Properties

Label 408.2.ba.b.121.3
Level $408$
Weight $2$
Character 408.121
Analytic conductor $3.258$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [408,2,Mod(25,408)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(408, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("408.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 408.ba (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.25789640247\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 40 x^{14} - 112 x^{13} + 166 x^{12} - 328 x^{11} + 728 x^{10} - 368 x^{9} + \cdots + 12689 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 121.3
Root \(2.30326 - 0.259235i\) of defining polynomial
Character \(\chi\) \(=\) 408.121
Dual form 408.2.ba.b.145.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 - 0.382683i) q^{3} +(0.116792 + 0.281961i) q^{5} +(1.76284 - 4.25587i) q^{7} +(0.707107 - 0.707107i) q^{9} +(-1.38172 - 0.572328i) q^{11} +0.482039i q^{13} +(0.215804 + 0.215804i) q^{15} +(-3.68244 - 1.85462i) q^{17} +(0.608716 + 0.608716i) q^{19} -4.60653i q^{21} +(7.19822 + 2.98160i) q^{23} +(3.46967 - 3.46967i) q^{25} +(0.382683 - 0.923880i) q^{27} +(1.46885 + 3.54612i) q^{29} +(2.31123 - 0.957343i) q^{31} -1.49557 q^{33} +1.40588 q^{35} +(-9.91949 + 4.10879i) q^{37} +(0.184468 + 0.445346i) q^{39} +(-1.00000 + 2.41422i) q^{41} +(6.58440 - 6.58440i) q^{43} +(0.281961 + 0.116792i) q^{45} +4.07637i q^{47} +(-10.0551 - 10.0551i) q^{49} +(-4.11187 - 0.304232i) q^{51} +(2.85393 + 2.85393i) q^{53} -0.456435i q^{55} +(0.795325 + 0.329435i) q^{57} +(-4.56250 + 4.56250i) q^{59} +(-4.08150 + 9.85361i) q^{61} +(-1.76284 - 4.25587i) q^{63} +(-0.135916 + 0.0562983i) q^{65} +8.51383 q^{67} +7.79129 q^{69} +(-13.2795 + 5.50056i) q^{71} +(1.02252 + 2.46859i) q^{73} +(1.87777 - 4.53335i) q^{75} +(-4.87151 + 4.87151i) q^{77} +(8.89610 + 3.68488i) q^{79} -1.00000i q^{81} +(0.329900 + 0.329900i) q^{83} +(0.0928492 - 1.25491i) q^{85} +(2.71409 + 2.71409i) q^{87} +7.33259i q^{89} +(2.05150 + 0.849758i) q^{91} +(1.76894 - 1.76894i) q^{93} +(-0.100541 + 0.242727i) q^{95} +(-1.02663 - 2.47851i) q^{97} +(-1.38172 + 0.572328i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} - 16 q^{17} + 8 q^{19} + 8 q^{23} + 24 q^{25} + 8 q^{31} + 24 q^{33} + 16 q^{35} - 8 q^{37} + 24 q^{39} - 8 q^{41} + 8 q^{43} + 8 q^{45} - 40 q^{49} - 8 q^{51} - 24 q^{53} + 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/408\mathbb{Z}\right)^\times\).

\(n\) \(103\) \(137\) \(205\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.923880 0.382683i 0.533402 0.220942i
\(4\) 0 0
\(5\) 0.116792 + 0.281961i 0.0522310 + 0.126097i 0.947841 0.318743i \(-0.103261\pi\)
−0.895610 + 0.444840i \(0.853261\pi\)
\(6\) 0 0
\(7\) 1.76284 4.25587i 0.666291 1.60857i −0.121475 0.992595i \(-0.538762\pi\)
0.787766 0.615975i \(-0.211238\pi\)
\(8\) 0 0
\(9\) 0.707107 0.707107i 0.235702 0.235702i
\(10\) 0 0
\(11\) −1.38172 0.572328i −0.416605 0.172563i 0.164527 0.986373i \(-0.447390\pi\)
−0.581132 + 0.813809i \(0.697390\pi\)
\(12\) 0 0
\(13\) 0.482039i 0.133693i 0.997763 + 0.0668467i \(0.0212939\pi\)
−0.997763 + 0.0668467i \(0.978706\pi\)
\(14\) 0 0
\(15\) 0.215804 + 0.215804i 0.0557203 + 0.0557203i
\(16\) 0 0
\(17\) −3.68244 1.85462i −0.893124 0.449811i
\(18\) 0 0
\(19\) 0.608716 + 0.608716i 0.139649 + 0.139649i 0.773475 0.633826i \(-0.218517\pi\)
−0.633826 + 0.773475i \(0.718517\pi\)
\(20\) 0 0
\(21\) 4.60653i 1.00523i
\(22\) 0 0
\(23\) 7.19822 + 2.98160i 1.50093 + 0.621706i 0.973663 0.227992i \(-0.0732160\pi\)
0.527269 + 0.849698i \(0.323216\pi\)
\(24\) 0 0
\(25\) 3.46967 3.46967i 0.693934 0.693934i
\(26\) 0 0
\(27\) 0.382683 0.923880i 0.0736475 0.177801i
\(28\) 0 0
\(29\) 1.46885 + 3.54612i 0.272759 + 0.658499i 0.999599 0.0283080i \(-0.00901192\pi\)
−0.726840 + 0.686807i \(0.759012\pi\)
\(30\) 0 0
\(31\) 2.31123 0.957343i 0.415109 0.171944i −0.165347 0.986235i \(-0.552874\pi\)
0.580456 + 0.814292i \(0.302874\pi\)
\(32\) 0 0
\(33\) −1.49557 −0.260345
\(34\) 0 0
\(35\) 1.40588 0.237637
\(36\) 0 0
\(37\) −9.91949 + 4.10879i −1.63075 + 0.675481i −0.995316 0.0966712i \(-0.969180\pi\)
−0.635438 + 0.772152i \(0.719180\pi\)
\(38\) 0 0
\(39\) 0.184468 + 0.445346i 0.0295386 + 0.0713124i
\(40\) 0 0
\(41\) −1.00000 + 2.41422i −0.156174 + 0.377038i −0.982528 0.186113i \(-0.940411\pi\)
0.826354 + 0.563151i \(0.190411\pi\)
\(42\) 0 0
\(43\) 6.58440 6.58440i 1.00411 1.00411i 0.00411989 0.999992i \(-0.498689\pi\)
0.999992 0.00411989i \(-0.00131140\pi\)
\(44\) 0 0
\(45\) 0.281961 + 0.116792i 0.0420323 + 0.0174103i
\(46\) 0 0
\(47\) 4.07637i 0.594600i 0.954784 + 0.297300i \(0.0960862\pi\)
−0.954784 + 0.297300i \(0.903914\pi\)
\(48\) 0 0
\(49\) −10.0551 10.0551i −1.43644 1.43644i
\(50\) 0 0
\(51\) −4.11187 0.304232i −0.575776 0.0426010i
\(52\) 0 0
\(53\) 2.85393 + 2.85393i 0.392018 + 0.392018i 0.875406 0.483388i \(-0.160594\pi\)
−0.483388 + 0.875406i \(0.660594\pi\)
\(54\) 0 0
\(55\) 0.456435i 0.0615457i
\(56\) 0 0
\(57\) 0.795325 + 0.329435i 0.105343 + 0.0436347i
\(58\) 0 0
\(59\) −4.56250 + 4.56250i −0.593987 + 0.593987i −0.938706 0.344719i \(-0.887974\pi\)
0.344719 + 0.938706i \(0.387974\pi\)
\(60\) 0 0
\(61\) −4.08150 + 9.85361i −0.522583 + 1.26163i 0.413711 + 0.910408i \(0.364232\pi\)
−0.936294 + 0.351218i \(0.885768\pi\)
\(62\) 0 0
\(63\) −1.76284 4.25587i −0.222097 0.536190i
\(64\) 0 0
\(65\) −0.135916 + 0.0562983i −0.0168583 + 0.00698295i
