Properties

Label 4056.2.a.bg.1.5
Level $4056$
Weight $2$
Character 4056.1
Self dual yes
Analytic conductor $32.387$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(1,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,1,0,7,0,6,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.27700337.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.72245\) of defining polynomial
Character \(\chi\) \(=\) 4056.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.65870 q^{5} +3.72245 q^{7} +1.00000 q^{9} +3.03794 q^{11} -2.65870 q^{15} +3.27997 q^{17} +7.35072 q^{19} -3.72245 q^{21} -4.11266 q^{23} +2.06870 q^{25} -1.00000 q^{27} -0.411722 q^{29} +5.12551 q^{31} -3.03794 q^{33} +9.89688 q^{35} +9.87882 q^{37} +1.73202 q^{41} -10.0415 q^{43} +2.65870 q^{45} +1.09391 q^{47} +6.85662 q^{49} -3.27997 q^{51} -13.6404 q^{53} +8.07698 q^{55} -7.35072 q^{57} +12.5581 q^{59} +1.36307 q^{61} +3.72245 q^{63} -9.46192 q^{67} +4.11266 q^{69} +6.26504 q^{71} -13.9720 q^{73} -2.06870 q^{75} +11.3086 q^{77} +5.45858 q^{79} +1.00000 q^{81} -14.3060 q^{83} +8.72046 q^{85} +0.411722 q^{87} +2.40802 q^{89} -5.12551 q^{93} +19.5434 q^{95} -11.1646 q^{97} +3.03794 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + q^{5} + 7 q^{7} + 6 q^{9} + 8 q^{11} - q^{15} - 5 q^{17} + 19 q^{19} - 7 q^{21} - 6 q^{23} + 17 q^{25} - 6 q^{27} + 3 q^{29} + 9 q^{31} - 8 q^{33} + 4 q^{35} + 6 q^{37} - 15 q^{41} + 11 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.65870 1.18901 0.594504 0.804093i \(-0.297349\pi\)
0.594504 + 0.804093i \(0.297349\pi\)
\(6\) 0 0
\(7\) 3.72245 1.40695 0.703477 0.710718i \(-0.251630\pi\)
0.703477 + 0.710718i \(0.251630\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.03794 0.915974 0.457987 0.888959i \(-0.348571\pi\)
0.457987 + 0.888959i \(0.348571\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.65870 −0.686474
\(16\) 0 0
\(17\) 3.27997 0.795510 0.397755 0.917492i \(-0.369789\pi\)
0.397755 + 0.917492i \(0.369789\pi\)
\(18\) 0 0
\(19\) 7.35072 1.68637 0.843186 0.537622i \(-0.180677\pi\)
0.843186 + 0.537622i \(0.180677\pi\)
\(20\) 0 0
\(21\) −3.72245 −0.812305
\(22\) 0 0
\(23\) −4.11266 −0.857550 −0.428775 0.903411i \(-0.641055\pi\)
−0.428775 + 0.903411i \(0.641055\pi\)
\(24\) 0 0
\(25\) 2.06870 0.413739
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −0.411722 −0.0764549 −0.0382275 0.999269i \(-0.512171\pi\)
−0.0382275 + 0.999269i \(0.512171\pi\)
\(30\) 0 0
\(31\) 5.12551 0.920569 0.460285 0.887771i \(-0.347747\pi\)
0.460285 + 0.887771i \(0.347747\pi\)
\(32\) 0 0
\(33\) −3.03794 −0.528838
\(34\) 0 0
\(35\) 9.89688 1.67288
\(36\) 0 0
\(37\) 9.87882 1.62407 0.812034 0.583611i \(-0.198361\pi\)
0.812034 + 0.583611i \(0.198361\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.73202 0.270496 0.135248 0.990812i \(-0.456817\pi\)
0.135248 + 0.990812i \(0.456817\pi\)
\(42\) 0 0
\(43\) −10.0415 −1.53131 −0.765654 0.643253i \(-0.777584\pi\)
−0.765654 + 0.643253i \(0.777584\pi\)
\(44\) 0 0
\(45\) 2.65870 0.396336
\(46\) 0 0
\(47\) 1.09391 0.159563 0.0797815 0.996812i \(-0.474578\pi\)
0.0797815 + 0.996812i \(0.474578\pi\)
\(48\) 0 0
\(49\) 6.85662 0.979517
\(50\) 0 0
\(51\) −3.27997 −0.459288
\(52\) 0 0
\(53\) −13.6404 −1.87365 −0.936825 0.349797i \(-0.886250\pi\)
−0.936825 + 0.349797i \(0.886250\pi\)
\(54\) 0 0
\(55\) 8.07698 1.08910
\(56\) 0 0
\(57\) −7.35072 −0.973627
\(58\) 0 0
\(59\) 12.5581 1.63493 0.817466 0.575977i \(-0.195378\pi\)
0.817466 + 0.575977i \(0.195378\pi\)
\(60\) 0 0
\(61\) 1.36307 0.174523 0.0872615 0.996185i \(-0.472188\pi\)
0.0872615 + 0.996185i \(0.472188\pi\)
\(62\) 0 0
\(63\) 3.72245 0.468984
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.46192 −1.15596 −0.577979 0.816052i \(-0.696158\pi\)
−0.577979 + 0.816052i \(0.696158\pi\)
\(68\) 0 0
\(69\) 4.11266 0.495106
\(70\) 0 0
\(71\) 6.26504 0.743524 0.371762 0.928328i \(-0.378754\pi\)
0.371762 + 0.928328i \(0.378754\pi\)
\(72\) 0 0
\(73\) −13.9720 −1.63530 −0.817649 0.575717i \(-0.804723\pi\)
−0.817649 + 0.575717i \(0.804723\pi\)
\(74\) 0 0
\(75\) −2.06870 −0.238872
\(76\) 0 0
\(77\) 11.3086 1.28873
\(78\) 0 0
