\) 0 0
\(355\) −7.39702 −0.392593
\(356\) 0 0
\(357\) 4.48302 0.237267
\(358\) 0 0
\(359\) −7.37456 −0.389214 −0.194607 0.980881i \(-0.562343\pi\)
−0.194607 + 0.980881i \(0.562343\pi\)
\(360\) 0 0
\(361\) 52.9617 2.78746
\(362\) 0 0
\(363\) 8.83460 0.463696
\(364\) 0 0
\(365\) 3.92549 0.205470
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −3.53996 −0.184283
\(370\) 0 0
\(371\) 15.8697 0.823915
\(372\) 0 0
\(373\) −12.9431 −0.670166 −0.335083 0.942189i \(-0.608764\pi\)
−0.335083 + 0.942189i \(0.608764\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −29.5466 −1.52173
\(378\) 0 0
\(379\) 12.5121 0.642702 0.321351 0.946960i \(-0.395863\pi\)
0.321351 + 0.946960i \(0.395863\pi\)
\(380\) 0 0
\(381\) −6.10356 −0.312695
\(382\) 0 0
\(383\) −25.7246 −1.31447 −0.657234 0.753687i \(-0.728273\pi\)
−0.657234 + 0.753687i \(0.728273\pi\)
\(384\) 0 0
\(385\) 6.59690 0.336209
\(386\) 0 0
\(387\) −3.39702 −0.172680
\(388\) 0 0
\(389\) −8.08110 −0.409728 −0.204864 0.978790i \(-0.565675\pi\)
−0.204864 + 0.978790i \(0.565675\pi\)
\(390\) 0 0
\(391\) −6.40852 −0.324093
\(392\) 0 0
\(393\) −4.60298 −0.232189
\(394\) 0 0
\(395\) 0.453964 0.0228414
\(396\) 0 0
\(397\) −9.96063 −0.499909 −0.249955 0.968258i \(-0.580416\pi\)
−0.249955 + 0.968258i \(0.580416\pi\)
\(398\) 0 0
\(399\) 38.0296 1.90386
\(400\) 0 0
\(401\) 28.6550 1.43096 0.715482 0.698631i \(-0.246207\pi\)
0.715482 + 0.698631i \(0.246207\pi\)
\(402\) 0 0
\(403\) −13.7250 −0.683689
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −13.3034 −0.659427
\(408\) 0 0
\(409\) 23.8346 1.17855 0.589273 0.807934i \(-0.299414\pi\)
0.589273 + 0.807934i \(0.299414\pi\)
\(410\) 0 0
\(411\) 7.44907 0.367435
\(412\) 0 0
\(413\) 29.3975 1.44656
\(414\) 0 0
\(415\) −7.39702 −0.363106
\(416\) 0 0
\(417\) 1.56902 0.0768353
\(418\) 0 0
\(419\) 8.70047 0.425046 0.212523 0.977156i \(-0.431832\pi\)
0.212523 + 0.977156i \(0.431832\pi\)
\(420\) 0 0
\(421\) −9.09867 −0.443442 −0.221721 0.975110i \(-0.571167\pi\)
−0.221721 + 0.975110i \(0.571167\pi\)
\(422\) 0 0
\(423\) 1.47153 0.0715482
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −20.4315 −0.988750
\(428\) 0 0
\(429\) −6.70654 −0.323795
\(430\) 0 0
\(431\) −36.4606 −1.75624 −0.878122 0.478437i \(-0.841203\pi\)
−0.878122 + 0.478437i \(0.841203\pi\)
\(432\) 0 0
\(433\) 20.7032 0.994930 0.497465 0.867484i \(-0.334264\pi\)
0.497465 + 0.867484i \(0.334264\pi\)
\(434\) 0 0
\(435\) 6.48302 0.310837
\(436\) 0 0
\(437\) −54.3636 −2.60056
\(438\) 0 0