\(66\) 0 0
\(67\) 8.51383 1.04013 0.520065 0.854127i \(-0.325908\pi\)
0.520065 + 0.854127i \(0.325908\pi\)
\(68\) 0 0
\(69\) 7.79129 0.937962
\(70\) 0 0
\(71\) −13.2795 + 5.50056i −1.57599 + 0.652796i −0.987772 0.155906i \(-0.950170\pi\)
−0.588218 + 0.808702i \(0.700170\pi\)
\(72\) 0 0
\(73\) 1.02252 + 2.46859i 0.119677 + 0.288926i 0.972354 0.233513i \(-0.0750221\pi\)
−0.852676 + 0.522439i \(0.825022\pi\)
\(74\) 0 0
\(75\) 1.87777 4.53335i 0.216827 0.523466i
\(76\) 0 0
\(77\) −4.87151 + 4.87151i −0.555161 + 0.555161i
\(78\) 0 0
\(79\) 8.89610 + 3.68488i 1.00089 + 0.414582i 0.822123 0.569310i \(-0.192789\pi\)
0.178766 + 0.983892i \(0.442789\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) 0.329900 + 0.329900i 0.0362112 + 0.0362112i 0.724981 0.688769i \(-0.241849\pi\)
−0.688769 + 0.724981i \(0.741849\pi\)
\(84\) 0 0
\(85\) 0.0928492 1.25491i 0.0100709 0.136114i
\(86\) 0 0
\(87\) 2.71409 + 2.71409i 0.290981 + 0.290981i
\(88\) 0 0
\(89\) 7.33259i 0.777253i 0.921395 + 0.388626i \(0.127050\pi\)
−0.921395 + 0.388626i \(0.872950\pi\)
\(90\) 0 0
\(91\) 2.05150 + 0.849758i 0.215055 + 0.0890788i
\(92\) 0 0
\(93\) 1.76894 1.76894i 0.183430 0.183430i
\(94\) 0 0
\(95\) −0.100541 + 0.242727i −0.0103153 + 0.0249033i
\(96\) 0 0
\(97\) −1.02663 2.47851i −0.104239 0.251654i 0.863152 0.504945i \(-0.168487\pi\)
−0.967390 + 0.253291i \(0.918487\pi\)
\(98\) 0 0
\(99\) −1.38172 + 0.572328i −0.138868 + 0.0575212i
\(100\) 0 0
\(101\) −0.478543 −0.0476168 −0.0238084 0.999717i \(-0.507579\pi\)
−0.0238084 + 0.999717i \(0.507579\pi\)
\(102\) 0 0
\(103\) −11.7997 −1.16266 −0.581331 0.813667i \(-0.697468\pi\)
−0.581331 + 0.813667i \(0.697468\pi\)
\(104\) 0 0
\(105\) 1.29886 0.538006i 0.126756 0.0525040i
\(106\) 0 0
\(107\) 3.20308 + 7.73292i 0.309654 + 0.747570i 0.999716 + 0.0238203i \(0.00758296\pi\)
−0.690063 + 0.723750i \(0.742417\pi\)
\(108\) 0 0
\(109\) −3.40018 + 8.20877i −0.325679 + 0.786258i 0.673225 + 0.739438i \(0.264909\pi\)
−0.998903 + 0.0468198i \(0.985091\pi\)
\(110\) 0 0
\(111\) −7.59205 + 7.59205i −0.720606 + 0.720606i
\(112\) 0 0
\(113\) −10.8462 4.49265i −1.02033 0.422633i −0.191115 0.981568i \(-0.561210\pi\)
−0.829212 + 0.558934i \(0.811210\pi\)
\(114\) 0 0
\(115\) 2.37784i 0.221735i
\(116\) 0 0
\(117\) 0.340853 + 0.340853i 0.0315119 + 0.0315119i
\(118\) 0 0
\(119\) −14.3846 + 12.4026i −1.31863 + 1.13695i
\(120\) 0 0
\(121\) −6.19658 6.19658i −0.563325 0.563325i
\(122\) 0 0
\(123\) 2.61313i 0.235618i
\(124\) 0 0
\(125\) 2.79335 + 1.15704i 0.249845 + 0.103489i
\(126\) 0 0
\(127\) 1.71765 1.71765i 0.152417 0.152417i −0.626780 0.779197i \(-0.715627\pi\)
0.779197 + 0.626780i \(0.215627\pi\)
\(128\) 0 0
\(129\) 3.56345 8.60293i 0.313744 0.757446i
\(130\) 0 0
\(131\) −7.44022 17.9623i −0.650055 1.56937i −0.812697 0.582687i \(-0.802001\pi\)
0.162642 0.986685i \(-0.447999\pi\)
\(132\) 0 0
\(133\) 3.66369 1.51755i 0.317682 0.131588i
\(134\) 0 0
\(135\) 0.305192 0.0262668
\(136\) 0 0
\(137\) 11.3855 0.972728 0.486364 0.873756i \(-0.338323\pi\)
0.486364 + 0.873756i \(0.338323\pi\)
\(138\) 0 0
\(139\) 0.434226 0.179862i 0.0368306 0.0152557i −0.364192 0.931324i \(-0.618655\pi\)
0.401023 + 0.916068i \(0.368655\pi\)
\(140\) 0 0
\(141\) 1.55996 + 3.76608i 0.131372 + 0.317161i
\(142\) 0 0
\(143\) 0.275884 0.666044i 0.0230706 0.0556974i
\(144\) 0 0
\(145\) −0.828318 + 0.828318i −0.0687881 + 0.0687881i
\(146\) 0 0
\(147\) −13.1376 5.44179i −1.08357 0.448831i
\(148\) 0 0
\(149\) 7.98133i 0.653856i 0.945049 + 0.326928i \(0.106013\pi\)
−0.945049 + 0.326928i \(0.893987\pi\)
\(150\) 0 0
\(151\) −6.32113 6.32113i −0.514406 0.514406i 0.401467 0.915873i \(-0.368500\pi\)
−0.915873 + 0.401467i \(0.868500\pi\)
\(152\) 0 0
\(153\) −3.91529 + 1.29247i −0.316533 + 0.104490i
\(154\) 0 0
\(155\) 0.539867 + 0.539867i 0.0433632 + 0.0433632i
\(156\) 0 0
\(157\) 17.6946i 1.41218i 0.708123 + 0.706090i \(0.249542\pi\)
−0.708123 + 0.706090i \(0.750458\pi\)
\(158\) 0 0
\(159\) 3.72884 + 1.54454i 0.295716 + 0.122490i
\(160\) 0 0
\(161\) 25.3786 25.3786i 2.00012 2.00012i
\(162\) 0 0
\(163\) −5.18199 + 12.5104i −0.405885 + 0.979892i 0.580324 + 0.814386i \(0.302926\pi\)
−0.986209 + 0.165507i \(0.947074\pi\)
\(164\) 0 0
\(165\) −0.174670 0.421691i −0.0135981 0.0328286i
\(166\) 0 0
\(167\) 17.8198 7.38120i 1.37894 0.571174i 0.434740 0.900556i \(-0.356840\pi\)
0.944197 + 0.329382i \(0.106840\pi\)
\(168\) 0 0
\(169\) 12.7676 0.982126
\(170\) 0 0
\(171\) 0.860854 0.0658311
\(172\) 0 0
\(173\) 20.3010 8.40895i 1.54346 0.639321i 0.561338 0.827586i \(-0.310287\pi\)
0.982118 + 0.188266i \(0.0602866\pi\)
\(174\) 0 0
\(175\) −8.65001 20.8830i −0.653879 1.57860i
\(176\) 0 0
\(177\) −2.46921 + 5.96119i −0.185597 + 0.448071i
\(178\) 0 0
\(179\) −10.5117 + 10.5117i −0.785685 + 0.785685i −0.980784 0.195099i \(-0.937497\pi\)
0.195099 + 0.980784i \(0.437497\pi\)
\(180\) 0 0
\(181\) 15.0642 + 6.23981i 1.11972 + 0.463801i 0.864273 0.503023i \(-0.167779\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(182\) 0 0
\(183\) 10.6655i 0.788414i
\(184\) 0 0
\(185\) −2.31704 2.31704i −0.170352 0.170352i
\(186\) 0 0
\(187\) 4.02667 + 4.67013i 0.294459 + 0.341514i
\(188\) 0 0
\(189\) −3.25731 3.25731i −0.236934 0.236934i
\(190\) 0 0
\(191\) 17.6217i 1.27506i −0.770425 0.637530i \(-0.779956\pi\)
0.770425 0.637530i \(-0.220044\pi\)
\(192\) 0 0
\(193\) 3.04507 + 1.26131i 0.219189 + 0.0907911i 0.489576 0.871961i \(-0.337152\pi\)