\(79\) 5.45858 0.614139 0.307069 0.951687i \(-0.400652\pi\)
0.307069 + 0.951687i \(0.400652\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −14.3060 −1.57029 −0.785144 0.619313i \(-0.787411\pi\)
−0.785144 + 0.619313i \(0.787411\pi\)
\(84\) 0 0
\(85\) 8.72046 0.945867
\(86\) 0 0
\(87\) 0.411722 0.0441413
\(88\) 0 0
\(89\) 2.40802 0.255249 0.127625 0.991823i \(-0.459265\pi\)
0.127625 + 0.991823i \(0.459265\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.12551 −0.531491
\(94\) 0 0
\(95\) 19.5434 2.00511
\(96\) 0 0
\(97\) −11.1646 −1.13359 −0.566794 0.823859i \(-0.691817\pi\)
−0.566794 + 0.823859i \(0.691817\pi\)
\(98\) 0 0
\(99\) 3.03794 0.305325
\(100\) 0 0
\(101\) −16.1645 −1.60843 −0.804214 0.594340i \(-0.797414\pi\)
−0.804214 + 0.594340i \(0.797414\pi\)
\(102\) 0 0
\(103\) 4.90839 0.483638 0.241819 0.970321i \(-0.422256\pi\)
0.241819 + 0.970321i \(0.422256\pi\)
\(104\) 0 0
\(105\) −9.89688 −0.965837
\(106\) 0 0
\(107\) −1.03391 −0.0999515 −0.0499758 0.998750i \(-0.515914\pi\)
−0.0499758 + 0.998750i \(0.515914\pi\)
\(108\) 0 0
\(109\) −8.64406 −0.827950 −0.413975 0.910288i \(-0.635860\pi\)
−0.413975 + 0.910288i \(0.635860\pi\)
\(110\) 0 0
\(111\) −9.87882 −0.937656
\(112\) 0 0
\(113\) −17.7568 −1.67042 −0.835210 0.549930i \(-0.814654\pi\)
−0.835210 + 0.549930i \(0.814654\pi\)
\(114\) 0 0
\(115\) −10.9343 −1.01963
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.2095 1.11924
\(120\) 0 0
\(121\) −1.77091 −0.160992
\(122\) 0 0
\(123\) −1.73202 −0.156171
\(124\) 0 0
\(125\) −7.79346 −0.697069
\(126\) 0 0
\(127\) −9.38988 −0.833217 −0.416609 0.909086i \(-0.636781\pi\)
−0.416609 + 0.909086i \(0.636781\pi\)
\(128\) 0 0
\(129\) 10.0415 0.884101
\(130\) 0 0
\(131\) 5.82373 0.508821 0.254411 0.967096i \(-0.418119\pi\)
0.254411 + 0.967096i \(0.418119\pi\)
\(132\) 0 0
\(133\) 27.3627 2.37265
\(134\) 0 0
\(135\) −2.65870 −0.228825
\(136\) 0 0
\(137\) 13.5842 1.16058 0.580288 0.814412i \(-0.302940\pi\)
0.580288 + 0.814412i \(0.302940\pi\)
\(138\) 0 0
\(139\) 20.3632 1.72719 0.863594 0.504188i \(-0.168208\pi\)
0.863594 + 0.504188i \(0.168208\pi\)
\(140\) 0 0
\(141\) −1.09391 −0.0921238
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.09465 −0.0909055
\(146\) 0 0
\(147\) −6.85662 −0.565524
\(148\) 0 0
\(149\) −20.4792 −1.67772 −0.838859 0.544349i \(-0.816777\pi\)
−0.838859 + 0.544349i \(0.816777\pi\)
\(150\) 0 0
\(151\) −15.6614 −1.27451 −0.637253 0.770655i \(-0.719929\pi\)
−0.637253 + 0.770655i \(0.719929\pi\)
\(152\) 0 0
\(153\) 3.27997 0.265170
\(154\) 0 0
\(155\) 13.6272 1.09456
\(156\) 0 0
\(157\) 11.4398 0.912993 0.456496 0.889725i \(-0.349104\pi\)
0.456496 + 0.889725i \(0.349104\pi\)
\(158\) 0 0
\(159\) 13.6404 1.08175
\(160\) 0 0
\(161\) −15.3092 −1.20653
\(162\) 0 0
\(163\) 16.7092 1.30877 0.654384 0.756163i \(-0.272928\pi\)
0.654384 + 0.756163i \(0.272928\pi\)
\(164\) 0 0
\(165\) −8.07698 −0.628792
\(166\) 0 0
\(167\) 10.4991 0.812444 0.406222 0.913774i \(-0.366846\pi\)
0.406222 + 0.913774i \(0.366846\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 7.35072 0.562124
\(172\) 0 0
\(173\) −4.45612 −0.338792 −0.169396 0.985548i \(-0.554182\pi\)
−0.169396 + 0.985548i \(0.554182\pi\)
\(174\) 0 0
\(175\) 7.70061 0.582112
\(176\) 0 0
\(177\) −12.5581 −0.943928
\(178\) 0 0
\(179\) −4.21904 −0.315346 −0.157673 0.987491i \(-0.550399\pi\)
−0.157673 + 0.987491i \(0.550399\pi\)
\(180\) 0 0
\(181\) −6.39554 −0.475377 −0.237688 0.971341i \(-0.576390\pi\)
−0.237688 + 0.971341i \(0.576390\pi\)
\(182\) 0 0
\(183\) −1.36307 −0.100761
\(184\) 0 0
\(185\) 26.2648 1.93103
\(186\) 0 0
\(187\) 9.96436 0.728666
\(188\) 0 0
\(189\) −3.72245 −0.270768
\(190\) 0 0
\(191\) 9.58457 0.693515 0.346758 0.937955i \(-0.387283\pi\)
0.346758 + 0.937955i \(0.387283\pi\)
\(192\) 0 0
\(193\) −17.1851 −1.23701 −0.618507 0.785779i \(-0.712262\pi\)
−0.618507 + 0.785779i \(0.712262\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.2123 −0.870090 −0.435045 0.900409i \(-0.643267\pi\)
−0.435045 + 0.900409i \(0.643267\pi\)
\(198\) 0 0
\(199\) −12.2265 −0.866710 −0.433355 0.901223i \(-0.642670\pi\)
−0.433355 + 0.901223i \(0.642670\pi\)
