Properties

Label 4056.2.a.be.1.4
Level $4056$
Weight $2$
Character 4056.1
Self dual yes
Analytic conductor $32.387$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(1,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,4,0,2,0,4,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.25488.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.47535\) of defining polynomial
Character \(\chi\) \(=\) 4056.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.20740 q^{5} -3.55539 q^{7} +1.00000 q^{9} +5.08003 q^{11} +4.20740 q^{15} +3.25670 q^{17} -3.33477 q^{19} -3.55539 q^{21} +0.384069 q^{23} +12.7022 q^{25} +1.00000 q^{27} -7.28744 q^{29} +6.47535 q^{31} +5.08003 q^{33} -14.9589 q^{35} +3.12737 q^{37} +6.77404 q^{41} +4.15811 q^{43} +4.20740 q^{45} -5.49484 q^{47} +5.64077 q^{49} +3.25670 q^{51} +0.613974 q^{53} +21.3737 q^{55} -3.33477 q^{57} -7.87891 q^{59} -8.31227 q^{61} -3.55539 q^{63} +2.06878 q^{67} +0.384069 q^{69} -2.82529 q^{71} +3.21865 q^{73} +12.7022 q^{75} -18.0615 q^{77} -2.64077 q^{79} +1.00000 q^{81} +1.96926 q^{83} +13.7022 q^{85} -7.28744 q^{87} +14.1601 q^{89} +6.47535 q^{93} -14.0307 q^{95} +8.86766 q^{97} +5.08003 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{5} + 2 q^{7} + 4 q^{9} + 10 q^{11} + 4 q^{15} + 12 q^{17} + 2 q^{19} + 2 q^{21} - 2 q^{23} + 2 q^{25} + 4 q^{27} - 6 q^{29} + 20 q^{31} + 10 q^{33} - 10 q^{35} + 10 q^{37} + 6 q^{41}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 4.20740 1.88161 0.940804 0.338951i \(-0.110072\pi\)
0.940804 + 0.338951i \(0.110072\pi\)
\(6\) 0 0
\(7\) −3.55539 −1.34381 −0.671905 0.740638i \(-0.734524\pi\)
−0.671905 + 0.740638i \(0.734524\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.08003 1.53169 0.765844 0.643027i \(-0.222322\pi\)
0.765844 + 0.643027i \(0.222322\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 4.20740 1.08635
\(16\) 0 0
\(17\) 3.25670 0.789865 0.394933 0.918710i \(-0.370768\pi\)
0.394933 + 0.918710i \(0.370768\pi\)
\(18\) 0 0
\(19\) −3.33477 −0.765050 −0.382525 0.923945i \(-0.624945\pi\)
−0.382525 + 0.923945i \(0.624945\pi\)
\(20\) 0 0
\(21\) −3.55539 −0.775849
\(22\) 0 0
\(23\) 0.384069 0.0800838 0.0400419 0.999198i \(-0.487251\pi\)
0.0400419 + 0.999198i \(0.487251\pi\)
\(24\) 0 0
\(25\) 12.7022 2.54045
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −7.28744 −1.35324 −0.676621 0.736331i \(-0.736557\pi\)
−0.676621 + 0.736331i \(0.736557\pi\)
\(30\) 0 0
\(31\) 6.47535 1.16301 0.581504 0.813544i \(-0.302465\pi\)
0.581504 + 0.813544i \(0.302465\pi\)
\(32\) 0 0
\(33\) 5.08003 0.884320
\(34\) 0 0
\(35\) −14.9589 −2.52852
\(36\) 0 0
\(37\) 3.12737 0.514137 0.257068 0.966393i \(-0.417243\pi\)
0.257068 + 0.966393i \(0.417243\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.77404 1.05793 0.528964 0.848644i \(-0.322581\pi\)
0.528964 + 0.848644i \(0.322581\pi\)
\(42\) 0 0
\(43\) 4.15811 0.634106 0.317053 0.948408i \(-0.397307\pi\)
0.317053 + 0.948408i \(0.397307\pi\)
\(44\) 0 0
\(45\) 4.20740 0.627203
\(46\) 0 0
\(47\) −5.49484 −0.801505 −0.400752 0.916186i \(-0.631251\pi\)
−0.400752 + 0.916186i \(0.631251\pi\)
\(48\) 0 0
\(49\) 5.64077 0.805824
\(50\) 0 0
\(51\) 3.25670 0.456029
\(52\) 0 0
\(53\) 0.613974 0.0843358 0.0421679 0.999111i \(-0.486574\pi\)
0.0421679 + 0.999111i \(0.486574\pi\)
\(54\) 0 0
\(55\) 21.3737 2.88204
\(56\) 0 0
\(57\) −3.33477 −0.441702
\(58\) 0 0
\(59\) −7.87891 −1.02575 −0.512873 0.858464i \(-0.671419\pi\)
−0.512873 + 0.858464i \(0.671419\pi\)
\(60\) 0 0
\(61\) −8.31227 −1.06428 −0.532139 0.846657i \(-0.678612\pi\)
−0.532139 + 0.846657i \(0.678612\pi\)
\(62\) 0 0
\(63\) −3.55539 −0.447936
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.06878 0.252742 0.126371 0.991983i \(-0.459667\pi\)
0.126371 + 0.991983i \(0.459667\pi\)
\(68\) 0 0
\(69\) 0.384069 0.0462364
\(70\) 0 0
\(71\) −2.82529 −0.335301 −0.167650 0.985847i \(-0.553618\pi\)
−0.167650 + 0.985847i \(0.553618\pi\)
\(72\) 0 0
\(73\) 3.21865 0.376715 0.188357 0.982101i \(-0.439684\pi\)
0.188357 + 0.982101i \(0.439684\pi\)
\(74\) 0 0
\(75\) 12.7022 1.46673
\(76\) 0 0
\(77\) −18.0615 −2.05830
\(78\) 0 0
\(79\) −2.64077 −0.297109 −0.148555 0.988904i \(-0.547462\pi\)