\(439\) −27.1277 −1.29474 −0.647368 0.762178i \(-0.724130\pi\)
−0.647368 + 0.762178i \(0.724130\pi\)
\(440\) 0 0
\(441\) 13.0975 0.623690
\(442\) 0 0
\(443\) −0.168088 −0.00798610 −0.00399305 0.999992i \(-0.501271\pi\)
−0.00399305 + 0.999992i \(0.501271\pi\)
\(444\) 0 0
\(445\) 3.50059 0.165944
\(446\) 0 0
\(447\) −22.5805 −1.06802
\(448\) 0 0
\(449\) 2.09089 0.0986754 0.0493377 0.998782i \(-0.484289\pi\)
0.0493377 + 0.998782i \(0.484289\pi\)
\(450\) 0 0
\(451\) 5.20916 0.245290
\(452\) 0 0
\(453\) 18.5060 0.869488
\(454\) 0 0
\(455\) 20.4315 0.957844
\(456\) 0 0
\(457\) −22.7755 −1.06539 −0.532696 0.846306i \(-0.678821\pi\)
−0.532696 + 0.846306i \(0.678821\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −2.38553 −0.111105 −0.0555526 0.998456i \(-0.517692\pi\)
−0.0555526 + 0.998456i \(0.517692\pi\)
\(462\) 0 0
\(463\) 20.4540 0.950576 0.475288 0.879830i \(-0.342344\pi\)
0.475288 + 0.879830i \(0.342344\pi\)
\(464\) 0 0
\(465\) 3.01149 0.139655
\(466\) 0 0
\(467\) 1.32252 0.0611989 0.0305994 0.999532i \(-0.490258\pi\)
0.0305994 + 0.999532i \(0.490258\pi\)
\(468\) 0 0
\(469\) −32.1007 −1.48227
\(470\) 0 0
\(471\) 7.05694 0.325167
\(472\) 0 0
\(473\) 4.99882 0.229846
\(474\) 0 0
\(475\) −8.48302 −0.389228
\(476\) 0 0
\(477\) 3.53996 0.162084
\(478\) 0 0
\(479\) 11.3061 0.516590 0.258295 0.966066i \(-0.416839\pi\)
0.258295 + 0.966066i \(0.416839\pi\)
\(480\) 0 0
\(481\) −41.2026 −1.87868
\(482\) 0 0
\(483\) −28.7295 −1.30724
\(484\) 0 0
\(485\) −12.0230 −0.545936
\(486\) 0 0
\(487\) −33.9321 −1.53761 −0.768805 0.639483i \(-0.779148\pi\)
−0.768805 + 0.639483i \(0.779148\pi\)
\(488\) 0 0
\(489\) −0.424906 −0.0192149
\(490\) 0 0
\(491\) −0.149012 −0.00672480 −0.00336240 0.999994i \(-0.501070\pi\)
−0.00336240 + 0.999994i \(0.501070\pi\)
\(492\) 0 0
\(493\) −6.48302 −0.291981
\(494\) 0 0
\(495\) 1.47153 0.0661404
\(496\) 0 0
\(497\) 33.1610 1.48748
\(498\) 0 0
\(499\) −34.2077 −1.53134 −0.765672 0.643231i \(-0.777594\pi\)
−0.765672 + 0.643231i \(0.777594\pi\)
\(500\) 0 0
\(501\) 2.94306 0.131486
\(502\) 0 0
\(503\) −9.87397 −0.440259 −0.220129 0.975471i \(-0.570648\pi\)
−0.220129 + 0.975471i \(0.570648\pi\)
\(504\) 0 0
\(505\) 7.11506 0.316616
\(506\) 0 0
\(507\) −7.77106 −0.345125
\(508\) 0 0
\(509\) −4.69439 −0.208075 −0.104038 0.994573i \(-0.533176\pi\)
−0.104038 + 0.994573i \(0.533176\pi\)
\(510\) 0 0
\(511\) −17.5981 −0.778493
\(512\) 0 0
\(513\) 8.48302 0.374535
\(514\) 0 0
\(515\) 4.51208 0.198826
\(516\) 0 0
\(517\) −2.16540 −0.0952342
\(518\) 0 0
\(519\) −11.5466 −0.506838