−0.270387 + 0.962752i \(0.587152\pi\)
\(194\) 0 0
\(195\) −0.104026 + 0.104026i −0.00744944 + 0.00744944i
\(196\) 0 0
\(197\) 0.807382 1.94919i 0.0575236 0.138874i −0.892505 0.451038i \(-0.851054\pi\)
0.950028 + 0.312164i \(0.101054\pi\)
\(198\) 0 0
\(199\) −8.78628 21.2119i −0.622843 1.50367i −0.848351 0.529434i \(-0.822404\pi\)
0.225509 0.974241i \(-0.427596\pi\)
\(200\) 0 0
\(201\) 7.86575 3.25810i 0.554807 0.229809i
\(202\) 0 0
\(203\) 17.6812 1.24098
\(204\) 0 0
\(205\) −0.797509 −0.0557004
\(206\) 0 0
\(207\) 7.19822 2.98160i 0.500311 0.207235i
\(208\) 0 0
\(209\) −0.492691 1.18946i −0.0340802 0.0822768i
\(210\) 0 0
\(211\) 3.78592 9.14001i 0.260633 0.629225i −0.738345 0.674424i \(-0.764392\pi\)
0.998978 + 0.0451990i \(0.0143922\pi\)
\(212\) 0 0
\(213\) −10.1637 + 10.1637i −0.696406 + 0.696406i
\(214\) 0 0
\(215\) 2.62555 + 1.08754i 0.179061 + 0.0741695i
\(216\) 0 0
\(217\) 11.5239i 0.782297i
\(218\) 0 0
\(219\) 1.88938 + 1.88938i 0.127672 + 0.127672i
\(220\) 0 0
\(221\) 0.893997 1.77508i 0.0601367 0.119405i
\(222\) 0 0
\(223\) 8.51112 + 8.51112i 0.569947 + 0.569947i 0.932113 0.362167i \(-0.117963\pi\)
−0.362167 + 0.932113i \(0.617963\pi\)
\(224\) 0 0
\(225\) 4.90686i 0.327124i
\(226\) 0 0
\(227\) −25.2633 10.4644i −1.67678 0.694546i −0.677618 0.735414i \(-0.736988\pi\)
−0.999165 + 0.0408684i \(0.986988\pi\)
\(228\) 0 0
\(229\) 12.0421 12.0421i 0.795763 0.795763i −0.186661 0.982424i \(-0.559767\pi\)
0.982424 + 0.186661i \(0.0597666\pi\)
\(230\) 0 0
\(231\) −2.63644 + 6.36494i −0.173465 + 0.418782i
\(232\) 0 0
\(233\) −9.87784 23.8472i −0.647119 1.56228i −0.816886 0.576799i \(-0.804302\pi\)
0.169767 0.985484i \(-0.445698\pi\)
\(234\) 0 0
\(235\) −1.14938 + 0.476088i −0.0749772 + 0.0310566i
\(236\) 0 0
\(237\) 9.62907 0.625475
\(238\) 0 0
\(239\) 10.6595 0.689503 0.344752 0.938694i \(-0.387963\pi\)
0.344752 + 0.938694i \(0.387963\pi\)
\(240\) 0 0
\(241\) −15.7902 + 6.54053i −1.01714 + 0.421312i −0.828054 0.560648i \(-0.810552\pi\)
−0.189084 + 0.981961i \(0.560552\pi\)
\(242\) 0 0
\(243\) −0.382683 0.923880i −0.0245492 0.0592669i
\(244\) 0 0
\(245\) 1.66079 4.00951i 0.106104 0.256158i
\(246\) 0 0
\(247\) −0.293425 + 0.293425i −0.0186702 + 0.0186702i
\(248\) 0 0
\(249\) 0.431035 + 0.178541i 0.0273157 + 0.0113145i
\(250\) 0 0
\(251\) 17.8022i 1.12367i −0.827250 0.561834i \(-0.810096\pi\)
0.827250 0.561834i \(-0.189904\pi\)
\(252\) 0 0
\(253\) −8.23949 8.23949i −0.518012 0.518012i
\(254\) 0 0
\(255\) −0.394452 1.19492i −0.0247015 0.0748287i
\(256\) 0 0
\(257\) −7.48656 7.48656i −0.466999 0.466999i 0.433942 0.900941i \(-0.357122\pi\)
−0.900941 + 0.433942i \(0.857122\pi\)
\(258\) 0 0
\(259\) 49.4593i 3.07325i
\(260\) 0 0
\(261\) 3.54612 + 1.46885i 0.219500 + 0.0909197i
\(262\) 0 0
\(263\) 4.23145 4.23145i 0.260922 0.260922i −0.564507 0.825429i \(-0.690933\pi\)
0.825429 + 0.564507i \(0.190933\pi\)
\(264\) 0 0
\(265\) −0.471381 + 1.13801i −0.0289567 + 0.0699076i
\(266\) 0 0
\(267\) 2.80606 + 6.77443i 0.171728 + 0.414588i
\(268\) 0 0
\(269\) −8.18727 + 3.39128i −0.499186 + 0.206770i −0.618047 0.786141i \(-0.712076\pi\)
0.118861 + 0.992911i \(0.462076\pi\)
\(270\) 0 0
\(271\) 30.2531 1.83774 0.918871 0.394558i \(-0.129102\pi\)
0.918871 + 0.394558i \(0.129102\pi\)
\(272\) 0 0
\(273\) 2.22052 0.134392
\(274\) 0 0
\(275\) −6.77992 + 2.80833i −0.408844 + 0.169349i
\(276\) 0 0
\(277\) 7.29819 + 17.6194i 0.438506 + 1.05865i 0.976465 + 0.215676i \(0.0691955\pi\)
−0.537959 + 0.842971i \(0.680804\pi\)
\(278\) 0 0
\(279\) 0.957343 2.31123i 0.0573146 0.138370i
\(280\) 0 0
\(281\) 6.44462 6.44462i 0.384454 0.384454i −0.488250 0.872704i \(-0.662365\pi\)
0.872704 + 0.488250i \(0.162365\pi\)
\(282\) 0 0
\(283\) −17.4877 7.24366i −1.03954 0.430591i −0.203392 0.979097i \(-0.565197\pi\)
−0.836146 + 0.548507i \(0.815197\pi\)
\(284\) 0 0
\(285\) 0.262726i 0.0155626i
\(286\) 0 0
\(287\) 8.51178 + 8.51178i 0.502434 + 0.502434i
\(288\) 0 0
\(289\) 10.1208 + 13.6590i 0.595341 + 0.803473i
\(290\) 0 0
\(291\) −1.89697 1.89697i −0.111202 0.111202i
\(292\) 0 0
\(293\) 16.4534i 0.961217i 0.876935 + 0.480608i \(0.159584\pi\)
−0.876935 + 0.480608i \(0.840416\pi\)
\(294\) 0 0
\(295\) −1.81931 0.753583i −0.105924 0.0438753i
\(296\) 0 0
\(297\) −1.05752 + 1.05752i −0.0613638 + 0.0613638i
\(298\) 0 0
\(299\) −1.43725 + 3.46982i −0.0831181 + 0.200665i
\(300\) 0 0
\(301\) −16.4151 39.6296i −0.946152 2.28421i
\(302\) 0 0
\(303\) −0.442116 + 0.183130i −0.0253989 + 0.0105206i
\(304\) 0 0
\(305\) −3.25502 −0.186382
\(306\) 0 0
\(307\) 19.7615 1.12785 0.563925 0.825826i \(-0.309291\pi\)
0.563925 + 0.825826i \(0.309291\pi\)
\(308\) 0 0
\(309\) −10.9015 + 4.51556i −0.620166 + 0.256881i
\(310\) 0 0
\(311\) −4.61187 11.1340i −0.261515 0.631353i 0.737518 0.675328i \(-0.235998\pi\)
−0.999033 + 0.0439747i \(0.985998\pi\)
\(312\) 0 0
\(313\) −9.74292 + 23.5215i −0.550702 + 1.32951i 0.366250 + 0.930516i \(0.380642\pi\)
−0.916952 + 0.398997i \(0.869358\pi\)
\(314\) 0 0
\(315\) 0.994105 0.994105i 0.0560115 0.0560115i
\(316\) 0 0
\(317\) −11.1706 4.62701i −0.627403 0.259879i 0.0462463 0.998930i \(-0.485274\pi\)
−0.673649 + 0.739051i \(0.735274\pi\)
\(318\) 0 0
\(319\) 5.74043i 0.321402i
\(320\) 0 0
\(321\) 5.91852 + 5.91852i 0.330340 + 0.330340i
\(322\) 0 0
\(323\) −1.11263 3.37050i −0.0619083 0.187539i
\(324\) 0 0
\(325\) 1.67252 + 1.67252i 0.0927745 + 0.0927745i
\(326\) 0 0