−0.148555 + 0.988904i \(0.547462\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.96926 0.216155 0.108077 0.994142i \(-0.465531\pi\)
0.108077 + 0.994142i \(0.465531\pi\)
\(84\) 0 0
\(85\) 13.7022 1.48622
\(86\) 0 0
\(87\) −7.28744 −0.781295
\(88\) 0 0
\(89\) 14.1601 1.50096 0.750482 0.660891i \(-0.229821\pi\)
0.750482 + 0.660891i \(0.229821\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.47535 0.671463
\(94\) 0 0
\(95\) −14.0307 −1.43952
\(96\) 0 0
\(97\) 8.86766 0.900374 0.450187 0.892934i \(-0.351357\pi\)
0.450187 + 0.892934i \(0.351357\pi\)
\(98\) 0 0
\(99\) 5.08003 0.510563
\(100\) 0 0
\(101\) 9.44750 0.940062 0.470031 0.882650i \(-0.344243\pi\)
0.470031 + 0.882650i \(0.344243\pi\)
\(102\) 0 0
\(103\) −2.15811 −0.212645 −0.106322 0.994332i \(-0.533908\pi\)
−0.106322 + 0.994332i \(0.533908\pi\)
\(104\) 0 0
\(105\) −14.9589 −1.45984
\(106\) 0 0
\(107\) −18.7003 −1.80782 −0.903912 0.427718i \(-0.859318\pi\)
−0.903912 + 0.427718i \(0.859318\pi\)
\(108\) 0 0
\(109\) 14.4754 1.38649 0.693244 0.720703i \(-0.256181\pi\)
0.693244 + 0.720703i \(0.256181\pi\)
\(110\) 0 0
\(111\) 3.12737 0.296837
\(112\) 0 0
\(113\) 2.74330 0.258068 0.129034 0.991640i \(-0.458812\pi\)
0.129034 + 0.991640i \(0.458812\pi\)
\(114\) 0 0
\(115\) 1.61593 0.150686
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.5788 −1.06143
\(120\) 0 0
\(121\) 14.8067 1.34607
\(122\) 0 0
\(123\) 6.77404 0.610795
\(124\) 0 0
\(125\) 32.4064 2.89852
\(126\) 0 0
\(127\) −10.1274 −0.898659 −0.449329 0.893366i \(-0.648337\pi\)
−0.449329 + 0.893366i \(0.648337\pi\)
\(128\) 0 0
\(129\) 4.15811 0.366101
\(130\) 0 0
\(131\) −13.3430 −1.16578 −0.582892 0.812550i \(-0.698079\pi\)
−0.582892 + 0.812550i \(0.698079\pi\)
\(132\) 0 0
\(133\) 11.8564 1.02808
\(134\) 0 0
\(135\) 4.20740 0.362116
\(136\) 0 0
\(137\) 11.8955 1.01630 0.508151 0.861268i \(-0.330329\pi\)
0.508151 + 0.861268i \(0.330329\pi\)
\(138\) 0 0
\(139\) 13.4207 1.13833 0.569165 0.822223i \(-0.307267\pi\)
0.569165 + 0.822223i \(0.307267\pi\)
\(140\) 0 0
\(141\) −5.49484 −0.462749
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −30.6612 −2.54627
\(146\) 0 0
\(147\) 5.64077 0.465243
\(148\) 0 0
\(149\) −5.51144 −0.451515 −0.225757 0.974184i \(-0.572486\pi\)
−0.225757 + 0.974184i \(0.572486\pi\)
\(150\) 0 0
\(151\) −5.08003 −0.413407 −0.206704 0.978404i \(-0.566274\pi\)
−0.206704 + 0.978404i \(0.566274\pi\)
\(152\) 0 0
\(153\) 3.25670 0.263288
\(154\) 0 0
\(155\) 27.2444 2.18832
\(156\) 0 0
\(157\) −12.5670 −1.00296 −0.501478 0.865170i \(-0.667210\pi\)
−0.501478 + 0.865170i \(0.667210\pi\)
\(158\) 0 0
\(159\) 0.613974 0.0486913
\(160\) 0 0
\(161\) −1.36551 −0.107617
\(162\) 0 0
\(163\) 8.81799 0.690678 0.345339 0.938478i \(-0.387764\pi\)
0.345339 + 0.938478i \(0.387764\pi\)
\(164\) 0 0
\(165\) 21.3737 1.66394
\(166\) 0 0
\(167\) 14.6695 1.13516 0.567582 0.823317i \(-0.307879\pi\)
0.567582 + 0.823317i \(0.307879\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.33477 −0.255017
\(172\) 0 0
\(173\) −2.41481 −0.183594 −0.0917972 0.995778i \(-0.529261\pi\)
−0.0917972 + 0.995778i \(0.529261\pi\)
\(174\) 0 0
\(175\) −45.1614 −3.41388
\(176\) 0 0
\(177\) −7.87891 −0.592215
\(178\) 0 0
\(179\) −5.35728 −0.400422 −0.200211 0.979753i \(-0.564163\pi\)
−0.200211 + 0.979753i \(0.564163\pi\)
\(180\) 0 0
\(181\) −17.6715 −1.31351 −0.656756 0.754103i \(-0.728072\pi\)
−0.656756 + 0.754103i \(0.728072\pi\)
\(182\) 0 0
\(183\) −8.31227 −0.614461
\(184\) 0 0
\(185\) 13.1581 0.967403
\(186\) 0 0
\(187\) 16.5441 1.20983
\(188\) 0 0
\(189\) −3.55539 −0.258616
\(190\) 0 0
\(191\) 4.57487 0.331026 0.165513 0.986208i \(-0.447072\pi\)
0.165513 + 0.986208i \(0.447072\pi\)
\(192\) 0 0
\(193\) −16.8428 −1.21237 −0.606186 0.795323i \(-0.707301\pi\)
−0.606186 + 0.795323i \(0.707301\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.85641 −0.132263 −0.0661317 0.997811i \(-0.521066\pi\)
−0.0661317 + 0.997811i \(0.521066\pi\)
\(198\) 0 0
\(199\) −18.9877 −1.34600 −0.673002 0.739641i \(-0.734995\pi\)
−0.673002 + 0.739641i \(0.734995\pi\)
\(200\) 0 0
\(201\) 2.06878 0.145921
\(202\) 0 0
\(203\) 25.9096 1.81850
\(204\) 0 0