\(200\) 0 0
\(201\) 9.46192 0.667392
\(202\) 0 0
\(203\) −1.53261 −0.107568
\(204\) 0 0
\(205\) 4.60492 0.321622
\(206\) 0 0
\(207\) −4.11266 −0.285850
\(208\) 0 0
\(209\) 22.3311 1.54467
\(210\) 0 0
\(211\) 10.8819 0.749138 0.374569 0.927199i \(-0.377791\pi\)
0.374569 + 0.927199i \(0.377791\pi\)
\(212\) 0 0
\(213\) −6.26504 −0.429274
\(214\) 0 0
\(215\) −26.6972 −1.82074
\(216\) 0 0
\(217\) 19.0795 1.29520
\(218\) 0 0
\(219\) 13.9720 0.944140
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.88623 0.394171 0.197086 0.980386i \(-0.436852\pi\)
0.197086 + 0.980386i \(0.436852\pi\)
\(224\) 0 0
\(225\) 2.06870 0.137913
\(226\) 0 0
\(227\) 13.1454 0.872491 0.436246 0.899828i \(-0.356308\pi\)
0.436246 + 0.899828i \(0.356308\pi\)
\(228\) 0 0
\(229\) 23.8710 1.57744 0.788721 0.614752i \(-0.210744\pi\)
0.788721 + 0.614752i \(0.210744\pi\)
\(230\) 0 0
\(231\) −11.3086 −0.744050
\(232\) 0 0
\(233\) −2.65905 −0.174200 −0.0871000 0.996200i \(-0.527760\pi\)
−0.0871000 + 0.996200i \(0.527760\pi\)
\(234\) 0 0
\(235\) 2.90838 0.189722
\(236\) 0 0
\(237\) −5.45858 −0.354573
\(238\) 0 0
\(239\) −8.99863 −0.582073 −0.291037 0.956712i \(-0.594000\pi\)
−0.291037 + 0.956712i \(0.594000\pi\)
\(240\) 0 0
\(241\) −1.45787 −0.0939098 −0.0469549 0.998897i \(-0.514952\pi\)
−0.0469549 + 0.998897i \(0.514952\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 18.2297 1.16465
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 14.3060 0.906607
\(250\) 0 0
\(251\) −3.98236 −0.251364 −0.125682 0.992071i \(-0.540112\pi\)
−0.125682 + 0.992071i \(0.540112\pi\)
\(252\) 0 0
\(253\) −12.4940 −0.785493
\(254\) 0 0
\(255\) −8.72046 −0.546097
\(256\) 0 0
\(257\) −15.2959 −0.954131 −0.477066 0.878868i \(-0.658300\pi\)
−0.477066 + 0.878868i \(0.658300\pi\)
\(258\) 0 0
\(259\) 36.7734 2.28499
\(260\) 0 0
\(261\) −0.411722 −0.0254850
\(262\) 0 0
\(263\) −14.8408 −0.915125 −0.457562 0.889178i \(-0.651277\pi\)
−0.457562 + 0.889178i \(0.651277\pi\)
\(264\) 0 0
\(265\) −36.2657 −2.22778
\(266\) 0 0
\(267\) −2.40802 −0.147368
\(268\) 0 0
\(269\) −12.7970 −0.780246 −0.390123 0.920763i \(-0.627567\pi\)
−0.390123 + 0.920763i \(0.627567\pi\)
\(270\) 0 0
\(271\) 27.0802 1.64500 0.822502 0.568762i \(-0.192578\pi\)
0.822502 + 0.568762i \(0.192578\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.28458 0.378974
\(276\) 0 0
\(277\) 7.02829 0.422289 0.211145 0.977455i \(-0.432281\pi\)
0.211145 + 0.977455i \(0.432281\pi\)
\(278\) 0 0
\(279\) 5.12551 0.306856
\(280\) 0 0
\(281\) −18.8159 −1.12246 −0.561232 0.827658i \(-0.689673\pi\)
−0.561232 + 0.827658i \(0.689673\pi\)
\(282\) 0 0
\(283\) −4.79334 −0.284934 −0.142467 0.989800i \(-0.545504\pi\)
−0.142467 + 0.989800i \(0.545504\pi\)
\(284\) 0 0
\(285\) −19.5434 −1.15765
\(286\) 0 0
\(287\) 6.44735 0.380575
\(288\) 0 0
\(289\) −6.24179 −0.367164
\(290\) 0 0
\(291\) 11.1646 0.654478
\(292\) 0 0
\(293\) 29.4230 1.71891 0.859456 0.511209i \(-0.170802\pi\)
0.859456 + 0.511209i \(0.170802\pi\)
\(294\) 0 0
\(295\) 33.3884 1.94395
\(296\) 0 0
\(297\) −3.03794 −0.176279
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −37.3788 −2.15448
\(302\) 0 0
\(303\) 16.1645 0.928627
\(304\) 0 0
\(305\) 3.62399 0.207509
\(306\) 0 0
\(307\) 30.5800 1.74529 0.872646 0.488354i \(-0.162402\pi\)
0.872646 + 0.488354i \(0.162402\pi\)
\(308\) 0 0
\(309\) −4.90839 −0.279229
\(310\) 0 0
\(311\) 3.05106 0.173009 0.0865047 0.996251i \(-0.472430\pi\)
0.0865047 + 0.996251i \(0.472430\pi\)
\(312\) 0 0
\(313\) 26.7958 1.51459 0.757294 0.653074i \(-0.226521\pi\)
0.757294 + 0.653074i \(0.226521\pi\)
\(314\) 0 0
\(315\) 9.89688 0.557626
\(316\) 0 0
\(317\) 33.1691 1.86296 0.931481 0.363791i \(-0.118518\pi\)
0.931481 + 0.363791i \(0.118518\pi\)
\(318\) 0 0
\(319\) −1.25079 −0.0700307
\(320\) 0 0
\(321\) 1.03391 0.0577070
\(322\) 0 0
\(323\) 24.1102 1.34153
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.64406 0.478017
\(328\) 0 0
\(329\) 4.07202 0.224498
\(330\) 0 0
\(331\) 25.8226 1.41934 0.709670 0.704534i \(-0.248844\pi\)
0.709670 + 0.704534i \(0.248844\pi\)
\(332\) 0 0
\(333\) 9.87882 0.541356
\(334\) 0 0