\(327\) 8.88511i 0.491348i
\(328\) 0 0
\(329\) 17.3485 + 7.18600i 0.956455 + 0.396177i
\(330\) 0 0
\(331\) −3.55301 + 3.55301i −0.195291 + 0.195291i −0.797978 0.602687i \(-0.794097\pi\)
0.602687 + 0.797978i \(0.294097\pi\)
\(332\) 0 0
\(333\) −4.10879 + 9.91949i −0.225160 + 0.543585i
\(334\) 0 0
\(335\) 0.994348 + 2.40057i 0.0543270 + 0.131157i
\(336\) 0 0
\(337\) −21.1770 + 8.77178i −1.15358 + 0.477830i −0.875733 0.482795i \(-0.839622\pi\)
−0.277849 + 0.960625i \(0.589622\pi\)
\(338\) 0 0
\(339\) −11.7399 −0.637622
\(340\) 0 0
\(341\) −3.74139 −0.202608
\(342\) 0 0
\(343\) −30.7277 + 12.7278i −1.65914 + 0.687239i
\(344\) 0 0
\(345\) 0.909961 + 2.19684i 0.0489907 + 0.118274i
\(346\) 0 0
\(347\) 9.08405 21.9308i 0.487658 1.17731i −0.468238 0.883602i \(-0.655111\pi\)
0.955895 0.293707i \(-0.0948890\pi\)
\(348\) 0 0
\(349\) 0.813560 0.813560i 0.0435488 0.0435488i −0.684997 0.728546i \(-0.740197\pi\)
0.728546 + 0.684997i \(0.240197\pi\)
\(350\) 0 0
\(351\) 0.445346 + 0.184468i 0.0237708 + 0.00984619i
\(352\) 0 0
\(353\) 26.9955i 1.43683i 0.695616 + 0.718413i \(0.255131\pi\)
−0.695616 + 0.718413i \(0.744869\pi\)
\(354\) 0 0
\(355\) −3.10189 3.10189i −0.164631 0.164631i
\(356\) 0 0
\(357\) −8.54334 + 16.9633i −0.452161 + 0.897792i
\(358\) 0 0
\(359\) −1.99896 1.99896i −0.105501 0.105501i 0.652386 0.757887i \(-0.273768\pi\)
−0.757887 + 0.652386i \(0.773768\pi\)
\(360\) 0 0
\(361\) 18.2589i 0.960996i
\(362\) 0 0
\(363\) −8.09622 3.35356i −0.424941 0.176016i
\(364\) 0 0
\(365\) −0.576623 + 0.576623i −0.0301818 + 0.0301818i
\(366\) 0 0
\(367\) −6.60126 + 15.9369i −0.344583 + 0.831897i 0.652657 + 0.757654i \(0.273654\pi\)
−0.997240 + 0.0742438i \(0.976346\pi\)
\(368\) 0 0
\(369\) 1.00000 + 2.41422i 0.0520581 + 0.125679i
\(370\) 0 0
\(371\) 17.1770 7.11495i 0.891785 0.369390i
\(372\) 0 0
\(373\) 1.88240 0.0974672 0.0487336 0.998812i \(-0.484481\pi\)
0.0487336 + 0.998812i \(0.484481\pi\)
\(374\) 0 0
\(375\) 3.02350 0.156133
\(376\) 0 0
\(377\) −1.70937 + 0.708044i −0.0880370 + 0.0364661i
\(378\) 0 0
\(379\) 8.53921 + 20.6155i 0.438630 + 1.05895i 0.976422 + 0.215869i \(0.0692584\pi\)
−0.537792 + 0.843077i \(0.680742\pi\)
\(380\) 0 0
\(381\) 0.929586 2.24422i 0.0476241 0.114975i
\(382\) 0 0
\(383\) −14.5167 + 14.5167i −0.741770 + 0.741770i −0.972918 0.231149i \(-0.925752\pi\)
0.231149 + 0.972918i \(0.425752\pi\)
\(384\) 0 0
\(385\) −1.94253 0.804623i −0.0990006 0.0410074i
\(386\) 0 0
\(387\) 9.31175i 0.473343i
\(388\) 0 0
\(389\) −18.9186 18.9186i −0.959213 0.959213i 0.0399875 0.999200i \(-0.487268\pi\)
−0.999200 + 0.0399875i \(0.987268\pi\)
\(390\) 0 0
\(391\) −20.9773 24.3295i −1.06087 1.23040i
\(392\) 0 0
\(393\) −13.7477 13.7477i −0.693482 0.693482i
\(394\) 0 0
\(395\) 2.93872i 0.147863i
\(396\) 0 0
\(397\) 8.39311 + 3.47654i 0.421238 + 0.174482i 0.583225 0.812310i \(-0.301790\pi\)
−0.161988 + 0.986793i \(0.551790\pi\)
\(398\) 0 0
\(399\) 2.80406 2.80406i 0.140379 0.140379i
\(400\) 0 0
\(401\) −0.957292 + 2.31111i −0.0478049 + 0.115411i −0.945978 0.324231i \(-0.894895\pi\)
0.898173 + 0.439642i \(0.144895\pi\)
\(402\) 0 0
\(403\) 0.461476 + 1.11410i 0.0229878 + 0.0554974i
\(404\) 0 0
\(405\) 0.281961 0.116792i 0.0140108 0.00580345i
\(406\) 0 0
\(407\) 16.0576 0.795944
\(408\) 0 0
\(409\) −2.84589 −0.140720 −0.0703600 0.997522i \(-0.522415\pi\)
−0.0703600 + 0.997522i \(0.522415\pi\)
\(410\) 0 0
\(411\) 10.5188 4.35704i 0.518855 0.214917i
\(412\) 0 0
\(413\) 11.3745 + 27.4604i 0.559701 + 1.35124i
\(414\) 0 0
\(415\) −0.0544892 + 0.131549i −0.00267477 + 0.00645747i
\(416\) 0 0
\(417\) 0.332342 0.332342i 0.0162749 0.0162749i
\(418\) 0 0
\(419\) −2.76137 1.14380i −0.134902 0.0558782i 0.314211 0.949353i \(-0.398260\pi\)
−0.449113 + 0.893475i \(0.648260\pi\)
\(420\) 0 0
\(421\) 28.5480i 1.39134i 0.718359 + 0.695672i \(0.244893\pi\)
−0.718359 + 0.695672i \(0.755107\pi\)
\(422\) 0 0
\(423\) 2.88243 + 2.88243i 0.140149 + 0.140149i
\(424\) 0 0
\(425\) −19.2118 + 6.34196i −0.931909 + 0.307630i
\(426\) 0 0
\(427\) 34.7407 + 34.7407i 1.68122 + 1.68122i
\(428\) 0 0
\(429\) 0.720921i 0.0348064i
\(430\) 0 0
\(431\) 20.5780 + 8.52369i 0.991208 + 0.410572i 0.818566 0.574413i \(-0.194770\pi\)
0.172642 + 0.984985i \(0.444770\pi\)
\(432\) 0 0
\(433\) −1.70878 + 1.70878i −0.0821186 + 0.0821186i −0.746973 0.664854i \(-0.768494\pi\)
0.664854 + 0.746973i \(0.268494\pi\)
\(434\) 0 0
\(435\) −0.448283 + 1.08225i −0.0214935 + 0.0518899i
\(436\) 0 0
\(437\) 2.56672 + 6.19661i 0.122783 + 0.296424i
\(438\) 0 0
\(439\) −11.4570 + 4.74566i −0.546815 + 0.226498i −0.638950 0.769248i \(-0.720631\pi\)
0.0921351 + 0.995747i \(0.470631\pi\)
\(440\) 0 0
\(441\) −14.2201 −0.677146
\(442\) 0 0
\(443\) 35.9225 1.70673 0.853366 0.521312i \(-0.174557\pi\)
0.853366 + 0.521312i \(0.174557\pi\)
\(444\) 0 0
\(445\) −2.06750 + 0.856389i −0.0980091 + 0.0405967i
\(446\) 0 0
\(447\) 3.05432 + 7.37379i 0.144465 + 0.348768i
\(448\) 0 0
\(449\) 14.0143 33.8336i 0.661378 1.59671i −0.134267 0.990945i \(-0.542868\pi\)
0.795645 0.605763i \(-0.207132\pi\)
\(450\) 0 0
\(451\) 2.76345 2.76345i 0.130126 0.130126i
\(452\) 0 0
\(453\) −8.25896 3.42097i −0.388040 0.160731i
\(454\) 0 0
\(455\) 0.677687i 0.0317705i
\(456\) 0 0
\(457\) 6.37867 + 6.37867i 0.298382 + 0.298382i 0.840380 0.541998i \(-0.182332\pi\)
−0.541998 + 0.840380i \(0.682332\pi\)
\(458\) 0 0
\(459\) −3.12265 + 2.69240i −0.145753 + 0.125671i