\(205\) 28.5011 1.99060
\(206\) 0 0
\(207\) 0.384069 0.0266946
\(208\) 0 0
\(209\) −16.9408 −1.17182
\(210\) 0 0
\(211\) 12.2424 0.842804 0.421402 0.906874i \(-0.361538\pi\)
0.421402 + 0.906874i \(0.361538\pi\)
\(212\) 0 0
\(213\) −2.82529 −0.193586
\(214\) 0 0
\(215\) 17.4948 1.19314
\(216\) 0 0
\(217\) −23.0224 −1.56286
\(218\) 0 0
\(219\) 3.21865 0.217497
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.7085 1.38675 0.693373 0.720579i \(-0.256124\pi\)
0.693373 + 0.720579i \(0.256124\pi\)
\(224\) 0 0
\(225\) 12.7022 0.846816
\(226\) 0 0
\(227\) −8.63881 −0.573378 −0.286689 0.958024i \(-0.592555\pi\)
−0.286689 + 0.958024i \(0.592555\pi\)
\(228\) 0 0
\(229\) 20.1111 1.32898 0.664491 0.747296i \(-0.268648\pi\)
0.664491 + 0.747296i \(0.268648\pi\)
\(230\) 0 0
\(231\) −18.0615 −1.18836
\(232\) 0 0
\(233\) −4.41089 −0.288967 −0.144484 0.989507i \(-0.546152\pi\)
−0.144484 + 0.989507i \(0.546152\pi\)
\(234\) 0 0
\(235\) −23.1190 −1.50812
\(236\) 0 0
\(237\) −2.64077 −0.171536
\(238\) 0 0
\(239\) 3.51734 0.227518 0.113759 0.993508i \(-0.463711\pi\)
0.113759 + 0.993508i \(0.463711\pi\)
\(240\) 0 0
\(241\) −4.74330 −0.305543 −0.152771 0.988262i \(-0.548820\pi\)
−0.152771 + 0.988262i \(0.548820\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 23.7330 1.51624
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.96926 0.124797
\(250\) 0 0
\(251\) 6.98968 0.441185 0.220592 0.975366i \(-0.429201\pi\)
0.220592 + 0.975366i \(0.429201\pi\)
\(252\) 0 0
\(253\) 1.95108 0.122663
\(254\) 0 0
\(255\) 13.7022 0.858068
\(256\) 0 0
\(257\) −4.71010 −0.293808 −0.146904 0.989151i \(-0.546931\pi\)
−0.146904 + 0.989151i \(0.546931\pi\)
\(258\) 0 0
\(259\) −11.1190 −0.690902
\(260\) 0 0
\(261\) −7.28744 −0.451081
\(262\) 0 0
\(263\) −4.12933 −0.254625 −0.127313 0.991863i \(-0.540635\pi\)
−0.127313 + 0.991863i \(0.540635\pi\)
\(264\) 0 0
\(265\) 2.58324 0.158687
\(266\) 0 0
\(267\) 14.1601 0.866582
\(268\) 0 0
\(269\) 16.2587 0.991308 0.495654 0.868520i \(-0.334928\pi\)
0.495654 + 0.868520i \(0.334928\pi\)
\(270\) 0 0
\(271\) −32.3171 −1.96313 −0.981563 0.191137i \(-0.938783\pi\)
−0.981563 + 0.191137i \(0.938783\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 64.5278 3.89117
\(276\) 0 0
\(277\) −23.7369 −1.42621 −0.713106 0.701056i \(-0.752712\pi\)
−0.713106 + 0.701056i \(0.752712\pi\)
\(278\) 0 0
\(279\) 6.47535 0.387669
\(280\) 0 0
\(281\) −25.5812 −1.52604 −0.763022 0.646373i \(-0.776285\pi\)
−0.763022 + 0.646373i \(0.776285\pi\)
\(282\) 0 0
\(283\) −11.6486 −0.692439 −0.346220 0.938154i \(-0.612535\pi\)
−0.346220 + 0.938154i \(0.612535\pi\)
\(284\) 0 0
\(285\) −14.0307 −0.831109
\(286\) 0 0
\(287\) −24.0843 −1.42165
\(288\) 0 0
\(289\) −6.39392 −0.376113
\(290\) 0 0
\(291\) 8.86766 0.519831
\(292\) 0 0
\(293\) −9.85016 −0.575452 −0.287726 0.957713i \(-0.592899\pi\)
−0.287726 + 0.957713i \(0.592899\pi\)
\(294\) 0 0
\(295\) −33.1497 −1.93005
\(296\) 0 0
\(297\) 5.08003 0.294773
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −14.7837 −0.852117
\(302\) 0 0
\(303\) 9.44750 0.542745
\(304\) 0 0
\(305\) −34.9731 −2.00255
\(306\) 0 0
\(307\) −12.4182 −0.708744 −0.354372 0.935105i \(-0.615305\pi\)
−0.354372 + 0.935105i \(0.615305\pi\)
\(308\) 0 0
\(309\) −2.15811 −0.122771
\(310\) 0 0
\(311\) 7.42267 0.420901 0.210450 0.977605i \(-0.432507\pi\)
0.210450 + 0.977605i \(0.432507\pi\)
\(312\) 0 0
\(313\) 27.9799 1.58152 0.790758 0.612129i \(-0.209687\pi\)
0.790758 + 0.612129i \(0.209687\pi\)
\(314\) 0 0
\(315\) −14.9589 −0.842841
\(316\) 0 0
\(317\) −8.02484 −0.450720 −0.225360 0.974276i \(-0.572356\pi\)
−0.225360 + 0.974276i \(0.572356\pi\)
\(318\) 0 0
\(319\) −37.0204 −2.07275
\(320\) 0 0
\(321\) −18.7003 −1.04375
\(322\) 0 0
\(323\) −10.8604 −0.604286
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.4754 0.800489
\(328\) 0 0
\(329\) 19.5363 1.07707
\(330\) 0 0
\(331\) 18.9252 1.04022 0.520112 0.854098i \(-0.325890\pi\)
0.520112 + 0.854098i \(0.325890\pi\)
\(332\) 0 0
\(333\) 3.12737 0.171379
\(334\) 0 0
\(335\) 8.70420 0.475561
\(336\) 0 0
\(337\) 13.8296 0.753347 0.376674 0.926346i \(-0.377068\pi\)
0.376674 + 0.926346i \(0.377068\pi\)
\(338\) 0 0
