Properties

Label 408.4
Level 408
Weight 4
Dimension 5734
Nonzero newspaces 15
Sturm bound 36864
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 15 \)
Sturm bound: \(36864\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(408))\).

Total New Old
Modular forms 14208 5854 8354
Cusp forms 13440 5734 7706
Eisenstein series 768 120 648

Trace form

\( 5734 q - 4 q^{2} - 18 q^{3} - 72 q^{4} - 28 q^{5} + 12 q^{6} - 40 q^{7} + 152 q^{8} + 62 q^{9} - 104 q^{10} + 56 q^{11} + 96 q^{12} + 148 q^{13} + 200 q^{14} + 20 q^{15} + 160 q^{16} - 134 q^{17} - 364 q^{18}+ \cdots - 896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(408))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
408.4.a \(\chi_{408}(1, \cdot)\) 408.4.a.a 1 1
408.4.a.b 1
408.4.a.c 2
408.4.a.d 3
408.4.a.e 3
408.4.a.f 3
408.4.a.g 3
408.4.a.h 4
408.4.a.i 4
408.4.c \(\chi_{408}(169, \cdot)\) 408.4.c.a 2 1
408.4.c.b 6
408.4.c.c 6
408.4.c.d 12
408.4.e \(\chi_{408}(239, \cdot)\) None 0 1
408.4.f \(\chi_{408}(205, \cdot)\) 408.4.f.a 48 1
408.4.f.b 48
408.4.h \(\chi_{408}(203, \cdot)\) n/a 212 1
408.4.j \(\chi_{408}(35, \cdot)\) n/a 192 1
408.4.l \(\chi_{408}(373, \cdot)\) n/a 108 1
408.4.o \(\chi_{408}(407, \cdot)\) None 0 1
408.4.q \(\chi_{408}(251, \cdot)\) n/a 424 2
408.4.s \(\chi_{408}(13, \cdot)\) n/a 216 2
408.4.v \(\chi_{408}(217, \cdot)\) 408.4.v.a 24 2
408.4.v.b 28
408.4.x \(\chi_{408}(47, \cdot)\) None 0 2
408.4.ba \(\chi_{408}(25, \cdot)\) n/a 112 4
408.4.bb \(\chi_{408}(263, \cdot)\) None 0 4
408.4.bc \(\chi_{408}(229, \cdot)\) n/a 432 4
408.4.bd \(\chi_{408}(59, \cdot)\) n/a 848 4
408.4.bh \(\chi_{408}(41, \cdot)\) n/a 432 8
408.4.bi \(\chi_{408}(7, \cdot)\) None 0 8
408.4.bl \(\chi_{408}(91, \cdot)\) n/a 864 8
408.4.bm \(\chi_{408}(5, \cdot)\) n/a 1696 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(408))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(408)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(204))\)\(^{\oplus 2}\)