\(520\) 0 0
\(521\) 34.2431 1.50022 0.750109 0.661314i \(-0.230001\pi\)
0.750109 + 0.661314i \(0.230001\pi\)
\(522\) 0 0
\(523\) 32.7071 1.43018 0.715090 0.699032i \(-0.246386\pi\)
0.715090 + 0.699032i \(0.246386\pi\)
\(524\) 0 0
\(525\) −4.48302 −0.195655
\(526\) 0 0
\(527\) −3.01149 −0.131183
\(528\) 0 0
\(529\) 18.0691 0.785612
\(530\) 0 0
\(531\) 6.55753 0.284572
\(532\) 0 0
\(533\) 16.1335 0.698819
\(534\) 0 0
\(535\) −10.0230 −0.433331
\(536\) 0 0
\(537\) −14.9431 −0.644841
\(538\) 0 0
\(539\) −19.2734 −0.830162
\(540\) 0 0
\(541\) 36.4217 1.56589 0.782946 0.622090i \(-0.213716\pi\)
0.782946 + 0.622090i \(0.213716\pi\)
\(542\) 0 0
\(543\) −8.55753 −0.367239
\(544\) 0 0
\(545\) −12.0230 −0.515008
\(546\) 0 0
\(547\) −37.3582 −1.59732 −0.798660 0.601782i \(-0.794457\pi\)
−0.798660 + 0.601782i \(0.794457\pi\)
\(548\) 0 0
\(549\) −4.55753 −0.194511
\(550\) 0 0
\(551\) −54.9956 −2.34289
\(552\) 0 0
\(553\) −2.03513 −0.0865426
\(554\) 0 0
\(555\) 9.04055 0.383750
\(556\) 0 0
\(557\) −36.1392 −1.53127 −0.765634 0.643277i \(-0.777575\pi\)
−0.765634 + 0.643277i \(0.777575\pi\)
\(558\) 0 0
\(559\) 15.4820 0.654820
\(560\) 0 0
\(561\) −1.47153 −0.0621280
\(562\) 0 0
\(563\) −21.9645 −0.925695 −0.462847 0.886438i \(-0.653172\pi\)
−0.462847 + 0.886438i \(0.653172\pi\)
\(564\) 0 0
\(565\) −15.3516 −0.645846
\(566\) 0 0
\(567\) 4.48302 0.188269
\(568\) 0 0
\(569\) −6.96604 −0.292032 −0.146016 0.989282i \(-0.546645\pi\)
−0.146016 + 0.989282i \(0.546645\pi\)
\(570\) 0 0
\(571\) −5.03448 −0.210686 −0.105343 0.994436i \(-0.533594\pi\)
−0.105343 + 0.994436i \(0.533594\pi\)
\(572\) 0 0
\(573\) −5.44247 −0.227363
\(574\) 0 0
\(575\) 6.40852 0.267254
\(576\) 0 0
\(577\) 30.2410 1.25895 0.629474 0.777022i \(-0.283271\pi\)
0.629474 + 0.777022i \(0.283271\pi\)
\(578\) 0 0
\(579\) 1.09207 0.0453849
\(580\) 0 0
\(581\) 33.1610 1.37575
\(582\) 0 0
\(583\) −5.20916 −0.215741
\(584\) 0 0
\(585\) 4.55753 0.188431
\(586\) 0 0
\(587\) 34.4835 1.42329 0.711644 0.702540i \(-0.247951\pi\)
0.711644 + 0.702540i \(0.247951\pi\)
\(588\) 0 0
\(589\) −25.5466 −1.05263
\(590\) 0 0
\(591\) −13.0799 −0.538036
\(592\) 0 0
\(593\) 5.66599 0.232674 0.116337 0.993210i \(-0.462885\pi\)
0.116337 + 0.993210i \(0.462885\pi\)
\(594\) 0 0
\(595\) 4.48302 0.183786
\(596\) 0 0
\(597\) −21.2710 −0.870564
\(598\) 0 0
\(599\) 1.26407 0.0516484 0.0258242 0.999666i \(-0.491779\pi\)
0.0258242 + 0.999666i \(0.491779\pi\)
\(600\) 0 0
\(601\) −44.1686 −1.80168 −0.900838 0.434156i \(-0.857047\pi\)