\(339\) 2.74330 0.148996
\(340\) 0 0
\(341\) 32.8950 1.78136
\(342\) 0 0
\(343\) 4.83260 0.260936
\(344\) 0 0
\(345\) 1.61593 0.0869988
\(346\) 0 0
\(347\) −16.9093 −0.907737 −0.453869 0.891069i \(-0.649956\pi\)
−0.453869 + 0.891069i \(0.649956\pi\)
\(348\) 0 0
\(349\) 15.7462 0.842874 0.421437 0.906858i \(-0.361526\pi\)
0.421437 + 0.906858i \(0.361526\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.9960 −1.17073 −0.585363 0.810771i \(-0.699048\pi\)
−0.585363 + 0.810771i \(0.699048\pi\)
\(354\) 0 0
\(355\) −11.8871 −0.630904
\(356\) 0 0
\(357\) −11.5788 −0.612816
\(358\) 0 0
\(359\) −24.5606 −1.29626 −0.648130 0.761530i \(-0.724449\pi\)
−0.648130 + 0.761530i \(0.724449\pi\)
\(360\) 0 0
\(361\) −7.87928 −0.414699
\(362\) 0 0
\(363\) 14.8067 0.777152
\(364\) 0 0
\(365\) 13.5422 0.708830
\(366\) 0 0
\(367\) 8.20778 0.428443 0.214221 0.976785i \(-0.431279\pi\)
0.214221 + 0.976785i \(0.431279\pi\)
\(368\) 0 0
\(369\) 6.77404 0.352642
\(370\) 0 0
\(371\) −2.18291 −0.113331
\(372\) 0 0
\(373\) −10.1190 −0.523942 −0.261971 0.965076i \(-0.584373\pi\)
−0.261971 + 0.965076i \(0.584373\pi\)
\(374\) 0 0
\(375\) 32.4064 1.67346
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 21.1614 1.08699 0.543493 0.839413i \(-0.317101\pi\)
0.543493 + 0.839413i \(0.317101\pi\)
\(380\) 0 0
\(381\) −10.1274 −0.518841
\(382\) 0 0
\(383\) 26.1151 1.33442 0.667209 0.744871i \(-0.267489\pi\)
0.667209 + 0.744871i \(0.267489\pi\)
\(384\) 0 0
\(385\) −75.9919 −3.87291
\(386\) 0 0
\(387\) 4.15811 0.211369
\(388\) 0 0
\(389\) 9.18493 0.465695 0.232847 0.972513i \(-0.425196\pi\)
0.232847 + 0.972513i \(0.425196\pi\)
\(390\) 0 0
\(391\) 1.25080 0.0632554
\(392\) 0 0
\(393\) −13.3430 −0.673066
\(394\) 0 0
\(395\) −11.1108 −0.559044
\(396\) 0 0
\(397\) −11.7912 −0.591783 −0.295892 0.955222i \(-0.595617\pi\)
−0.295892 + 0.955222i \(0.595617\pi\)
\(398\) 0 0
\(399\) 11.8564 0.593563
\(400\) 0 0
\(401\) −30.4822 −1.52221 −0.761104 0.648630i \(-0.775342\pi\)
−0.761104 + 0.648630i \(0.775342\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.20740 0.209068
\(406\) 0 0
\(407\) 15.8871 0.787497
\(408\) 0 0
\(409\) 16.8096 0.831182 0.415591 0.909552i \(-0.363575\pi\)
0.415591 + 0.909552i \(0.363575\pi\)
\(410\) 0 0
\(411\) 11.8955 0.586762
\(412\) 0 0
\(413\) 28.0126 1.37841
\(414\) 0 0
\(415\) 8.28548 0.406718
\(416\) 0 0
\(417\) 13.4207 0.657215
\(418\) 0 0
\(419\) −24.5788 −1.20075 −0.600376 0.799718i \(-0.704982\pi\)
−0.600376 + 0.799718i \(0.704982\pi\)
\(420\) 0 0
\(421\) 11.1157 0.541748 0.270874 0.962615i \(-0.412687\pi\)
0.270874 + 0.962615i \(0.412687\pi\)
\(422\) 0 0
\(423\) −5.49484 −0.267168
\(424\) 0 0
\(425\) 41.3674 2.00661
\(426\) 0 0
\(427\) 29.5533 1.43019
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 36.5606 1.76106 0.880531 0.473988i \(-0.157186\pi\)
0.880531 + 0.473988i \(0.157186\pi\)
\(432\) 0 0
\(433\) −19.1765 −0.921566 −0.460783 0.887513i \(-0.652431\pi\)
−0.460783 + 0.887513i \(0.652431\pi\)
\(434\) 0 0
\(435\) −30.6612 −1.47009
\(436\) 0 0
\(437\) −1.28078 −0.0612681
\(438\) 0 0
\(439\) 23.8213 1.13693 0.568463 0.822709i \(-0.307538\pi\)
0.568463 + 0.822709i \(0.307538\pi\)
\(440\) 0 0
\(441\) 5.64077 0.268608
\(442\) 0 0
\(443\) 6.48020 0.307884 0.153942 0.988080i \(-0.450803\pi\)
0.153942 + 0.988080i \(0.450803\pi\)
\(444\) 0 0
\(445\) 59.5771 2.82423
\(446\) 0 0
\(447\) −5.51144 −0.260682
\(448\) 0 0
\(449\) 7.11077 0.335578 0.167789 0.985823i \(-0.446337\pi\)
0.167789 + 0.985823i \(0.446337\pi\)
\(450\) 0 0
\(451\) 34.4123 1.62041
\(452\) 0 0
\(453\) −5.08003 −0.238681
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.71558 −0.0802514 −0.0401257 0.999195i \(-0.512776\pi\)
−0.0401257 + 0.999195i \(0.512776\pi\)
\(458\) 0 0
\(459\) 3.25670 0.152010
\(460\) 0 0
\(461\) 32.5129 1.51428 0.757139 0.653254i \(-0.226597\pi\)
0.757139 + 0.653254i \(0.226597\pi\)
\(462\) 0 0
\(463\) 3.37282 0.156748 0.0783741 0.996924i \(-0.475027\pi\)
0.0783741 + 0.996924i \(0.475027\pi\)
\(464\) 0 0
\(465\) 27.2444 1.26343
\(466\) 0 0
\(467\) −19.3241 −0.894212 −0.447106 0.894481i \(-0.647545\pi\)
−0.447106 + 0.894481i \(0.647545\pi\)
\(468\) 0 0
\(469\) −7.35532 −0.339637