\(460\) 0 0
\(461\) −25.4220 25.4220i −1.18402 1.18402i −0.978693 0.205329i \(-0.934174\pi\)
−0.205329 0.978693i \(-0.565826\pi\)
\(462\) 0 0
\(463\) 15.1138i 0.702399i −0.936301 0.351199i \(-0.885774\pi\)
0.936301 0.351199i \(-0.114226\pi\)
\(464\) 0 0
\(465\) 0.705370 + 0.292174i 0.0327108 + 0.0135492i
\(466\) 0 0
\(467\) −11.2571 + 11.2571i −0.520917 + 0.520917i −0.917848 0.396931i \(-0.870075\pi\)
0.396931 + 0.917848i \(0.370075\pi\)
\(468\) 0 0
\(469\) 15.0085 36.2338i 0.693029 1.67312i
\(470\) 0 0
\(471\) 6.77141 + 16.3476i 0.312010 + 0.753259i
\(472\) 0 0
\(473\) −12.8663 + 5.32938i −0.591591 + 0.245045i
\(474\) 0 0
\(475\) 4.22409 0.193814
\(476\) 0 0
\(477\) 4.03607 0.184799
\(478\) 0 0
\(479\) −14.1676 + 5.86842i −0.647335 + 0.268135i −0.682098 0.731261i \(-0.738932\pi\)
0.0347634 + 0.999396i \(0.488932\pi\)
\(480\) 0 0
\(481\) −1.98060 4.78158i −0.0903074 0.218021i
\(482\) 0 0
\(483\) 13.7348 33.1588i 0.624956 1.50878i
\(484\) 0 0
\(485\) 0.578940 0.578940i 0.0262883 0.0262883i
\(486\) 0 0
\(487\) −19.5757 8.10853i −0.887060 0.367432i −0.107829 0.994169i \(-0.534390\pi\)
−0.779231 + 0.626737i \(0.784390\pi\)
\(488\) 0 0
\(489\) 13.5412i 0.612354i
\(490\) 0 0
\(491\) −8.52442 8.52442i −0.384702 0.384702i 0.488091 0.872793i \(-0.337693\pi\)
−0.872793 + 0.488091i \(0.837693\pi\)
\(492\) 0 0
\(493\) 1.16773 15.7826i 0.0525920 0.710811i
\(494\) 0 0
\(495\) −0.322749 0.322749i −0.0145065 0.0145065i
\(496\) 0 0
\(497\) 66.2126i 2.97004i
\(498\) 0 0
\(499\) −23.3352 9.66574i −1.04463 0.432698i −0.206655 0.978414i \(-0.566258\pi\)
−0.837970 + 0.545716i \(0.816258\pi\)
\(500\) 0 0
\(501\) 13.6387 13.6387i 0.609331 0.609331i
\(502\) 0 0
\(503\) −16.4404 + 39.6907i −0.733042 + 1.76972i −0.100861 + 0.994901i \(0.532160\pi\)
−0.632182 + 0.774820i \(0.717840\pi\)
\(504\) 0 0
\(505\) −0.0558900 0.134930i −0.00248707 0.00600432i
\(506\) 0 0
\(507\) 11.7958 4.88596i 0.523868 0.216993i
\(508\) 0 0
\(509\) −15.8473 −0.702417 −0.351209 0.936297i \(-0.614229\pi\)
−0.351209 + 0.936297i \(0.614229\pi\)
\(510\) 0 0
\(511\) 12.3085 0.544498
\(512\) 0 0
\(513\) 0.795325 0.329435i 0.0351145 0.0145449i
\(514\) 0 0
\(515\) −1.37811 3.32706i −0.0607270 0.146608i
\(516\) 0 0
\(517\) 2.33302 5.63242i 0.102606 0.247713i
\(518\) 0 0
\(519\) 15.5377 15.5377i 0.682030 0.682030i
\(520\) 0 0
\(521\) −39.7582 16.4684i −1.74184 0.721493i −0.998624 0.0524404i \(-0.983300\pi\)
−0.743215 0.669053i \(-0.766700\pi\)
\(522\) 0 0
\(523\) 27.9070i 1.22029i −0.792290 0.610145i \(-0.791111\pi\)
0.792290 0.610145i \(-0.208889\pi\)
\(524\) 0 0
\(525\) −15.9831 15.9831i −0.697561 0.697561i
\(526\) 0 0
\(527\) −10.2865 0.761084i −0.448086 0.0331533i
\(528\) 0 0
\(529\) 26.6609 + 26.6609i 1.15917 + 1.15917i
\(530\) 0 0
\(531\) 6.45235i 0.280008i
\(532\) 0 0
\(533\) −1.16375 0.482040i −0.0504075 0.0208795i
\(534\) 0 0
\(535\) −1.80629 + 1.80629i −0.0780927 + 0.0780927i
\(536\) 0 0
\(537\) −5.68892 + 13.7343i −0.245495 + 0.592677i
\(538\) 0 0
\(539\) 8.13855 + 19.6482i 0.350552 + 0.846308i
\(540\) 0 0
\(541\) −14.9138 + 6.17749i −0.641194 + 0.265591i −0.679501 0.733675i \(-0.737804\pi\)
0.0383068 + 0.999266i \(0.487804\pi\)
\(542\) 0 0
\(543\) 16.3054 0.699732
\(544\) 0 0
\(545\) −2.71167 −0.116155
\(546\) 0 0
\(547\) −15.0547 + 6.23585i −0.643692 + 0.266626i −0.680558 0.732694i \(-0.738263\pi\)
0.0368661 + 0.999320i \(0.488263\pi\)
\(548\) 0 0
\(549\) 4.08150 + 9.85361i 0.174194 + 0.420542i
\(550\) 0 0
\(551\) −1.26447 + 3.05269i −0.0538681 + 0.130049i
\(552\) 0 0
\(553\) 31.3648 31.3648i 1.33377 1.33377i
\(554\) 0 0
\(555\) −3.02735 1.25397i −0.128504 0.0532281i
\(556\) 0 0
\(557\) 0.141857i 0.00601069i −0.999995 0.00300535i \(-0.999043\pi\)
0.999995 0.00300535i \(-0.000956633\pi\)
\(558\) 0 0
\(559\) 3.17394 + 3.17394i 0.134243 + 0.134243i
\(560\) 0 0
\(561\) 5.50734 + 2.77370i 0.232520 + 0.117106i
\(562\) 0 0
\(563\) −10.2830 10.2830i −0.433377 0.433377i 0.456398 0.889776i \(-0.349139\pi\)
−0.889776 + 0.456398i \(0.849139\pi\)
\(564\) 0 0
\(565\) 3.58292i 0.150735i
\(566\) 0 0
\(567\) −4.25587 1.76284i −0.178730 0.0740324i
\(568\) 0 0
\(569\) −1.77146 + 1.77146i −0.0742636 + 0.0742636i −0.743263 0.668999i \(-0.766723\pi\)
0.668999 + 0.743263i \(0.266723\pi\)
\(570\) 0 0
\(571\) 12.0601 29.1156i 0.504698 1.21845i −0.442201 0.896916i \(-0.645802\pi\)
0.946899 0.321532i \(-0.104198\pi\)
\(572\) 0 0
\(573\) −6.74353 16.2803i −0.281715 0.680120i
\(574\) 0 0
\(575\) 35.3206 14.6303i 1.47297 0.610125i
\(576\) 0 0
\(577\) −7.44450 −0.309918 −0.154959 0.987921i \(-0.549525\pi\)
−0.154959 + 0.987921i \(0.549525\pi\)
\(578\) 0 0
\(579\) 3.29596 0.136976
\(580\) 0 0
\(581\) 1.98557 0.822451i 0.0823755 0.0341210i
\(582\) 0 0
\(583\) −2.30996 5.57673i −0.0956686 0.230964i
\(584\) 0 0
\(585\) −0.0562983 + 0.135916i −0.00232765 + 0.00561944i
\(586\) 0 0
\(587\) 23.1517 23.1517i 0.955574 0.955574i −0.0434805 0.999054i \(-0.513845\pi\)
0.999054 + 0.0434805i \(0.0138447\pi\)
\(588\) 0 0
\(589\) 1.98963 + 0.824132i 0.0819814 + 0.0339578i
\(590\) 0 0
\(591\) 2.10979i 0.0867852i
\(592\) 0 0
\(593\) −4.64593 4.64593i −0.190785 0.190785i 0.605250 0.796035i \(-0.293073\pi\)
−0.796035 + 0.605250i \(0.793073\pi\)
\(594\) 0 0
\(595\) −5.17706 2.60736i −0.212239 0.106891i
\(596\) 0 0
\(597\) −16.2349 16.2349i −0.664451 0.664451i
\(598\) 0 0
\(599\) 11.4830i 0.469184i −0.972094 0.234592i \(-0.924625\pi\)