−0.900838 + 0.434156i \(0.857047\pi\)
\(602\) 0 0
\(603\) −7.16050 −0.291598
\(604\) 0 0
\(605\) 8.83460 0.359178
\(606\) 0 0
\(607\) −18.4273 −0.747939 −0.373970 0.927441i \(-0.622004\pi\)
−0.373970 + 0.927441i \(0.622004\pi\)
\(608\) 0 0
\(609\) −29.0635 −1.17771
\(610\) 0 0
\(611\) −6.70654 −0.271318
\(612\) 0 0
\(613\) −1.76009 −0.0710895 −0.0355448 0.999368i \(-0.511317\pi\)
−0.0355448 + 0.999368i \(0.511317\pi\)
\(614\) 0 0
\(615\) −3.53996 −0.142745
\(616\) 0 0
\(617\) 2.23652 0.0900389 0.0450195 0.998986i \(-0.485665\pi\)
0.0450195 + 0.998986i \(0.485665\pi\)
\(618\) 0 0
\(619\) −21.3619 −0.858607 −0.429303 0.903160i \(-0.641241\pi\)
−0.429303 + 0.903160i \(0.641241\pi\)
\(620\) 0 0
\(621\) −6.40852 −0.257165
\(622\) 0 0
\(623\) −15.6932 −0.628735
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −12.4830 −0.498524
\(628\) 0 0
\(629\) −9.04055 −0.360470
\(630\) 0 0
\(631\) 8.76890 0.349084 0.174542 0.984650i \(-0.444155\pi\)
0.174542 + 0.984650i \(0.444155\pi\)
\(632\) 0 0
\(633\) −19.4430 −0.772790
\(634\) 0 0
\(635\) −6.10356 −0.242213
\(636\) 0 0
\(637\) −59.6922 −2.36509
\(638\) 0 0
\(639\) 7.39702 0.292622
\(640\) 0 0
\(641\) −23.5072 −0.928478 −0.464239 0.885710i \(-0.653672\pi\)
−0.464239 + 0.885710i \(0.653672\pi\)
\(642\) 0 0
\(643\) −0.586064 −0.0231121 −0.0115561 0.999933i \(-0.503678\pi\)
−0.0115561 + 0.999933i \(0.503678\pi\)
\(644\) 0 0
\(645\) −3.39702 −0.133758
\(646\) 0 0
\(647\) −19.3970 −0.762576 −0.381288 0.924456i \(-0.624519\pi\)
−0.381288 + 0.924456i \(0.624519\pi\)
\(648\) 0 0
\(649\) −9.64960 −0.378780
\(650\) 0 0
\(651\) −13.5006 −0.529130
\(652\) 0 0
\(653\) 7.11506 0.278434 0.139217 0.990262i \(-0.455541\pi\)
0.139217 + 0.990262i \(0.455541\pi\)
\(654\) 0 0
\(655\) −4.60298 −0.179853
\(656\) 0 0
\(657\) −3.92549 −0.153148
\(658\) 0 0
\(659\) 23.8510 0.929103 0.464551 0.885546i \(-0.346216\pi\)
0.464551 + 0.885546i \(0.346216\pi\)
\(660\) 0 0
\(661\) 40.0756 1.55876 0.779379 0.626553i \(-0.215535\pi\)
0.779379 + 0.626553i \(0.215535\pi\)
\(662\) 0 0
\(663\) −4.55753 −0.177000
\(664\) 0 0
\(665\) 38.0296 1.47472
\(666\) 0 0
\(667\) 41.5466 1.60869
\(668\) 0 0
\(669\) 27.5011 1.06325
\(670\) 0 0
\(671\) 6.70654 0.258903
\(672\) 0 0
\(673\) −3.02416 −0.116573 −0.0582864 0.998300i \(-0.518564\pi\)
−0.0582864 + 0.998300i \(0.518564\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −0.113880 −0.00437676 −0.00218838 0.999998i \(-0.500697\pi\)
−0.00218838 + 0.999998i \(0.500697\pi\)
\(678\) 0 0
\(679\) 53.8993 2.06847