\(470\) 0 0
\(471\) −12.5670 −0.579057
\(472\) 0 0
\(473\) 21.1233 0.971252
\(474\) 0 0
\(475\) −42.3591 −1.94357
\(476\) 0 0
\(477\) 0.613974 0.0281119
\(478\) 0 0
\(479\) −8.72313 −0.398570 −0.199285 0.979942i \(-0.563862\pi\)
−0.199285 + 0.979942i \(0.563862\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −1.36551 −0.0621329
\(484\) 0 0
\(485\) 37.3098 1.69415
\(486\) 0 0
\(487\) −11.6431 −0.527599 −0.263800 0.964578i \(-0.584976\pi\)
−0.263800 + 0.964578i \(0.584976\pi\)
\(488\) 0 0
\(489\) 8.81799 0.398763
\(490\) 0 0
\(491\) 7.77208 0.350749 0.175375 0.984502i \(-0.443886\pi\)
0.175375 + 0.984502i \(0.443886\pi\)
\(492\) 0 0
\(493\) −23.7330 −1.06888
\(494\) 0 0
\(495\) 21.3737 0.960679
\(496\) 0 0
\(497\) 10.0450 0.450580
\(498\) 0 0
\(499\) 20.3434 0.910695 0.455348 0.890314i \(-0.349515\pi\)
0.455348 + 0.890314i \(0.349515\pi\)
\(500\) 0 0
\(501\) 14.6695 0.655387
\(502\) 0 0
\(503\) −21.1522 −0.943130 −0.471565 0.881831i \(-0.656311\pi\)
−0.471565 + 0.881831i \(0.656311\pi\)
\(504\) 0 0
\(505\) 39.7495 1.76883
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −38.0803 −1.68788 −0.843939 0.536438i \(-0.819769\pi\)
−0.843939 + 0.536438i \(0.819769\pi\)
\(510\) 0 0
\(511\) −11.4436 −0.506233
\(512\) 0 0
\(513\) −3.33477 −0.147234
\(514\) 0 0
\(515\) −9.08003 −0.400114
\(516\) 0 0
\(517\) −27.9140 −1.22765
\(518\) 0 0
\(519\) −2.41481 −0.105998
\(520\) 0 0
\(521\) 20.7433 0.908781 0.454390 0.890803i \(-0.349857\pi\)
0.454390 + 0.890803i \(0.349857\pi\)
\(522\) 0 0
\(523\) −4.94247 −0.216119 −0.108060 0.994144i \(-0.534464\pi\)
−0.108060 + 0.994144i \(0.534464\pi\)
\(524\) 0 0
\(525\) −45.1614 −1.97100
\(526\) 0 0
\(527\) 21.0883 0.918619
\(528\) 0 0
\(529\) −22.8525 −0.993587
\(530\) 0 0
\(531\) −7.87891 −0.341915
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −78.6796 −3.40162
\(536\) 0 0
\(537\) −5.35728 −0.231184
\(538\) 0 0
\(539\) 28.6553 1.23427
\(540\) 0 0
\(541\) 43.7196 1.87965 0.939827 0.341650i \(-0.110986\pi\)
0.939827 + 0.341650i \(0.110986\pi\)
\(542\) 0 0
\(543\) −17.6715 −0.758357
\(544\) 0 0
\(545\) 60.9036 2.60883
\(546\) 0 0
\(547\) 39.1028 1.67191 0.835957 0.548795i \(-0.184913\pi\)
0.835957 + 0.548795i \(0.184913\pi\)
\(548\) 0 0
\(549\) −8.31227 −0.354759
\(550\) 0 0
\(551\) 24.3020 1.03530
\(552\) 0 0
\(553\) 9.38894 0.399259
\(554\) 0 0
\(555\) 13.1581 0.558531
\(556\) 0 0
\(557\) −23.9916 −1.01656 −0.508279 0.861192i \(-0.669718\pi\)
−0.508279 + 0.861192i \(0.669718\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 16.5441 0.698494
\(562\) 0 0
\(563\) 10.4763 0.441523 0.220761 0.975328i \(-0.429146\pi\)
0.220761 + 0.975328i \(0.429146\pi\)
\(564\) 0 0
\(565\) 11.5422 0.485583
\(566\) 0 0
\(567\) −3.55539 −0.149312
\(568\) 0 0
\(569\) 30.7964 1.29105 0.645526 0.763738i \(-0.276638\pi\)
0.645526 + 0.763738i \(0.276638\pi\)
\(570\) 0 0
\(571\) 9.52126 0.398452 0.199226 0.979954i \(-0.436157\pi\)
0.199226 + 0.979954i \(0.436157\pi\)
\(572\) 0 0
\(573\) 4.57487 0.191118
\(574\) 0 0
\(575\) 4.87853 0.203449
\(576\) 0 0
\(577\) −47.7495 −1.98784 −0.993918 0.110124i \(-0.964875\pi\)
−0.993918 + 0.110124i \(0.964875\pi\)
\(578\) 0 0
\(579\) −16.8428 −0.699964
\(580\) 0 0
\(581\) −7.00149 −0.290471
\(582\) 0 0
\(583\) 3.11901 0.129176
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.4845 −1.62970 −0.814851 0.579671i \(-0.803181\pi\)
−0.814851 + 0.579671i \(0.803181\pi\)
\(588\) 0 0
\(589\) −21.5938 −0.889758
\(590\) 0 0
\(591\) −1.85641 −0.0763624
\(592\) 0 0
\(593\) 20.0166 0.821983 0.410992 0.911639i \(-0.365183\pi\)
0.410992 + 0.911639i \(0.365183\pi\)
\(594\) 0 0
\(595\) −48.7168 −1.99719
\(596\) 0 0
\(597\) −18.9877 −0.777116
\(598\) 0 0
\(599\) −19.8517 −0.811120 −0.405560 0.914068i \(-0.632923\pi\)
−0.405560 + 0.914068i \(0.632923\pi\)
\(600\) 0 0
\(601\) 11.7022 0.477344 0.238672 0.971100i \(-0.423288\pi\)
0.238672 + 0.971100i \(0.423288\pi\)
\(602\) 0 0
\(603\) 2.06878 0.0842473
\(604\) 0 0
\(605\) 62.2979 2.53277
\(606\) 0 0
\(607\) −43.1955 −1.75325 −0.876626 0.481173i \(-0.840211\pi\)
−0.876626 + 0.481173i \(0.840211\pi\)
\(608\) 0 0
\(609\) 25.9096 1.04991