0.972094 0.234592i \(-0.0753754\pi\)
\(600\) 0 0
\(601\) 33.7282 + 13.9707i 1.37580 + 0.569875i 0.943355 0.331785i \(-0.107651\pi\)
0.432445 + 0.901660i \(0.357651\pi\)
\(602\) 0 0
\(603\) 6.02019 6.02019i 0.245161 0.245161i
\(604\) 0 0
\(605\) 1.02348 2.47090i 0.0416105 0.100457i
\(606\) 0 0
\(607\) −10.8854 26.2796i −0.441824 1.06666i −0.975308 0.220847i \(-0.929118\pi\)
0.533485 0.845810i \(-0.320882\pi\)
\(608\) 0 0
\(609\) 16.3353 6.76631i 0.661940 0.274185i
\(610\) 0 0
\(611\) −1.96497 −0.0794942
\(612\) 0 0
\(613\) 38.1347 1.54025 0.770123 0.637895i \(-0.220195\pi\)
0.770123 + 0.637895i \(0.220195\pi\)
\(614\) 0 0
\(615\) −0.736802 + 0.305194i −0.0297107 + 0.0123066i
\(616\) 0 0
\(617\) 16.4667 + 39.7542i 0.662926 + 1.60044i 0.793196 + 0.608966i \(0.208415\pi\)
−0.130271 + 0.991478i \(0.541585\pi\)
\(618\) 0 0
\(619\) 1.58168 3.81852i 0.0635733 0.153479i −0.888900 0.458101i \(-0.848530\pi\)
0.952474 + 0.304621i \(0.0985299\pi\)
\(620\) 0 0
\(621\) 5.50928 5.50928i 0.221080 0.221080i
\(622\) 0 0
\(623\) 31.2066 + 12.9262i 1.25027 + 0.517877i
\(624\) 0 0
\(625\) 23.6115i 0.944462i
\(626\) 0 0
\(627\) −0.910374 0.910374i −0.0363569 0.0363569i
\(628\) 0 0
\(629\) 44.1482 + 3.26647i 1.76030 + 0.130243i
\(630\) 0 0
\(631\) 22.2411 + 22.2411i 0.885404 + 0.885404i 0.994077 0.108674i \(-0.0346604\pi\)
−0.108674 + 0.994077i \(0.534660\pi\)
\(632\) 0 0
\(633\) 9.89308i 0.393215i
\(634\) 0 0
\(635\) 0.684919 + 0.283703i 0.0271802 + 0.0112584i
\(636\) 0 0
\(637\) 4.84695 4.84695i 0.192043 0.192043i
\(638\) 0 0
\(639\) −5.50056 + 13.2795i −0.217599 + 0.525330i
\(640\) 0 0
\(641\) 6.17579 + 14.9097i 0.243929 + 0.588897i 0.997666 0.0682792i \(-0.0217509\pi\)
−0.753737 + 0.657176i \(0.771751\pi\)
\(642\) 0 0
\(643\) −35.4000 + 14.6632i −1.39604 + 0.578259i −0.948721 0.316116i \(-0.897621\pi\)
−0.447319 + 0.894374i \(0.647621\pi\)
\(644\) 0 0
\(645\) 2.84187 0.111899
\(646\) 0 0
\(647\) −24.7030 −0.971174 −0.485587 0.874188i \(-0.661394\pi\)
−0.485587 + 0.874188i \(0.661394\pi\)
\(648\) 0 0
\(649\) 8.91535 3.69286i 0.349958 0.144957i
\(650\) 0 0
\(651\) −4.41002 10.6467i −0.172842 0.417279i
\(652\) 0 0
\(653\) 1.56376 3.77524i 0.0611945 0.147737i −0.890325 0.455327i \(-0.849523\pi\)
0.951519 + 0.307590i \(0.0995225\pi\)
\(654\) 0 0
\(655\) 4.19571 4.19571i 0.163940 0.163940i
\(656\) 0 0
\(657\) 2.46859 + 1.02252i 0.0963088 + 0.0398924i
\(658\) 0 0
\(659\) 14.1666i 0.551851i 0.961179 + 0.275926i \(0.0889844\pi\)
−0.961179 + 0.275926i \(0.911016\pi\)
\(660\) 0 0
\(661\) −35.9487 35.9487i −1.39824 1.39824i −0.805092 0.593150i \(-0.797884\pi\)
−0.593150 0.805092i \(-0.702116\pi\)
\(662\) 0 0
\(663\) 0.146651 1.98208i 0.00569547 0.0769776i
\(664\) 0 0
\(665\) 0.855779 + 0.855779i 0.0331857 + 0.0331857i
\(666\) 0 0
\(667\) 29.9053i 1.15794i
\(668\) 0 0
\(669\) 11.1203 + 4.60618i 0.429936 + 0.178085i
\(670\) 0 0
\(671\) 11.2790 11.2790i 0.435421 0.435421i
\(672\) 0 0
\(673\) 18.6293 44.9751i 0.718107 1.73366i 0.0394352 0.999222i \(-0.487444\pi\)
0.678672 0.734442i \(-0.262556\pi\)
\(674\) 0 0
\(675\) −1.87777 4.53335i −0.0722755 0.174489i
\(676\) 0 0
\(677\) −22.7801 + 9.43581i −0.875509 + 0.362648i −0.774753 0.632264i \(-0.782126\pi\)
−0.100755 + 0.994911i \(0.532126\pi\)
\(678\) 0 0
\(679\) −12.3580 −0.474256
\(680\) 0 0
\(681\) −27.3448 −1.04785
\(682\) 0 0
\(683\) −7.12343 + 2.95062i −0.272570 + 0.112902i −0.514782 0.857321i \(-0.672127\pi\)
0.242212 + 0.970223i \(0.422127\pi\)
\(684\) 0 0
\(685\) 1.32974 + 3.21026i 0.0508066 + 0.122658i
\(686\) 0 0
\(687\) 6.51713 15.7337i 0.248644 0.600280i
\(688\) 0 0
\(689\) −1.37571 + 1.37571i −0.0524102 + 0.0524102i
\(690\) 0 0
\(691\) 24.1960 + 10.0223i 0.920457 + 0.381266i 0.792050 0.610456i \(-0.209014\pi\)
0.128407 + 0.991722i \(0.459014\pi\)
\(692\) 0 0
\(693\) 6.88936i 0.261705i
\(694\) 0 0
\(695\) 0.101428 + 0.101428i 0.00384739 + 0.00384739i
\(696\) 0 0
\(697\) 8.15991 7.03562i 0.309079 0.266493i
\(698\) 0 0
\(699\) −18.2519 18.2519i −0.690349 0.690349i
\(700\) 0 0
\(701\) 42.5140i 1.60573i −0.596159 0.802866i \(-0.703307\pi\)
0.596159 0.802866i \(-0.296693\pi\)
\(702\) 0 0
\(703\) −8.53923 3.53707i −0.322063 0.133403i
\(704\) 0 0
\(705\) −0.879696 + 0.879696i −0.0331313 + 0.0331313i
\(706\) 0 0
\(707\) −0.843595 + 2.03662i −0.0317266 + 0.0765949i
\(708\) 0 0
\(709\) −18.6147 44.9397i −0.699088 1.68775i −0.725616 0.688099i \(-0.758445\pi\)
0.0265285 0.999648i \(-0.491555\pi\)
\(710\) 0 0
\(711\) 8.89610 3.68488i 0.333630 0.138194i
\(712\) 0 0
\(713\) 19.4912 0.729949
\(714\) 0 0
\(715\) 0.220020 0.00822826
\(716\) 0 0
\(717\) 9.84806 4.07920i 0.367782 0.152340i
\(718\) 0 0
\(719\) 2.91749 + 7.04345i 0.108804 + 0.262676i 0.968898 0.247459i \(-0.0795955\pi\)
−0.860094 + 0.510135i \(0.829595\pi\)
\(720\) 0 0
\(721\) −20.8010 + 50.2182i −0.774671 + 1.87022i
\(722\) 0 0
\(723\) −12.0853 + 12.0853i −0.449458 + 0.449458i
\(724\) 0 0
\(725\) 17.4003 + 7.20745i 0.646232 + 0.267678i
\(726\) 0 0
\(727\) 25.4311i 0.943189i −0.881816 0.471594i \(-0.843679\pi\)
0.881816 0.471594i \(-0.156321\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.0261891 0.0261891i
\(730\) 0 0
\(731\) −36.4582 + 12.0351i −1.34846 + 0.445136i
\(732\) 0 0
\(733\) 3.15019 + 3.15019i 0.116355 + 0.116355i 0.762887 0.646532i \(-0.223781\pi\)
−0.646532 + 0.762887i \(0.723781\pi\)
\(734\) 0 0
\(735\) 4.33986i 0.160078i
\(736\) 0 0