\(335\) −25.1564 −1.37444
\(336\) 0 0
\(337\) 12.9469 0.705265 0.352632 0.935762i \(-0.385287\pi\)
0.352632 + 0.935762i \(0.385287\pi\)
\(338\) 0 0
\(339\) 17.7568 0.964418
\(340\) 0 0
\(341\) 15.5710 0.843217
\(342\) 0 0
\(343\) −0.533732 −0.0288188
\(344\) 0 0
\(345\) 10.9343 0.588685
\(346\) 0 0
\(347\) 4.05605 0.217740 0.108870 0.994056i \(-0.465277\pi\)
0.108870 + 0.994056i \(0.465277\pi\)
\(348\) 0 0
\(349\) −5.87479 −0.314470 −0.157235 0.987561i \(-0.550258\pi\)
−0.157235 + 0.987561i \(0.550258\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.15183 0.487103 0.243551 0.969888i \(-0.421688\pi\)
0.243551 + 0.969888i \(0.421688\pi\)
\(354\) 0 0
\(355\) 16.6569 0.884056
\(356\) 0 0
\(357\) −12.2095 −0.646196
\(358\) 0 0
\(359\) −9.33002 −0.492420 −0.246210 0.969217i \(-0.579185\pi\)
−0.246210 + 0.969217i \(0.579185\pi\)
\(360\) 0 0
\(361\) 35.0331 1.84385
\(362\) 0 0
\(363\) 1.77091 0.0929489
\(364\) 0 0
\(365\) −37.1474 −1.94438
\(366\) 0 0
\(367\) −16.8167 −0.877826 −0.438913 0.898530i \(-0.644636\pi\)
−0.438913 + 0.898530i \(0.644636\pi\)
\(368\) 0 0
\(369\) 1.73202 0.0901653
\(370\) 0 0
\(371\) −50.7756 −2.63614
\(372\) 0 0
\(373\) 26.8491 1.39020 0.695098 0.718915i \(-0.255361\pi\)
0.695098 + 0.718915i \(0.255361\pi\)
\(374\) 0 0
\(375\) 7.79346 0.402453
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −24.6170 −1.26449 −0.632244 0.774769i \(-0.717866\pi\)
−0.632244 + 0.774769i \(0.717866\pi\)
\(380\) 0 0
\(381\) 9.38988 0.481058
\(382\) 0 0
\(383\) −6.17173 −0.315360 −0.157680 0.987490i \(-0.550402\pi\)
−0.157680 + 0.987490i \(0.550402\pi\)
\(384\) 0 0
\(385\) 30.0661 1.53231
\(386\) 0 0
\(387\) −10.0415 −0.510436
\(388\) 0 0
\(389\) −10.2737 −0.520896 −0.260448 0.965488i \(-0.583870\pi\)
−0.260448 + 0.965488i \(0.583870\pi\)
\(390\) 0 0
\(391\) −13.4894 −0.682189
\(392\) 0 0
\(393\) −5.82373 −0.293768
\(394\) 0 0
\(395\) 14.5127 0.730215
\(396\) 0 0
\(397\) 28.8265 1.44676 0.723381 0.690449i \(-0.242587\pi\)
0.723381 + 0.690449i \(0.242587\pi\)
\(398\) 0 0
\(399\) −27.3627 −1.36985
\(400\) 0 0
\(401\) −2.97045 −0.148337 −0.0741685 0.997246i \(-0.523630\pi\)
−0.0741685 + 0.997246i \(0.523630\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.65870 0.132112
\(406\) 0 0
\(407\) 30.0113 1.48760
\(408\) 0 0
\(409\) −8.43242 −0.416956 −0.208478 0.978027i \(-0.566851\pi\)
−0.208478 + 0.978027i \(0.566851\pi\)
\(410\) 0 0
\(411\) −13.5842 −0.670059
\(412\) 0 0
\(413\) 46.7470 2.30027
\(414\) 0 0
\(415\) −38.0354 −1.86709
\(416\) 0 0
\(417\) −20.3632 −0.997192
\(418\) 0 0
\(419\) 9.07273 0.443232 0.221616 0.975134i \(-0.428867\pi\)
0.221616 + 0.975134i \(0.428867\pi\)
\(420\) 0 0
\(421\) −13.4921 −0.657565 −0.328782 0.944406i \(-0.606638\pi\)
−0.328782 + 0.944406i \(0.606638\pi\)
\(422\) 0 0
\(423\) 1.09391 0.0531877
\(424\) 0 0
\(425\) 6.78526 0.329134
\(426\) 0 0
\(427\) 5.07395 0.245546
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.3245 −0.641820 −0.320910 0.947110i \(-0.603989\pi\)
−0.320910 + 0.947110i \(0.603989\pi\)
\(432\) 0 0
\(433\) 7.47760 0.359351 0.179675 0.983726i \(-0.442495\pi\)
0.179675 + 0.983726i \(0.442495\pi\)
\(434\) 0 0
\(435\) 1.09465 0.0524843
\(436\) 0 0
\(437\) −30.2311 −1.44615
\(438\) 0 0
\(439\) −6.83485 −0.326209 −0.163105 0.986609i \(-0.552151\pi\)
−0.163105 + 0.986609i \(0.552151\pi\)
\(440\) 0 0
\(441\) 6.85662 0.326506
\(442\) 0 0
\(443\) −10.2666 −0.487779 −0.243889 0.969803i \(-0.578423\pi\)
−0.243889 + 0.969803i \(0.578423\pi\)
\(444\) 0 0
\(445\) 6.40220 0.303493
\(446\) 0 0
\(447\) 20.4792 0.968631
\(448\) 0 0
\(449\) −17.9414 −0.846706 −0.423353 0.905965i \(-0.639147\pi\)
−0.423353 + 0.905965i \(0.639147\pi\)
\(450\) 0 0
\(451\) 5.26177 0.247767
\(452\) 0 0
\(453\) 15.6614 0.735836
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.298024 0.0139410 0.00697050 0.999976i \(-0.497781\pi\)
0.00697050 + 0.999976i \(0.497781\pi\)
\(458\) 0 0
\(459\) −3.27997 −0.153096
\(460\) 0 0
\(461\) 22.7589 1.05999 0.529993 0.848002i \(-0.322194\pi\)
0.529993 + 0.848002i \(0.322194\pi\)
\(462\) 0 0
\(463\) −5.34050 −0.248194 −0.124097 0.992270i \(-0.539603\pi\)