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −31.6417 −1.27800 −0.638998 0.769208i \(-0.720651\pi\)
−0.638998 + 0.769208i \(0.720651\pi\)
\(614\) 0 0
\(615\) 28.5011 1.14928
\(616\) 0 0
\(617\) −15.8027 −0.636193 −0.318096 0.948058i \(-0.603044\pi\)
−0.318096 + 0.948058i \(0.603044\pi\)
\(618\) 0 0
\(619\) −36.0663 −1.44963 −0.724814 0.688945i \(-0.758074\pi\)
−0.724814 + 0.688945i \(0.758074\pi\)
\(620\) 0 0
\(621\) 0.384069 0.0154121
\(622\) 0 0
\(623\) −50.3445 −2.01701
\(624\) 0 0
\(625\) 72.8358 2.91343
\(626\) 0 0
\(627\) −16.9408 −0.676549
\(628\) 0 0
\(629\) 10.1849 0.406099
\(630\) 0 0
\(631\) 17.9063 0.712837 0.356418 0.934326i \(-0.383998\pi\)
0.356418 + 0.934326i \(0.383998\pi\)
\(632\) 0 0
\(633\) 12.2424 0.486593
\(634\) 0 0
\(635\) −42.6099 −1.69092
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.82529 −0.111767
\(640\) 0 0
\(641\) 34.7101 1.37097 0.685483 0.728088i \(-0.259591\pi\)
0.685483 + 0.728088i \(0.259591\pi\)
\(642\) 0 0
\(643\) −45.5430 −1.79604 −0.898020 0.439955i \(-0.854994\pi\)
−0.898020 + 0.439955i \(0.854994\pi\)
\(644\) 0 0
\(645\) 17.4948 0.688859
\(646\) 0 0
\(647\) −17.8603 −0.702162 −0.351081 0.936345i \(-0.614186\pi\)
−0.351081 + 0.936345i \(0.614186\pi\)
\(648\) 0 0
\(649\) −40.0251 −1.57112
\(650\) 0 0
\(651\) −23.0224 −0.902318
\(652\) 0 0
\(653\) −37.6757 −1.47436 −0.737182 0.675694i \(-0.763844\pi\)
−0.737182 + 0.675694i \(0.763844\pi\)
\(654\) 0 0
\(655\) −56.1394 −2.19355
\(656\) 0 0
\(657\) 3.21865 0.125572
\(658\) 0 0
\(659\) 34.7475 1.35357 0.676785 0.736181i \(-0.263373\pi\)
0.676785 + 0.736181i \(0.263373\pi\)
\(660\) 0 0
\(661\) −39.3234 −1.52950 −0.764752 0.644325i \(-0.777139\pi\)
−0.764752 + 0.644325i \(0.777139\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 49.8847 1.93445
\(666\) 0 0
\(667\) −2.79888 −0.108373
\(668\) 0 0
\(669\) 20.7085 0.800638
\(670\) 0 0
\(671\) −42.2266 −1.63014
\(672\) 0 0
\(673\) 11.1436 0.429554 0.214777 0.976663i \(-0.431098\pi\)
0.214777 + 0.976663i \(0.431098\pi\)
\(674\) 0 0
\(675\) 12.7022 0.488910
\(676\) 0 0
\(677\) −12.3037 −0.472868 −0.236434 0.971648i \(-0.575979\pi\)
−0.236434 + 0.971648i \(0.575979\pi\)
\(678\) 0 0
\(679\) −31.5279 −1.20993
\(680\) 0 0
\(681\) −8.63881 −0.331040
\(682\) 0 0
\(683\) −17.5381 −0.671078 −0.335539 0.942026i \(-0.608918\pi\)
−0.335539 + 0.942026i \(0.608918\pi\)
\(684\) 0 0
\(685\) 50.0492 1.91228
\(686\) 0 0
\(687\) 20.1111 0.767288
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −13.1181 −0.499035 −0.249518 0.968370i \(-0.580272\pi\)
−0.249518 + 0.968370i \(0.580272\pi\)
\(692\) 0 0
\(693\) −18.0615 −0.686099
\(694\) 0 0
\(695\) 56.4663 2.14189
\(696\) 0 0
\(697\) 22.0610 0.835620
\(698\) 0 0
\(699\) −4.41089 −0.166835
\(700\) 0 0
\(701\) −0.768137 −0.0290121 −0.0145061 0.999895i \(-0.504618\pi\)
−0.0145061 + 0.999895i \(0.504618\pi\)
\(702\) 0 0
\(703\) −10.4291 −0.393340
\(704\) 0 0
\(705\) −23.1190 −0.870712
\(706\) 0 0
\(707\) −33.5895 −1.26326
\(708\) 0 0
\(709\) −32.0897 −1.20515 −0.602577 0.798061i \(-0.705859\pi\)
−0.602577 + 0.798061i \(0.705859\pi\)
\(710\) 0 0
\(711\) −2.64077 −0.0990365
\(712\) 0 0
\(713\) 2.48698 0.0931381
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.51734 0.131358
\(718\) 0 0
\(719\) −10.9771 −0.409378 −0.204689 0.978827i \(-0.565618\pi\)
−0.204689 + 0.978827i \(0.565618\pi\)
\(720\) 0 0
\(721\) 7.67291 0.285754
\(722\) 0 0
\(723\) −4.74330 −0.176405
\(724\) 0 0
\(725\) −92.5668 −3.43784
\(726\) 0 0
\(727\) 40.9056 1.51710 0.758552 0.651612i \(-0.225907\pi\)
0.758552 + 0.651612i \(0.225907\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 13.5417 0.500858
\(732\) 0 0
\(733\) −6.18829 −0.228570 −0.114285 0.993448i \(-0.536458\pi\)
−0.114285 + 0.993448i \(0.536458\pi\)
\(734\) 0 0
\(735\) 23.7330 0.875404
\(736\) 0 0
\(737\) 10.5095 0.387122
\(738\) 0 0
\(739\) −53.3488 −1.96247 −0.981233 0.192824i \(-0.938235\pi\)
−0.981233 + 0.192824i \(0.938235\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.5728 1.63522 0.817609 0.575774i \(-0.195299\pi\)
0.817609 + 0.575774i \(0.195299\pi\)
\(744\) 0 0
\(745\) −23.1888 −0.849574
\(746\) 0 0
\(747\) 1.96926 0.0720515