\(737\) −11.7637 4.87270i −0.433323 0.179488i
\(738\) 0 0
\(739\) −23.4918 + 23.4918i −0.864161 + 0.864161i −0.991818 0.127657i \(-0.959254\pi\)
0.127657 + 0.991818i \(0.459254\pi\)
\(740\) 0 0
\(741\) −0.158800 + 0.383378i −0.00583367 + 0.0140837i
\(742\) 0 0
\(743\) 4.89536 + 11.8185i 0.179593 + 0.433577i 0.987881 0.155210i \(-0.0496055\pi\)
−0.808288 + 0.588787i \(0.799606\pi\)
\(744\) 0 0
\(745\) −2.25042 + 0.932156i −0.0824492 + 0.0341516i
\(746\) 0 0
\(747\) 0.466549 0.0170701
\(748\) 0 0
\(749\) 38.5569 1.40884
\(750\) 0 0
\(751\) −5.09007 + 2.10837i −0.185739 + 0.0769357i −0.473615 0.880732i \(-0.657051\pi\)
0.287876 + 0.957668i \(0.407051\pi\)
\(752\) 0 0
\(753\) −6.81263 16.4471i −0.248266 0.599367i
\(754\) 0 0
\(755\) 1.04405 2.52057i 0.0379970 0.0917330i
\(756\) 0 0
\(757\) −13.5834 + 13.5834i −0.493698 + 0.493698i −0.909469 0.415771i \(-0.863512\pi\)
0.415771 + 0.909469i \(0.363512\pi\)
\(758\) 0 0
\(759\) −10.7654 4.45918i −0.390760 0.161858i
\(760\) 0 0
\(761\) 1.36032i 0.0493115i −0.999696 0.0246558i \(-0.992151\pi\)
0.999696 0.0246558i \(-0.00784897\pi\)
\(762\) 0 0
\(763\) 28.9415 + 28.9415i 1.04775 + 1.04775i
\(764\) 0 0
\(765\) −0.821701 0.953010i −0.0297087 0.0344561i
\(766\) 0 0
\(767\) −2.19930 2.19930i −0.0794121 0.0794121i
\(768\) 0 0
\(769\) 9.99250i 0.360339i 0.983636 + 0.180169i \(0.0576646\pi\)
−0.983636 + 0.180169i \(0.942335\pi\)
\(770\) 0 0
\(771\) −9.78167 4.05170i −0.352278 0.145918i
\(772\) 0 0
\(773\) −7.89634 + 7.89634i −0.284011 + 0.284011i −0.834707 0.550695i \(-0.814363\pi\)
0.550695 + 0.834707i \(0.314363\pi\)
\(774\) 0 0
\(775\) 4.69755 11.3409i 0.168741 0.407376i
\(776\) 0 0
\(777\) 18.9272 + 45.6944i 0.679011 + 1.63928i
\(778\) 0 0
\(779\) −2.07829 + 0.860857i −0.0744626 + 0.0308434i
\(780\) 0 0
\(781\) 21.4967 0.769214
\(782\) 0 0
\(783\) 3.83830 0.137170
\(784\) 0 0
\(785\) −4.98917 + 2.06658i −0.178071 + 0.0737595i
\(786\) 0 0
\(787\) −0.592873 1.43132i −0.0211336 0.0510211i 0.912960 0.408048i \(-0.133790\pi\)
−0.934094 + 0.357027i \(0.883790\pi\)
\(788\) 0 0
\(789\) 2.29004 5.52865i 0.0815276 0.196825i
\(790\) 0 0
\(791\) −38.2403 + 38.2403i −1.35967 + 1.35967i
\(792\) 0 0
\(793\) −4.74982 1.96744i −0.168671 0.0698659i
\(794\) 0 0
\(795\) 1.23178i 0.0436866i
\(796\) 0 0
\(797\) 29.8129 + 29.8129i 1.05603 + 1.05603i 0.998334 + 0.0576922i \(0.0183742\pi\)
0.0576922 + 0.998334i \(0.481626\pi\)
\(798\) 0 0
\(799\) 7.56011 15.0110i 0.267457 0.531052i
\(800\) 0 0
\(801\) 5.18492 + 5.18492i 0.183200 + 0.183200i
\(802\) 0 0
\(803\) 3.99612i 0.141020i
\(804\) 0 0
\(805\) 10.1198 + 4.19176i 0.356676 + 0.147740i
\(806\) 0 0
\(807\) −6.26626 + 6.26626i −0.220583 + 0.220583i
\(808\) 0 0
\(809\) −9.99517 + 24.1305i −0.351412 + 0.848382i 0.645035 + 0.764153i \(0.276843\pi\)
−0.996446 + 0.0842293i \(0.973157\pi\)
\(810\) 0 0
\(811\) −10.8859 26.2809i −0.382255 0.922846i −0.991529 0.129886i \(-0.958539\pi\)
0.609274 0.792960i \(-0.291461\pi\)
\(812\) 0 0
\(813\) 27.9502 11.5773i 0.980255 0.406035i
\(814\) 0 0
\(815\) −4.13267 −0.144761
\(816\) 0 0
\(817\) 8.01605 0.280446
\(818\) 0 0
\(819\) 2.05150 0.849758i 0.0716851 0.0296929i
\(820\) 0 0
\(821\) −21.3218 51.4754i −0.744136 1.79650i −0.588165 0.808741i \(-0.700149\pi\)
−0.155971 0.987762i \(-0.549851\pi\)
\(822\) 0 0
\(823\) −2.03999 + 4.92497i −0.0711095 + 0.171674i −0.955438 0.295191i \(-0.904617\pi\)
0.884329 + 0.466865i \(0.154617\pi\)
\(824\) 0 0
\(825\) −5.18912 + 5.18912i −0.180662 + 0.180662i
\(826\) 0 0
\(827\) −21.5553 8.92850i −0.749551 0.310474i −0.0249928 0.999688i \(-0.507956\pi\)
−0.724559 + 0.689213i \(0.757956\pi\)
\(828\) 0 0
\(829\) 15.2115i 0.528316i 0.964479 + 0.264158i \(0.0850940\pi\)
−0.964479 + 0.264158i \(0.914906\pi\)
\(830\) 0 0
\(831\) 13.4853 + 13.4853i 0.467800 + 0.467800i
\(832\) 0 0
\(833\) 18.3790 + 55.6758i 0.636795 + 1.92905i
\(834\) 0 0
\(835\) 4.16242 + 4.16242i 0.144047 + 0.144047i
\(836\) 0 0
\(837\) 2.50166i 0.0864699i
\(838\) 0 0
\(839\) −24.2106 10.0283i −0.835842 0.346217i −0.0766291 0.997060i \(-0.524416\pi\)
−0.759213 + 0.650843i \(0.774416\pi\)
\(840\) 0 0
\(841\) 10.0886 10.0886i 0.347884 0.347884i
\(842\) 0 0
\(843\) 3.48780 8.42030i 0.120126 0.290011i
\(844\) 0 0
\(845\) 1.49116 + 3.59998i 0.0512974 + 0.123843i
\(846\) 0 0
\(847\) −37.2954 + 15.4483i −1.28149 + 0.530809i
\(848\) 0 0
\(849\) −18.9286 −0.649627
\(850\) 0 0
\(851\) −83.6534 −2.86760
\(852\) 0 0
\(853\) 13.8416 5.73339i 0.473928 0.196307i −0.132918 0.991127i \(-0.542435\pi\)
0.606846 + 0.794820i \(0.292435\pi\)
\(854\) 0 0
\(855\) 0.100541 + 0.242727i 0.00343843 + 0.00830110i
\(856\) 0 0
\(857\) −19.2397 + 46.4487i −0.657215 + 1.58666i 0.144873 + 0.989450i \(0.453723\pi\)
−0.802088 + 0.597206i \(0.796277\pi\)
\(858\) 0 0
\(859\) −22.4275 + 22.4275i −0.765217 + 0.765217i −0.977260 0.212043i \(-0.931988\pi\)
0.212043 + 0.977260i \(0.431988\pi\)
\(860\) 0 0
\(861\) 11.1212 + 4.60654i 0.379009 + 0.156991i
\(862\) 0 0
\(863\) 13.0185i 0.443156i 0.975143 + 0.221578i \(0.0711207\pi\)
−0.975143 + 0.221578i \(0.928879\pi\)
\(864\) 0 0
\(865\) 4.74199 + 4.74199i 0.161233 + 0.161233i
\(866\) 0 0
\(867\) 14.5775 + 8.74625i 0.495077 + 0.297038i
\(868\) 0 0
\(869\) −10.1830 10.1830i −0.345434 0.345434i
\(870\) 0 0
\(871\) 4.10400i 0.139059i
\(872\) 0 0
\(873\) −2.47851 1.02663i −0.0838847 0.0347462i
\(874\) 0 0
\(875\) 9.84846 9.84846i 0.332939 0.332939i