\(680\) 0 0
\(681\) −16.7295 −0.641077
\(682\) 0 0
\(683\) −17.5881 −0.672990 −0.336495 0.941685i \(-0.609241\pi\)
−0.336495 + 0.941685i \(0.609241\pi\)
\(684\) 0 0
\(685\) 7.44907 0.284614
\(686\) 0 0
\(687\) −10.8686 −0.414661
\(688\) 0 0
\(689\) −16.1335 −0.614637
\(690\) 0 0
\(691\) −0.602976 −0.0229383 −0.0114691 0.999934i \(-0.503651\pi\)
−0.0114691 + 0.999934i \(0.503651\pi\)
\(692\) 0 0
\(693\) −6.59690 −0.250596
\(694\) 0 0
\(695\) 1.56902 0.0595163
\(696\) 0 0
\(697\) 3.53996 0.134086
\(698\) 0 0
\(699\) 23.3975 0.884976
\(700\) 0 0
\(701\) 8.20139 0.309762 0.154881 0.987933i \(-0.450501\pi\)
0.154881 + 0.987933i \(0.450501\pi\)
\(702\) 0 0
\(703\) −76.6912 −2.89246
\(704\) 0 0
\(705\) 1.47153 0.0554210
\(706\) 0 0
\(707\) −31.8970 −1.19961
\(708\) 0 0
\(709\) −33.9551 −1.27521 −0.637605 0.770364i \(-0.720075\pi\)
−0.637605 + 0.770364i \(0.720075\pi\)
\(710\) 0 0
\(711\) −0.453964 −0.0170250
\(712\) 0 0
\(713\) 19.2992 0.722761
\(714\) 0 0
\(715\) −6.70654 −0.250810
\(716\) 0 0
\(717\) −28.4315 −1.06179
\(718\) 0 0
\(719\) 28.5187 1.06357 0.531784 0.846880i \(-0.321522\pi\)
0.531784 + 0.846880i \(0.321522\pi\)
\(720\) 0 0
\(721\) −20.2278 −0.753321
\(722\) 0 0
\(723\) 1.76348 0.0655845
\(724\) 0 0
\(725\) 6.48302 0.240773
\(726\) 0 0
\(727\) −14.6841 −0.544602 −0.272301 0.962212i \(-0.587785\pi\)
−0.272301 + 0.962212i \(0.587785\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.39702 0.125643
\(732\) 0 0
\(733\) −8.51156 −0.314382 −0.157191 0.987568i \(-0.550244\pi\)
−0.157191 + 0.987568i \(0.550244\pi\)
\(734\) 0 0
\(735\) 13.0975 0.483108
\(736\) 0 0
\(737\) 10.5369 0.388132
\(738\) 0 0
\(739\) 6.23011 0.229178 0.114589 0.993413i \(-0.463445\pi\)
0.114589 + 0.993413i \(0.463445\pi\)
\(740\) 0 0
\(741\) −38.6616 −1.42027
\(742\) 0 0
\(743\) 14.3791 0.527519 0.263759 0.964588i \(-0.415037\pi\)
0.263759 + 0.964588i \(0.415037\pi\)
\(744\) 0 0
\(745\) −22.5805 −0.827286
\(746\) 0 0
\(747\) 7.39702 0.270643
\(748\) 0 0
\(749\) 44.9333 1.64183
\(750\) 0 0
\(751\) 11.1277 0.406056 0.203028 0.979173i \(-0.434922\pi\)
0.203028 + 0.979173i \(0.434922\pi\)
\(752\) 0 0
\(753\) 13.4884 0.491546
\(754\) 0 0
\(755\) 18.5060 0.673503
\(756\) 0 0
\(757\) 18.5771 0.675197 0.337599 0.941290i \(-0.390385\pi\)
0.337599 + 0.941290i \(0.390385\pi\)
\(758\) 0 0
\(759\) 9.43032 0.342299
\(760\) 0 0
\(761\) 23.6956 0.858964 0.429482 0.903075i \(-0.358696\pi\)
0.429482 + 0.903075i \(0.358696\pi\)
\(762\) 0 0
\(763\) 53.8993 1.95129
\(764\) 0 0
