Defining parameters
| Level: | \( N \) | \(=\) | \( 408 = 2^{3} \cdot 3 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 408.o (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 204 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(408, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 224 | 0 | 224 |
| Cusp forms | 208 | 0 | 208 |
| Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{4}^{\mathrm{old}}(408, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(408, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)