−0.124097 + 0.992270i \(0.539603\pi\)
\(464\) 0 0
\(465\) −13.6272 −0.631947
\(466\) 0 0
\(467\) −34.4899 −1.59600 −0.798002 0.602655i \(-0.794110\pi\)
−0.798002 + 0.602655i \(0.794110\pi\)
\(468\) 0 0
\(469\) −35.2215 −1.62638
\(470\) 0 0
\(471\) −11.4398 −0.527116
\(472\) 0 0
\(473\) −30.5054 −1.40264
\(474\) 0 0
\(475\) 15.2064 0.697718
\(476\) 0 0
\(477\) −13.6404 −0.624550
\(478\) 0 0
\(479\) 17.4714 0.798287 0.399143 0.916888i \(-0.369308\pi\)
0.399143 + 0.916888i \(0.369308\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 15.3092 0.696592
\(484\) 0 0
\(485\) −29.6832 −1.34785
\(486\) 0 0
\(487\) −20.5339 −0.930481 −0.465240 0.885184i \(-0.654032\pi\)
−0.465240 + 0.885184i \(0.654032\pi\)
\(488\) 0 0
\(489\) −16.7092 −0.755617
\(490\) 0 0
\(491\) 23.1011 1.04254 0.521268 0.853393i \(-0.325459\pi\)
0.521268 + 0.853393i \(0.325459\pi\)
\(492\) 0 0
\(493\) −1.35044 −0.0608206
\(494\) 0 0
\(495\) 8.07698 0.363033
\(496\) 0 0
\(497\) 23.3213 1.04610
\(498\) 0 0
\(499\) 8.19788 0.366988 0.183494 0.983021i \(-0.441259\pi\)
0.183494 + 0.983021i \(0.441259\pi\)
\(500\) 0 0
\(501\) −10.4991 −0.469065
\(502\) 0 0
\(503\) −21.1314 −0.942203 −0.471102 0.882079i \(-0.656143\pi\)
−0.471102 + 0.882079i \(0.656143\pi\)
\(504\) 0 0
\(505\) −42.9766 −1.91243
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.3644 1.07993 0.539967 0.841686i \(-0.318437\pi\)
0.539967 + 0.841686i \(0.318437\pi\)
\(510\) 0 0
\(511\) −52.0100 −2.30079
\(512\) 0 0
\(513\) −7.35072 −0.324542
\(514\) 0 0
\(515\) 13.0500 0.575050
\(516\) 0 0
\(517\) 3.32323 0.146156
\(518\) 0 0
\(519\) 4.45612 0.195602
\(520\) 0 0
\(521\) 29.3990 1.28799 0.643996 0.765029i \(-0.277275\pi\)
0.643996 + 0.765029i \(0.277275\pi\)
\(522\) 0 0
\(523\) −27.0198 −1.18149 −0.590746 0.806858i \(-0.701166\pi\)
−0.590746 + 0.806858i \(0.701166\pi\)
\(524\) 0 0
\(525\) −7.70061 −0.336082
\(526\) 0 0
\(527\) 16.8115 0.732322
\(528\) 0 0
\(529\) −6.08600 −0.264609
\(530\) 0 0
\(531\) 12.5581 0.544977
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −2.74885 −0.118843
\(536\) 0 0
\(537\) 4.21904 0.182065
\(538\) 0 0
\(539\) 20.8300 0.897212
\(540\) 0 0
\(541\) 12.4490 0.535225 0.267613 0.963527i \(-0.413765\pi\)
0.267613 + 0.963527i \(0.413765\pi\)
\(542\) 0 0
\(543\) 6.39554 0.274459
\(544\) 0 0
\(545\) −22.9820 −0.984439
\(546\) 0 0
\(547\) 42.5858 1.82084 0.910418 0.413689i \(-0.135760\pi\)
0.910418 + 0.413689i \(0.135760\pi\)
\(548\) 0 0
\(549\) 1.36307 0.0581743
\(550\) 0 0
\(551\) −3.02646 −0.128931
\(552\) 0 0
\(553\) 20.3193 0.864064
\(554\) 0 0
\(555\) −26.2648 −1.11488
\(556\) 0 0
\(557\) −20.8025 −0.881430 −0.440715 0.897647i \(-0.645275\pi\)
−0.440715 + 0.897647i \(0.645275\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −9.96436 −0.420696
\(562\) 0 0
\(563\) −15.8229 −0.666854 −0.333427 0.942776i \(-0.608205\pi\)
−0.333427 + 0.942776i \(0.608205\pi\)
\(564\) 0 0
\(565\) −47.2101 −1.98614
\(566\) 0 0
\(567\) 3.72245 0.156328
\(568\) 0 0
\(569\) 32.0491 1.34357 0.671784 0.740747i \(-0.265528\pi\)
0.671784 + 0.740747i \(0.265528\pi\)
\(570\) 0 0
\(571\) 15.5134 0.649214 0.324607 0.945849i \(-0.394768\pi\)
0.324607 + 0.945849i \(0.394768\pi\)
\(572\) 0 0
\(573\) −9.58457 −0.400401
\(574\) 0 0
\(575\) −8.50785 −0.354802
\(576\) 0 0
\(577\) 42.4506 1.76724 0.883620 0.468205i \(-0.155099\pi\)
0.883620 + 0.468205i \(0.155099\pi\)
\(578\) 0 0
\(579\) 17.1851 0.714190
\(580\) 0 0
\(581\) −53.2534 −2.20932
\(582\) 0 0
\(583\) −41.4387 −1.71621
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.2335 −0.835126 −0.417563 0.908648i \(-0.637116\pi\)
−0.417563 + 0.908648i \(0.637116\pi\)
\(588\) 0 0
\(589\) 37.6762 1.55242
\(590\) 0 0
\(591\) 12.2123 0.502347
\(592\) 0 0
\(593\) 5.48873 0.225395 0.112698 0.993629i \(-0.464051\pi\)
0.112698 + 0.993629i \(0.464051\pi\)
\(594\) 0 0
\(595\) 32.4615 1.33079
\(596\) 0 0
\(597\) 12.2265 0.500396
\(598\) 0 0
\(599\) −33.7217 −1.37783 −0.688915 0.724842i \(-0.741913\pi\)
−0.688915 + 0.724842i \(0.741913\pi\)
\(600\) 0 0
\(601\) 2.21511 0.0903562 0.0451781 0.998979i \(-0.485614\pi\)