\(765\) 1.00000 0.0361551
\(766\) 0 0
\(767\) −29.8861 −1.07913
\(768\) 0 0
\(769\) 17.8697 0.644399 0.322199 0.946672i \(-0.395578\pi\)
0.322199 + 0.946672i \(0.395578\pi\)
\(770\) 0 0
\(771\) 20.2301 0.728570
\(772\) 0 0
\(773\) 2.27589 0.0818582 0.0409291 0.999162i \(-0.486968\pi\)
0.0409291 + 0.999162i \(0.486968\pi\)
\(774\) 0 0
\(775\) 3.01149 0.108176
\(776\) 0 0
\(777\) −40.5290 −1.45397
\(778\) 0 0
\(779\) 30.0296 1.07592
\(780\) 0 0
\(781\) −10.8849 −0.389494
\(782\) 0 0
\(783\) −6.48302 −0.231684
\(784\) 0 0
\(785\) 7.05694 0.251873
\(786\) 0 0
\(787\) 1.68897 0.0602054 0.0301027 0.999547i \(-0.490417\pi\)
0.0301027 + 0.999547i \(0.490417\pi\)
\(788\) 0 0
\(789\) −0.505485 −0.0179957
\(790\) 0 0
\(791\) 68.8215 2.44701
\(792\) 0 0
\(793\) 20.7711 0.737602
\(794\) 0 0
\(795\) 3.53996 0.125550
\(796\) 0 0
\(797\) −47.0601 −1.66696 −0.833478 0.552553i \(-0.813654\pi\)
−0.833478 + 0.552553i \(0.813654\pi\)
\(798\) 0 0
\(799\) −1.47153 −0.0520590
\(800\) 0 0
\(801\) −3.50059 −0.123687
\(802\) 0 0
\(803\) 5.77648 0.203848
\(804\) 0 0
\(805\) −28.7295 −1.01258
\(806\) 0 0
\(807\) −20.5641 −0.723891
\(808\) 0 0
\(809\) −5.13804 −0.180644 −0.0903220 0.995913i \(-0.528790\pi\)
−0.0903220 + 0.995913i \(0.528790\pi\)
\(810\) 0 0
\(811\) 4.54147 0.159473 0.0797363 0.996816i \(-0.474592\pi\)
0.0797363 + 0.996816i \(0.474592\pi\)
\(812\) 0 0
\(813\) −25.1610 −0.882436
\(814\) 0 0
\(815\) −0.424906 −0.0148838
\(816\) 0 0
\(817\) 28.8170 1.00818
\(818\) 0 0
\(819\) −20.4315 −0.713934
\(820\) 0 0
\(821\) −41.0931 −1.43416 −0.717080 0.696991i \(-0.754522\pi\)
−0.717080 + 0.696991i \(0.754522\pi\)
\(822\) 0 0
\(823\) −12.9179 −0.450290 −0.225145 0.974325i \(-0.572286\pi\)
−0.225145 + 0.974325i \(0.572286\pi\)
\(824\) 0 0
\(825\) 1.47153 0.0512321
\(826\) 0 0
\(827\) 27.2377 0.947148 0.473574 0.880754i \(-0.342964\pi\)
0.473574 + 0.880754i \(0.342964\pi\)
\(828\) 0 0
\(829\) 37.1774 1.29123 0.645613 0.763665i \(-0.276602\pi\)
0.645613 + 0.763665i \(0.276602\pi\)
\(830\) 0 0
\(831\) −26.2531 −0.910710
\(832\) 0 0
\(833\) −13.0975 −0.453801
\(834\) 0 0
\(835\) 2.94306 0.101849
\(836\) 0 0
\(837\) −3.01149 −0.104092
\(838\) 0 0
\(839\) 44.6555 1.54168 0.770840 0.637029i \(-0.219837\pi\)
0.770840 + 0.637029i \(0.219837\pi\)
\(840\) 0 0
\(841\) 13.0296 0.449296
\(842\) 0 0
\(843\) 14.1950 0.488901
\(844\) 0 0
\(845\) −7.77106 −0.267333
\(846\) 0 0
\(847\) −39.6057 −1.36087
\(848\) 0 0
\(849\) −20.3921 −0.699856
\(850\) 0 0
\(851\) 57.9365 1.98604
\(852\) 0 0