\(748\) 0 0
\(749\) 66.4867 2.42937
\(750\) 0 0
\(751\) −1.50945 −0.0550807 −0.0275403 0.999621i \(-0.508767\pi\)
−0.0275403 + 0.999621i \(0.508767\pi\)
\(752\) 0 0
\(753\) 6.98968 0.254718
\(754\) 0 0
\(755\) −21.3737 −0.777870
\(756\) 0 0
\(757\) −51.9794 −1.88922 −0.944611 0.328192i \(-0.893561\pi\)
−0.944611 + 0.328192i \(0.893561\pi\)
\(758\) 0 0
\(759\) 1.95108 0.0708198
\(760\) 0 0
\(761\) −10.6695 −0.386771 −0.193385 0.981123i \(-0.561947\pi\)
−0.193385 + 0.981123i \(0.561947\pi\)
\(762\) 0 0
\(763\) −51.4655 −1.86317
\(764\) 0 0
\(765\) 13.7022 0.495406
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.01256 0.216818 0.108409 0.994106i \(-0.465424\pi\)
0.108409 + 0.994106i \(0.465424\pi\)
\(770\) 0 0
\(771\) −4.71010 −0.169630
\(772\) 0 0
\(773\) 39.8907 1.43477 0.717385 0.696677i \(-0.245339\pi\)
0.717385 + 0.696677i \(0.245339\pi\)
\(774\) 0 0
\(775\) 82.2515 2.95456
\(776\) 0 0
\(777\) −11.1190 −0.398892
\(778\) 0 0
\(779\) −22.5899 −0.809367
\(780\) 0 0
\(781\) −14.3526 −0.513576
\(782\) 0 0
\(783\) −7.28744 −0.260432
\(784\) 0 0
\(785\) −52.8745 −1.88717
\(786\) 0 0
\(787\) 3.50215 0.124838 0.0624190 0.998050i \(-0.480118\pi\)
0.0624190 + 0.998050i \(0.480118\pi\)
\(788\) 0 0
\(789\) −4.12933 −0.147008
\(790\) 0 0
\(791\) −9.75350 −0.346794
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2.58324 0.0916179
\(796\) 0 0
\(797\) −24.2869 −0.860287 −0.430144 0.902760i \(-0.641537\pi\)
−0.430144 + 0.902760i \(0.641537\pi\)
\(798\) 0 0
\(799\) −17.8950 −0.633081
\(800\) 0 0
\(801\) 14.1601 0.500321
\(802\) 0 0
\(803\) 16.3509 0.577010
\(804\) 0 0
\(805\) −5.74526 −0.202494
\(806\) 0 0
\(807\) 16.2587 0.572332
\(808\) 0 0
\(809\) −19.1288 −0.672534 −0.336267 0.941767i \(-0.609164\pi\)
−0.336267 + 0.941767i \(0.609164\pi\)
\(810\) 0 0
\(811\) 55.1857 1.93783 0.968917 0.247387i \(-0.0795721\pi\)
0.968917 + 0.247387i \(0.0795721\pi\)
\(812\) 0 0
\(813\) −32.3171 −1.13341
\(814\) 0 0
\(815\) 37.1008 1.29959
\(816\) 0 0
\(817\) −13.8664 −0.485122
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.3362 −0.814440 −0.407220 0.913330i \(-0.633502\pi\)
−0.407220 + 0.913330i \(0.633502\pi\)
\(822\) 0 0
\(823\) −2.05359 −0.0715835 −0.0357918 0.999359i \(-0.511395\pi\)
−0.0357918 + 0.999359i \(0.511395\pi\)
\(824\) 0 0
\(825\) 64.5278 2.24657
\(826\) 0 0
\(827\) 5.96289 0.207350 0.103675 0.994611i \(-0.466940\pi\)
0.103675 + 0.994611i \(0.466940\pi\)
\(828\) 0 0
\(829\) 14.5631 0.505797 0.252899 0.967493i \(-0.418616\pi\)
0.252899 + 0.967493i \(0.418616\pi\)
\(830\) 0 0
\(831\) −23.7369 −0.823424
\(832\) 0 0
\(833\) 18.3703 0.636492
\(834\) 0 0
\(835\) 61.7207 2.13593
\(836\) 0 0
\(837\) 6.47535 0.223821
\(838\) 0 0
\(839\) −49.0737 −1.69421 −0.847105 0.531425i \(-0.821657\pi\)
−0.847105 + 0.531425i \(0.821657\pi\)
\(840\) 0 0
\(841\) 24.1067 0.831267
\(842\) 0 0
\(843\) −25.5812 −0.881062
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −52.6437 −1.80886
\(848\) 0 0
\(849\) −11.6486 −0.399780
\(850\) 0 0
\(851\) 1.20112 0.0411740
\(852\) 0 0
\(853\) −54.6929 −1.87265 −0.936324 0.351138i \(-0.885795\pi\)
−0.936324 + 0.351138i \(0.885795\pi\)
\(854\) 0 0
\(855\) −14.0307 −0.479841
\(856\) 0 0
\(857\) −23.2811 −0.795266 −0.397633 0.917545i \(-0.630168\pi\)
−0.397633 + 0.917545i \(0.630168\pi\)
\(858\) 0 0
\(859\) 43.4229 1.48157 0.740785 0.671742i \(-0.234454\pi\)
0.740785 + 0.671742i \(0.234454\pi\)
\(860\) 0 0
\(861\) −24.0843 −0.820792
\(862\) 0 0
\(863\) −7.28977 −0.248147 −0.124073 0.992273i \(-0.539596\pi\)
−0.124073 + 0.992273i \(0.539596\pi\)
\(864\) 0 0
\(865\) −10.1601 −0.345453
\(866\) 0 0
\(867\) −6.39392 −0.217149
\(868\) 0 0
\(869\) −13.4152 −0.455079
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.86766 0.300125
\(874\) 0 0
\(875\) −115.217 −3.89506
\(876\) 0 0
\(877\) −33.2464 −1.12265 −0.561326 0.827595i \(-0.689708\pi\)
−0.561326 + 0.827595i \(0.689708\pi\)
\(878\) 0 0
\(879\) −9.85016 −0.332238
\(880\) 0 0
\(881\) 16.1888 0.545415 0.272708 0.962097i \(-0.412081\pi\)
0.272708 + 0.962097i \(0.412081\pi\)
\(882\) 0 0
\(883\) −20.0492 −0.674708 −0.337354 0.941378i \(-0.609532\pi\)
−0.337354 + 0.941378i \(0.609532\pi\)