0.0451781 + 0.998979i \(0.485614\pi\)
\(602\) 0 0
\(603\) −9.46192 −0.385319
\(604\) 0 0
\(605\) −4.70833 −0.191421
\(606\) 0 0
\(607\) 11.4943 0.466539 0.233270 0.972412i \(-0.425058\pi\)
0.233270 + 0.972412i \(0.425058\pi\)
\(608\) 0 0
\(609\) 1.53261 0.0621047
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −25.0756 −1.01279 −0.506397 0.862300i \(-0.669023\pi\)
−0.506397 + 0.862300i \(0.669023\pi\)
\(614\) 0 0
\(615\) −4.60492 −0.185688
\(616\) 0 0
\(617\) −41.2483 −1.66059 −0.830296 0.557322i \(-0.811829\pi\)
−0.830296 + 0.557322i \(0.811829\pi\)
\(618\) 0 0
\(619\) −5.88692 −0.236615 −0.118308 0.992977i \(-0.537747\pi\)
−0.118308 + 0.992977i \(0.537747\pi\)
\(620\) 0 0
\(621\) 4.11266 0.165035
\(622\) 0 0
\(623\) 8.96371 0.359124
\(624\) 0 0
\(625\) −31.0640 −1.24256
\(626\) 0 0
\(627\) −22.3311 −0.891817
\(628\) 0 0
\(629\) 32.4022 1.29196
\(630\) 0 0
\(631\) 33.2398 1.32326 0.661628 0.749832i \(-0.269866\pi\)
0.661628 + 0.749832i \(0.269866\pi\)
\(632\) 0 0
\(633\) −10.8819 −0.432515
\(634\) 0 0
\(635\) −24.9649 −0.990701
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.26504 0.247841
\(640\) 0 0
\(641\) −17.8240 −0.704005 −0.352002 0.935999i \(-0.614499\pi\)
−0.352002 + 0.935999i \(0.614499\pi\)
\(642\) 0 0
\(643\) −13.8564 −0.546442 −0.273221 0.961951i \(-0.588089\pi\)
−0.273221 + 0.961951i \(0.588089\pi\)
\(644\) 0 0
\(645\) 26.6972 1.05120
\(646\) 0 0
\(647\) −44.4689 −1.74825 −0.874127 0.485697i \(-0.838566\pi\)
−0.874127 + 0.485697i \(0.838566\pi\)
\(648\) 0 0
\(649\) 38.1509 1.49755
\(650\) 0 0
\(651\) −19.0795 −0.747783
\(652\) 0 0
\(653\) −1.11583 −0.0436657 −0.0218328 0.999762i \(-0.506950\pi\)
−0.0218328 + 0.999762i \(0.506950\pi\)
\(654\) 0 0
\(655\) 15.4835 0.604992
\(656\) 0 0
\(657\) −13.9720 −0.545099
\(658\) 0 0
\(659\) 1.56758 0.0610644 0.0305322 0.999534i \(-0.490280\pi\)
0.0305322 + 0.999534i \(0.490280\pi\)
\(660\) 0 0
\(661\) −2.63693 −0.102565 −0.0512824 0.998684i \(-0.516331\pi\)
−0.0512824 + 0.998684i \(0.516331\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 72.7492 2.82109
\(666\) 0 0
\(667\) 1.69328 0.0655639
\(668\) 0 0
\(669\) −5.88623 −0.227575
\(670\) 0 0
\(671\) 4.14092 0.159858
\(672\) 0 0
\(673\) −31.8531 −1.22785 −0.613923 0.789366i \(-0.710410\pi\)
−0.613923 + 0.789366i \(0.710410\pi\)
\(674\) 0 0
\(675\) −2.06870 −0.0796241
\(676\) 0 0
\(677\) −25.1260 −0.965671 −0.482835 0.875711i \(-0.660393\pi\)
−0.482835 + 0.875711i \(0.660393\pi\)
\(678\) 0 0
\(679\) −41.5595 −1.59491
\(680\) 0 0
\(681\) −13.1454 −0.503733
\(682\) 0 0
\(683\) −35.1090 −1.34341 −0.671704 0.740820i \(-0.734437\pi\)
−0.671704 + 0.740820i \(0.734437\pi\)
\(684\) 0 0
\(685\) 36.1163 1.37993
\(686\) 0 0
\(687\) −23.8710 −0.910736
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 14.7925 0.562732 0.281366 0.959600i \(-0.409212\pi\)
0.281366 + 0.959600i \(0.409212\pi\)
\(692\) 0 0
\(693\) 11.3086 0.429577
\(694\) 0 0
\(695\) 54.1398 2.05364
\(696\) 0 0
\(697\) 5.68097 0.215182
\(698\) 0 0
\(699\) 2.65905 0.100574
\(700\) 0 0
\(701\) −28.9889 −1.09490 −0.547448 0.836839i \(-0.684401\pi\)
−0.547448 + 0.836839i \(0.684401\pi\)
\(702\) 0 0
\(703\) 72.6164 2.73878
\(704\) 0 0
\(705\) −2.90838 −0.109536
\(706\) 0 0
\(707\) −60.1715 −2.26298
\(708\) 0 0
\(709\) −8.48462 −0.318647 −0.159323 0.987226i \(-0.550931\pi\)
−0.159323 + 0.987226i \(0.550931\pi\)
\(710\) 0 0
\(711\) 5.45858 0.204713
\(712\) 0 0
\(713\) −21.0795 −0.789434
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.99863 0.336060
\(718\) 0 0
\(719\) −5.39831 −0.201323 −0.100661 0.994921i \(-0.532096\pi\)
−0.100661 + 0.994921i \(0.532096\pi\)
\(720\) 0 0
\(721\) 18.2712 0.680456
\(722\) 0 0
\(723\) 1.45787 0.0542188
\(724\) 0 0
\(725\) −0.851728 −0.0316324
\(726\) 0 0
\(727\) 9.28457 0.344346 0.172173 0.985067i \(-0.444921\pi\)
0.172173 + 0.985067i \(0.444921\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −32.9357 −1.21817
\(732\) 0 0
\(733\) 24.8811 0.919005 0.459502 0.888177i \(-0.348028\pi\)
0.459502 + 0.888177i \(0.348028\pi\)
\(734\) 0 0
\(735\) −18.2297 −0.672413
\(736\) 0 0
\(737\) −28.7447 −1.05883
\(738\) 0 0