\(853\) 12.8400 0.439634 0.219817 0.975541i \(-0.429454\pi\)
0.219817 + 0.975541i \(0.429454\pi\)
\(854\) 0 0
\(855\) 8.48302 0.290113
\(856\) 0 0
\(857\) −17.0340 −0.581869 −0.290934 0.956743i \(-0.593966\pi\)
−0.290934 + 0.956743i \(0.593966\pi\)
\(858\) 0 0
\(859\) −35.6792 −1.21736 −0.608679 0.793417i \(-0.708300\pi\)
−0.608679 + 0.793417i \(0.708300\pi\)
\(860\) 0 0
\(861\) 15.8697 0.540839
\(862\) 0 0
\(863\) 20.5065 0.698050 0.349025 0.937113i \(-0.386513\pi\)
0.349025 + 0.937113i \(0.386513\pi\)
\(864\) 0 0
\(865\) −11.5466 −0.392595
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 0.668022 0.0226611
\(870\) 0 0
\(871\) 32.6342 1.10577
\(872\) 0 0
\(873\) 12.0230 0.406916
\(874\) 0 0
\(875\) −4.48302 −0.151554
\(876\) 0 0
\(877\) 1.81161 0.0611739 0.0305869 0.999532i \(-0.490262\pi\)
0.0305869 + 0.999532i \(0.490262\pi\)
\(878\) 0 0
\(879\) 16.5060 0.556734
\(880\) 0 0
\(881\) 8.97905 0.302512 0.151256 0.988495i \(-0.451668\pi\)
0.151256 + 0.988495i \(0.451668\pi\)
\(882\) 0 0
\(883\) −3.54265 −0.119220 −0.0596098 0.998222i \(-0.518986\pi\)
−0.0596098 + 0.998222i \(0.518986\pi\)
\(884\) 0 0
\(885\) 6.55753 0.220429
\(886\) 0 0
\(887\) −12.8620 −0.431862 −0.215931 0.976409i \(-0.569279\pi\)
−0.215931 + 0.976409i \(0.569279\pi\)
\(888\) 0 0
\(889\) 27.3624 0.917706
\(890\) 0 0
\(891\) −1.47153 −0.0492981
\(892\) 0 0
\(893\) −12.4830 −0.417728
\(894\) 0 0
\(895\) −14.9431 −0.499491
\(896\) 0 0
\(897\) 29.2070 0.975193
\(898\) 0 0
\(899\) 19.5236 0.651148
\(900\) 0 0
\(901\) −3.53996 −0.117933
\(902\) 0 0
\(903\) 15.2289 0.506787
\(904\) 0 0
\(905\) −8.55753 −0.284462
\(906\) 0 0
\(907\) −3.56295 −0.118306 −0.0591529 0.998249i \(-0.518840\pi\)
−0.0591529 + 0.998249i \(0.518840\pi\)
\(908\) 0 0
\(909\) −7.11506 −0.235992
\(910\) 0 0
\(911\) 14.4376 0.478338 0.239169 0.970978i \(-0.423125\pi\)
0.239169 + 0.970978i \(0.423125\pi\)
\(912\) 0 0
\(913\) −10.8849 −0.360239
\(914\) 0 0
\(915\) −4.55753 −0.150667
\(916\) 0 0
\(917\) 20.6352 0.681436
\(918\) 0 0
\(919\) 20.2431 0.667759 0.333879 0.942616i \(-0.391642\pi\)
0.333879 + 0.942616i \(0.391642\pi\)
\(920\) 0 0
\(921\) 10.6260 0.350137
\(922\) 0 0
\(923\) −33.7121 −1.10965
\(924\) 0 0
\(925\) 9.04055 0.297251
\(926\) 0 0
\(927\) −4.51208 −0.148196
\(928\) 0 0
\(929\) 47.4369 1.55635 0.778177 0.628044i \(-0.216144\pi\)
0.778177 + 0.628044i \(0.216144\pi\)
\(930\) 0 0
\(931\) −111.106 −3.64136
\(932\) 0 0
\(933\) −10.5285 −0.344687
\(934\) 0 0
\(935\) −1.47153 −0.0481242
\(936\) 0 0