\(876\) 0 0
\(877\) −13.6154 + 32.8704i −0.459758 + 1.10996i 0.508737 + 0.860922i \(0.330113\pi\)
−0.968495 + 0.249033i \(0.919887\pi\)
\(878\) 0 0
\(879\) 6.29644 + 15.2009i 0.212374 + 0.512715i
\(880\) 0 0
\(881\) 44.4374 18.4066i 1.49714 0.620134i 0.524279 0.851546i \(-0.324335\pi\)
0.972856 + 0.231413i \(0.0743348\pi\)
\(882\) 0 0
\(883\) 15.5298 0.522618 0.261309 0.965255i \(-0.415846\pi\)
0.261309 + 0.965255i \(0.415846\pi\)
\(884\) 0 0
\(885\) −1.96921 −0.0661942
\(886\) 0 0
\(887\) 19.3796 8.02730i 0.650704 0.269530i −0.0328171 0.999461i \(-0.510448\pi\)
0.683521 + 0.729931i \(0.260448\pi\)
\(888\) 0 0
\(889\) −4.28216 10.3381i −0.143619 0.346727i
\(890\) 0 0
\(891\) −0.572328 + 1.38172i −0.0191737 + 0.0462895i
\(892\) 0 0
\(893\) −2.48135 + 2.48135i −0.0830353 + 0.0830353i
\(894\) 0 0
\(895\) −4.19159 1.73621i −0.140109 0.0580353i
\(896\) 0 0
\(897\) 3.75571i 0.125399i
\(898\) 0 0
\(899\) 6.78971 + 6.78971i 0.226450 + 0.226450i
\(900\) 0 0
\(901\) −5.21649 15.8024i −0.173787 0.526454i
\(902\) 0 0
\(903\) −30.3312 30.3312i −1.00936 1.00936i
\(904\) 0 0
\(905\) 4.97629i 0.165417i
\(906\) 0 0
\(907\) −6.87003 2.84566i −0.228116 0.0944886i 0.265698 0.964056i \(-0.414398\pi\)
−0.493814 + 0.869568i \(0.664398\pi\)
\(908\) 0 0
\(909\) −0.338381 + 0.338381i −0.0112234 + 0.0112234i
\(910\) 0 0
\(911\) 3.15174 7.60896i 0.104422 0.252096i −0.863030 0.505153i \(-0.831436\pi\)
0.967451 + 0.253057i \(0.0814360\pi\)
\(912\) 0 0
\(913\) −0.267019 0.644641i −0.00883704 0.0213345i
\(914\) 0 0
\(915\) −3.00725 + 1.24564i −0.0994166 + 0.0411797i
\(916\) 0 0
\(917\) −89.5612 −2.95757
\(918\) 0 0
\(919\) −32.5311 −1.07310 −0.536550 0.843868i \(-0.680273\pi\)
−0.536550 + 0.843868i \(0.680273\pi\)
\(920\) 0 0
\(921\) 18.2573 7.56241i 0.601598 0.249190i
\(922\) 0 0
\(923\) −2.65148 6.40125i −0.0872746 0.210700i
\(924\) 0 0
\(925\) −20.1612 + 48.6735i −0.662897 + 1.60038i
\(926\) 0 0
\(927\) −8.34367 + 8.34367i −0.274042 + 0.274042i
\(928\) 0 0
\(929\) −28.6894 11.8835i −0.941268 0.389886i −0.141326 0.989963i \(-0.545136\pi\)
−0.799942 + 0.600077i \(0.795136\pi\)
\(930\) 0 0
\(931\) 12.2414i 0.401196i
\(932\) 0 0
\(933\) −8.52162 8.52162i −0.278985 0.278985i
\(934\) 0 0
\(935\) −0.846513 + 1.68080i −0.0276839 + 0.0549680i
\(936\) 0 0
\(937\) 12.5524 + 12.5524i 0.410068 + 0.410068i 0.881762 0.471694i \(-0.156357\pi\)
−0.471694 + 0.881762i \(0.656357\pi\)
\(938\) 0 0
\(939\) 25.4595i 0.830839i
\(940\) 0 0
\(941\) −39.3402 16.2952i −1.28245 0.531210i −0.365726 0.930723i \(-0.619179\pi\)
−0.916728 + 0.399513i \(0.869179\pi\)
\(942\) 0 0
\(943\) −14.3965 + 14.3965i −0.468814 + 0.468814i
\(944\) 0 0
\(945\) 0.538006 1.29886i 0.0175013 0.0422519i
\(946\) 0 0
\(947\) 9.11884 + 22.0148i 0.296322 + 0.715386i 0.999988 + 0.00485448i \(0.00154523\pi\)
−0.703666 + 0.710531i \(0.748455\pi\)
\(948\) 0 0
\(949\) −1.18996 + 0.492896i −0.0386276 + 0.0160001i
\(950\) 0 0
\(951\) −12.0910 −0.392076
\(952\) 0 0
\(953\) 23.3757 0.757214 0.378607 0.925558i \(-0.376403\pi\)
0.378607 + 0.925558i \(0.376403\pi\)
\(954\) 0 0
\(955\) 4.96863 2.05807i 0.160781 0.0665977i
\(956\) 0 0
\(957\) −2.19677 5.30346i −0.0710113 0.171437i
\(958\) 0 0
\(959\) 20.0708 48.4552i 0.648120 1.56470i
\(960\) 0 0
\(961\) −17.4950 + 17.4950i −0.564356 + 0.564356i
\(962\) 0 0
\(963\) 7.73292 + 3.20308i 0.249190 + 0.103218i
\(964\) 0 0
\(965\) 1.00590i 0.0323812i
\(966\) 0 0
\(967\) 32.3405 + 32.3405i 1.04000 + 1.04000i 0.999166 + 0.0408360i \(0.0130021\pi\)
0.0408360 + 0.999166i \(0.486998\pi\)
\(968\) 0 0
\(969\) −2.31777 2.68815i −0.0744574 0.0863558i
\(970\) 0 0
\(971\) 11.9796 + 11.9796i 0.384443 + 0.384443i 0.872700 0.488257i \(-0.162367\pi\)
−0.488257 + 0.872700i \(0.662367\pi\)
\(972\) 0 0
\(973\) 2.16508i 0.0694092i
\(974\) 0 0
\(975\) 2.18525 + 0.905159i 0.0699839 + 0.0289883i
\(976\) 0 0
\(977\) 31.5576 31.5576i 1.00962 1.00962i 0.00966376 0.999953i \(-0.496924\pi\)
0.999953 0.00966376i \(-0.00307612\pi\)
\(978\) 0 0
\(979\) 4.19665 10.1316i 0.134125 0.323808i
\(980\) 0 0
\(981\) 3.40018 + 8.20877i 0.108560 + 0.262086i
\(982\) 0 0
\(983\) −31.4008 + 13.0066i −1.00153 + 0.414847i −0.822358 0.568971i \(-0.807342\pi\)
−0.179172 + 0.983818i \(0.557342\pi\)
\(984\) 0 0
\(985\) 0.643892 0.0205161
\(986\) 0 0
\(987\) 18.7779 0.597708
\(988\) 0 0
\(989\) 67.0280 27.7639i 2.13137 0.882840i
\(990\) 0 0
\(991\) −3.05266 7.36977i −0.0969709 0.234108i 0.867949 0.496654i \(-0.165438\pi\)
−0.964920 + 0.262545i \(0.915438\pi\)
\(992\) 0 0
\(993\) −1.92287 + 4.64223i −0.0610205 + 0.147317i
\(994\) 0 0
\(995\) 4.95477 4.95477i 0.157077 0.157077i
\(996\) 0 0
\(997\) 21.3697 + 8.85162i 0.676785 + 0.280334i 0.694482 0.719510i \(-0.255633\pi\)
−0.0176971 + 0.999843i \(0.505633\pi\)
\(998\) 0 0
\(999\) 10.7368i 0.339697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 408.2.ba.b.121.3 16
3.2 odd 2 1224.2.bq.d.937.3 16
4.3 odd 2 816.2.bq.e.529.1 16
17.3 odd 16 6936.2.a.bn.1.5 8
17.9 even 8 inner 408.2.ba.b.145.3 yes 16
17.14 odd 16 6936.2.a.bm.1.4 8
51.26 odd 8 1224.2.bq.d.145.3 16
68.43 odd 8 816.2.bq.e.145.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.b.121.3 16 1.1 even 1 trivial
408.2.ba.b.145.3 yes 16 17.9 even 8 inner
816.2.bq.e.145.1 16 68.43 odd 8
816.2.bq.e.529.1 16 4.3 odd 2
1224.2.bq.d.145.3 16 51.26 odd 8
1224.2.bq.d.937.3 16 3.2 odd 2
6936.2.a.bm.1.4 8 17.14 odd 16
6936.2.a.bn.1.5 8 17.3 odd 16