\(739\) −18.1422 −0.667373 −0.333686 0.942684i \(-0.608293\pi\)
−0.333686 + 0.942684i \(0.608293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −49.5850 −1.81910 −0.909549 0.415596i \(-0.863573\pi\)
−0.909549 + 0.415596i \(0.863573\pi\)
\(744\) 0 0
\(745\) −54.4480 −1.99482
\(746\) 0 0
\(747\) −14.3060 −0.523430
\(748\) 0 0
\(749\) −3.84866 −0.140627
\(750\) 0 0
\(751\) 41.6714 1.52061 0.760305 0.649567i \(-0.225050\pi\)
0.760305 + 0.649567i \(0.225050\pi\)
\(752\) 0 0
\(753\) 3.98236 0.145125
\(754\) 0 0
\(755\) −41.6389 −1.51540
\(756\) 0 0
\(757\) −14.3032 −0.519857 −0.259929 0.965628i \(-0.583699\pi\)
−0.259929 + 0.965628i \(0.583699\pi\)
\(758\) 0 0
\(759\) 12.4940 0.453505
\(760\) 0 0
\(761\) −52.4720 −1.90211 −0.951054 0.309023i \(-0.899998\pi\)
−0.951054 + 0.309023i \(0.899998\pi\)
\(762\) 0 0
\(763\) −32.1770 −1.16489
\(764\) 0 0
\(765\) 8.72046 0.315289
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.79004 0.244855 0.122428 0.992477i \(-0.460932\pi\)
0.122428 + 0.992477i \(0.460932\pi\)
\(770\) 0 0
\(771\) 15.2959 0.550868
\(772\) 0 0
\(773\) 39.0260 1.40367 0.701834 0.712340i \(-0.252365\pi\)
0.701834 + 0.712340i \(0.252365\pi\)
\(774\) 0 0
\(775\) 10.6031 0.380876
\(776\) 0 0
\(777\) −36.7734 −1.31924
\(778\) 0 0
\(779\) 12.7316 0.456157
\(780\) 0 0
\(781\) 19.0328 0.681048
\(782\) 0 0
\(783\) 0.411722 0.0147138
\(784\) 0 0
\(785\) 30.4149 1.08556
\(786\) 0 0
\(787\) −24.5427 −0.874853 −0.437426 0.899254i \(-0.644110\pi\)
−0.437426 + 0.899254i \(0.644110\pi\)
\(788\) 0 0
\(789\) 14.8408 0.528348
\(790\) 0 0
\(791\) −66.0988 −2.35020
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 36.2657 1.28621
\(796\) 0 0
\(797\) 15.7291 0.557152 0.278576 0.960414i \(-0.410138\pi\)
0.278576 + 0.960414i \(0.410138\pi\)
\(798\) 0 0
\(799\) 3.58799 0.126934
\(800\) 0 0
\(801\) 2.40802 0.0850831
\(802\) 0 0
\(803\) −42.4461 −1.49789
\(804\) 0 0
\(805\) −40.7025 −1.43458
\(806\) 0 0
\(807\) 12.7970 0.450475
\(808\) 0 0
\(809\) −54.2376 −1.90689 −0.953446 0.301563i \(-0.902492\pi\)
−0.953446 + 0.301563i \(0.902492\pi\)
\(810\) 0 0
\(811\) 29.9691 1.05236 0.526178 0.850374i \(-0.323624\pi\)
0.526178 + 0.850374i \(0.323624\pi\)
\(812\) 0 0
\(813\) −27.0802 −0.949744
\(814\) 0 0
\(815\) 44.4248 1.55613
\(816\) 0 0
\(817\) −73.8120 −2.58235
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.4089 −0.467973 −0.233986 0.972240i \(-0.575177\pi\)
−0.233986 + 0.972240i \(0.575177\pi\)
\(822\) 0 0
\(823\) −38.7542 −1.35089 −0.675443 0.737412i \(-0.736048\pi\)
−0.675443 + 0.737412i \(0.736048\pi\)
\(824\) 0 0
\(825\) −6.28458 −0.218801
\(826\) 0 0
\(827\) 31.1229 1.08225 0.541124 0.840943i \(-0.317999\pi\)
0.541124 + 0.840943i \(0.317999\pi\)
\(828\) 0 0
\(829\) 41.0222 1.42476 0.712380 0.701794i \(-0.247617\pi\)
0.712380 + 0.701794i \(0.247617\pi\)
\(830\) 0 0
\(831\) −7.02829 −0.243809
\(832\) 0 0
\(833\) 22.4895 0.779215
\(834\) 0 0
\(835\) 27.9140 0.966002
\(836\) 0 0
\(837\) −5.12551 −0.177164
\(838\) 0 0
\(839\) −14.1452 −0.488347 −0.244173 0.969732i \(-0.578517\pi\)
−0.244173 + 0.969732i \(0.578517\pi\)
\(840\) 0 0
\(841\) −28.8305 −0.994155
\(842\) 0 0
\(843\) 18.8159 0.648055
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.59214 −0.226508
\(848\) 0 0
\(849\) 4.79334 0.164507
\(850\) 0 0
\(851\) −40.6282 −1.39272
\(852\) 0 0
\(853\) −7.63902 −0.261555 −0.130778 0.991412i \(-0.541747\pi\)
−0.130778 + 0.991412i \(0.541747\pi\)
\(854\) 0 0
\(855\) 19.5434 0.668370
\(856\) 0 0
\(857\) 6.11628 0.208928 0.104464 0.994529i \(-0.466687\pi\)
0.104464 + 0.994529i \(0.466687\pi\)
\(858\) 0 0
\(859\) 31.6762 1.08078 0.540388 0.841416i \(-0.318277\pi\)
0.540388 + 0.841416i \(0.318277\pi\)
\(860\) 0 0
\(861\) −6.44735 −0.219725
\(862\) 0 0
\(863\) 28.0865 0.956076 0.478038 0.878339i \(-0.341348\pi\)
0.478038 + 0.878339i \(0.341348\pi\)
\(864\) 0 0
\(865\) −11.8475 −0.402827
\(866\) 0 0
\(867\) 6.24179 0.211982
\(868\) 0 0
\(869\) 16.5829 0.562535
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −11.1646 −0.377863
\(874\) 0 0
\(875\) −29.0108 −0.980743
\(876\) 0 0