\(937\) −19.8706 −0.649144 −0.324572 0.945861i \(-0.605220\pi\)
−0.324572 + 0.945861i \(0.605220\pi\)
\(938\) 0 0
\(939\) −3.30344 −0.107804
\(940\) 0 0
\(941\) −36.6329 −1.19420 −0.597099 0.802168i \(-0.703680\pi\)
−0.597099 + 0.802168i \(0.703680\pi\)
\(942\) 0 0
\(943\) −22.6859 −0.738755
\(944\) 0 0
\(945\) 4.48302 0.145833
\(946\) 0 0
\(947\) −6.36698 −0.206899 −0.103449 0.994635i \(-0.532988\pi\)
−0.103449 + 0.994635i \(0.532988\pi\)
\(948\) 0 0
\(949\) 17.8906 0.580752
\(950\) 0 0
\(951\) −23.6956 −0.768381
\(952\) 0 0
\(953\) −35.6113 −1.15356 −0.576781 0.816899i \(-0.695691\pi\)
−0.576781 + 0.816899i \(0.695691\pi\)
\(954\) 0 0
\(955\) −5.44247 −0.176114
\(956\) 0 0
\(957\) 9.53996 0.308383
\(958\) 0 0
\(959\) −33.3943 −1.07836
\(960\) 0 0
\(961\) −21.9309 −0.707449
\(962\) 0 0
\(963\) 10.0230 0.322986
\(964\) 0 0
\(965\) 1.09207 0.0351550
\(966\) 0 0
\(967\) −12.9764 −0.417292 −0.208646 0.977991i \(-0.566906\pi\)
−0.208646 + 0.977991i \(0.566906\pi\)
\(968\) 0 0
\(969\) −8.48302 −0.272514
\(970\) 0 0
\(971\) 21.6496 0.694769 0.347384 0.937723i \(-0.387070\pi\)
0.347384 + 0.937723i \(0.387070\pi\)
\(972\) 0 0
\(973\) −7.03396 −0.225498
\(974\) 0 0
\(975\) 4.55753 0.145958
\(976\) 0 0
\(977\) 13.2289 0.423231 0.211616 0.977353i \(-0.432128\pi\)
0.211616 + 0.977353i \(0.432128\pi\)
\(978\) 0 0
\(979\) 5.15122 0.164634
\(980\) 0 0
\(981\) 12.0230 0.383864
\(982\) 0 0
\(983\) −34.3176 −1.09456 −0.547281 0.836949i \(-0.684337\pi\)
−0.547281 + 0.836949i \(0.684337\pi\)
\(984\) 0 0
\(985\) −13.0799 −0.416761
\(986\) 0 0
\(987\) −6.59690 −0.209982
\(988\) 0 0
\(989\) −21.7699 −0.692242
\(990\) 0 0
\(991\) 6.66750 0.211800 0.105900 0.994377i \(-0.466228\pi\)
0.105900 + 0.994377i \(0.466228\pi\)
\(992\) 0 0
\(993\) −15.4721 −0.490991
\(994\) 0 0
\(995\) −21.2710 −0.674336
\(996\) 0 0
\(997\) −44.3857 −1.40571 −0.702855 0.711333i \(-0.748092\pi\)
−0.702855 + 0.711333i \(0.748092\pi\)
\(998\) 0 0
\(999\) −9.04055 −0.286030
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.a.bt.1.4 4
4.3 odd 2 255.2.a.d.1.4 4
12.11 even 2 765.2.a.m.1.1 4
20.3 even 4 1275.2.b.k.1174.2 8
20.7 even 4 1275.2.b.k.1174.7 8
20.19 odd 2 1275.2.a.t.1.1 4
60.59 even 2 3825.2.a.bi.1.4 4
68.67 odd 2 4335.2.a.z.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.d.1.4 4 4.3 odd 2
765.2.a.m.1.1 4 12.11 even 2
1275.2.a.t.1.1 4 20.19 odd 2
1275.2.b.k.1174.2 8 20.3 even 4
1275.2.b.k.1174.7 8 20.7 even 4
3825.2.a.bi.1.4 4 60.59 even 2
4080.2.a.bt.1.4 4 1.1 even 1 trivial
4335.2.a.z.1.4 4 68.67 odd 2