\(877\) 46.6646 1.57575 0.787877 0.615833i \(-0.211181\pi\)
0.787877 + 0.615833i \(0.211181\pi\)
\(878\) 0 0
\(879\) −29.4230 −0.992415
\(880\) 0 0
\(881\) −18.8403 −0.634746 −0.317373 0.948301i \(-0.602801\pi\)
−0.317373 + 0.948301i \(0.602801\pi\)
\(882\) 0 0
\(883\) −26.5979 −0.895092 −0.447546 0.894261i \(-0.647702\pi\)
−0.447546 + 0.894261i \(0.647702\pi\)
\(884\) 0 0
\(885\) −33.3884 −1.12234
\(886\) 0 0
\(887\) −14.0186 −0.470697 −0.235349 0.971911i \(-0.575623\pi\)
−0.235349 + 0.971911i \(0.575623\pi\)
\(888\) 0 0
\(889\) −34.9533 −1.17230
\(890\) 0 0
\(891\) 3.03794 0.101775
\(892\) 0 0
\(893\) 8.04102 0.269083
\(894\) 0 0
\(895\) −11.2172 −0.374948
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.11029 −0.0703821
\(900\) 0 0
\(901\) −44.7401 −1.49051
\(902\) 0 0
\(903\) 37.3788 1.24389
\(904\) 0 0
\(905\) −17.0038 −0.565227
\(906\) 0 0
\(907\) −18.8130 −0.624675 −0.312338 0.949971i \(-0.601112\pi\)
−0.312338 + 0.949971i \(0.601112\pi\)
\(908\) 0 0
\(909\) −16.1645 −0.536143
\(910\) 0 0
\(911\) 7.29460 0.241681 0.120840 0.992672i \(-0.461441\pi\)
0.120840 + 0.992672i \(0.461441\pi\)
\(912\) 0 0
\(913\) −43.4608 −1.43834
\(914\) 0 0
\(915\) −3.62399 −0.119805
\(916\) 0 0
\(917\) 21.6785 0.715888
\(918\) 0 0
\(919\) 33.9015 1.11831 0.559154 0.829064i \(-0.311126\pi\)
0.559154 + 0.829064i \(0.311126\pi\)
\(920\) 0 0
\(921\) −30.5800 −1.00764
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 20.4363 0.671940
\(926\) 0 0
\(927\) 4.90839 0.161213
\(928\) 0 0
\(929\) −13.1814 −0.432467 −0.216234 0.976342i \(-0.569377\pi\)
−0.216234 + 0.976342i \(0.569377\pi\)
\(930\) 0 0
\(931\) 50.4011 1.65183
\(932\) 0 0
\(933\) −3.05106 −0.0998871
\(934\) 0 0
\(935\) 26.4923 0.866389
\(936\) 0 0
\(937\) −33.2186 −1.08520 −0.542602 0.839990i \(-0.682561\pi\)
−0.542602 + 0.839990i \(0.682561\pi\)
\(938\) 0 0
\(939\) −26.7958 −0.874448
\(940\) 0 0
\(941\) −7.07347 −0.230588 −0.115294 0.993331i \(-0.536781\pi\)
−0.115294 + 0.993331i \(0.536781\pi\)
\(942\) 0 0
\(943\) −7.12321 −0.231964
\(944\) 0 0
\(945\) −9.89688 −0.321946
\(946\) 0 0
\(947\) 56.8558 1.84756 0.923782 0.382919i \(-0.125081\pi\)
0.923782 + 0.382919i \(0.125081\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −33.1691 −1.07558
\(952\) 0 0
\(953\) 22.6448 0.733539 0.366769 0.930312i \(-0.380464\pi\)
0.366769 + 0.930312i \(0.380464\pi\)
\(954\) 0 0
\(955\) 25.4825 0.824595
\(956\) 0 0
\(957\) 1.25079 0.0404322
\(958\) 0 0
\(959\) 50.5664 1.63288
\(960\) 0 0
\(961\) −4.72911 −0.152552
\(962\) 0 0
\(963\) −1.03391 −0.0333172
\(964\) 0 0
\(965\) −45.6902 −1.47082
\(966\) 0 0
\(967\) 32.2338 1.03657 0.518284 0.855208i \(-0.326571\pi\)
0.518284 + 0.855208i \(0.326571\pi\)
\(968\) 0 0
\(969\) −24.1102 −0.774530
\(970\) 0 0
\(971\) −14.4937 −0.465125 −0.232563 0.972581i \(-0.574711\pi\)
−0.232563 + 0.972581i \(0.574711\pi\)
\(972\) 0 0
\(973\) 75.8011 2.43007
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.0769 0.418366 0.209183 0.977876i \(-0.432920\pi\)
0.209183 + 0.977876i \(0.432920\pi\)
\(978\) 0 0
\(979\) 7.31541 0.233802
\(980\) 0 0
\(981\) −8.64406 −0.275983
\(982\) 0 0
\(983\) 36.0315 1.14923 0.574613 0.818425i \(-0.305152\pi\)
0.574613 + 0.818425i \(0.305152\pi\)
\(984\) 0 0
\(985\) −32.4688 −1.03454
\(986\) 0 0
\(987\) −4.07202 −0.129614
\(988\) 0 0
\(989\) 41.2971 1.31317
\(990\) 0 0
\(991\) 36.5518 1.16111 0.580554 0.814222i \(-0.302836\pi\)
0.580554 + 0.814222i \(0.302836\pi\)
\(992\) 0 0
\(993\) −25.8226 −0.819457
\(994\) 0 0
\(995\) −32.5065 −1.03053
\(996\) 0 0
\(997\) −40.0370 −1.26798 −0.633992 0.773340i \(-0.718585\pi\)
−0.633992 + 0.773340i \(0.718585\pi\)
\(998\) 0 0
\(999\) −9.87882 −0.312552
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.a.bg.1.5 yes 6
4.3 odd 2 8112.2.a.cw.1.5 6
13.5 odd 4 4056.2.c.q.337.4 12
13.8 odd 4 4056.2.c.q.337.9 12
13.12 even 2 4056.2.a.bf.1.2 6
52.51 odd 2 8112.2.a.cv.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bf.1.2 6 13.12 even 2
4056.2.a.bg.1.5 yes 6 1.1 even 1 trivial
4056.2.c.q.337.4 12 13.5 odd 4
4056.2.c.q.337.9 12 13.8 odd 4
8112.2.a.cv.1.2 6 52.51 odd 2
8112.2.a.cw.1.5 6 4.3 odd 2