\(884\) 0 0
\(885\) −33.1497 −1.11432
\(886\) 0 0
\(887\) −54.3120 −1.82362 −0.911810 0.410612i \(-0.865315\pi\)
−0.911810 + 0.410612i \(0.865315\pi\)
\(888\) 0 0
\(889\) 36.0067 1.20763
\(890\) 0 0
\(891\) 5.08003 0.170188
\(892\) 0 0
\(893\) 18.3240 0.613191
\(894\) 0 0
\(895\) −22.5402 −0.753436
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −47.1887 −1.57383
\(900\) 0 0
\(901\) 1.99953 0.0666139
\(902\) 0 0
\(903\) −14.7837 −0.491970
\(904\) 0 0
\(905\) −74.3511 −2.47152
\(906\) 0 0
\(907\) −51.8972 −1.72322 −0.861610 0.507571i \(-0.830543\pi\)
−0.861610 + 0.507571i \(0.830543\pi\)
\(908\) 0 0
\(909\) 9.44750 0.313354
\(910\) 0 0
\(911\) 17.0433 0.564669 0.282334 0.959316i \(-0.408891\pi\)
0.282334 + 0.959316i \(0.408891\pi\)
\(912\) 0 0
\(913\) 10.0039 0.331081
\(914\) 0 0
\(915\) −34.9731 −1.15617
\(916\) 0 0
\(917\) 47.4395 1.56659
\(918\) 0 0
\(919\) −16.0693 −0.530078 −0.265039 0.964238i \(-0.585385\pi\)
−0.265039 + 0.964238i \(0.585385\pi\)
\(920\) 0 0
\(921\) −12.4182 −0.409194
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 39.7246 1.30614
\(926\) 0 0
\(927\) −2.15811 −0.0708816
\(928\) 0 0
\(929\) −11.4025 −0.374104 −0.187052 0.982350i \(-0.559893\pi\)
−0.187052 + 0.982350i \(0.559893\pi\)
\(930\) 0 0
\(931\) −18.8107 −0.616495
\(932\) 0 0
\(933\) 7.42267 0.243007
\(934\) 0 0
\(935\) 69.6078 2.27642
\(936\) 0 0
\(937\) −33.8213 −1.10489 −0.552447 0.833548i \(-0.686306\pi\)
−0.552447 + 0.833548i \(0.686306\pi\)
\(938\) 0 0
\(939\) 27.9799 0.913088
\(940\) 0 0
\(941\) −48.0429 −1.56615 −0.783077 0.621925i \(-0.786351\pi\)
−0.783077 + 0.621925i \(0.786351\pi\)
\(942\) 0 0
\(943\) 2.60170 0.0847229
\(944\) 0 0
\(945\) −14.9589 −0.486614
\(946\) 0 0
\(947\) 12.0779 0.392481 0.196240 0.980556i \(-0.437127\pi\)
0.196240 + 0.980556i \(0.437127\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −8.02484 −0.260223
\(952\) 0 0
\(953\) 15.4251 0.499669 0.249834 0.968289i \(-0.419624\pi\)
0.249834 + 0.968289i \(0.419624\pi\)
\(954\) 0 0
\(955\) 19.2483 0.622862
\(956\) 0 0
\(957\) −37.0204 −1.19670
\(958\) 0 0
\(959\) −42.2931 −1.36572
\(960\) 0 0
\(961\) 10.9302 0.352587
\(962\) 0 0
\(963\) −18.7003 −0.602608
\(964\) 0 0
\(965\) −70.8645 −2.28121
\(966\) 0 0
\(967\) 49.7289 1.59917 0.799587 0.600550i \(-0.205052\pi\)
0.799587 + 0.600550i \(0.205052\pi\)
\(968\) 0 0
\(969\) −10.8604 −0.348885
\(970\) 0 0
\(971\) −30.9897 −0.994506 −0.497253 0.867606i \(-0.665658\pi\)
−0.497253 + 0.867606i \(0.665658\pi\)
\(972\) 0 0
\(973\) −47.7158 −1.52970
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.8765 −0.731886 −0.365943 0.930637i \(-0.619253\pi\)
−0.365943 + 0.930637i \(0.619253\pi\)
\(978\) 0 0
\(979\) 71.9336 2.29901
\(980\) 0 0
\(981\) 14.4754 0.462162
\(982\) 0 0
\(983\) 28.0019 0.893121 0.446560 0.894754i \(-0.352649\pi\)
0.446560 + 0.894754i \(0.352649\pi\)
\(984\) 0 0
\(985\) −7.81065 −0.248868
\(986\) 0 0
\(987\) 19.5363 0.621846
\(988\) 0 0
\(989\) 1.59700 0.0507816
\(990\) 0 0
\(991\) −16.2855 −0.517325 −0.258663 0.965968i \(-0.583282\pi\)
−0.258663 + 0.965968i \(0.583282\pi\)
\(992\) 0 0
\(993\) 18.9252 0.600574
\(994\) 0 0
\(995\) −79.8890 −2.53265
\(996\) 0 0
\(997\) 46.3034 1.46644 0.733222 0.679989i \(-0.238015\pi\)
0.733222 + 0.679989i \(0.238015\pi\)
\(998\) 0 0
\(999\) 3.12737 0.0989456
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.a.be.1.4 4
4.3 odd 2 8112.2.a.cs.1.4 4
13.2 odd 12 312.2.bf.b.121.1 yes 8
13.5 odd 4 4056.2.c.p.337.1 8
13.7 odd 12 312.2.bf.b.49.4 8
13.8 odd 4 4056.2.c.p.337.8 8
13.12 even 2 4056.2.a.bd.1.1 4
39.2 even 12 936.2.bi.c.433.4 8
39.20 even 12 936.2.bi.c.361.1 8
52.7 even 12 624.2.bv.g.49.4 8
52.15 even 12 624.2.bv.g.433.1 8
52.51 odd 2 8112.2.a.cq.1.1 4
156.59 odd 12 1872.2.by.m.1297.1 8
156.119 odd 12 1872.2.by.m.433.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.b.49.4 8 13.7 odd 12
312.2.bf.b.121.1 yes 8 13.2 odd 12
624.2.bv.g.49.4 8 52.7 even 12
624.2.bv.g.433.1 8 52.15 even 12
936.2.bi.c.361.1 8 39.20 even 12
936.2.bi.c.433.4 8 39.2 even 12
1872.2.by.m.433.4 8 156.119 odd 12
1872.2.by.m.1297.1 8 156.59 odd 12
4056.2.a.bd.1.1 4 13.12 even 2
4056.2.a.be.1.4 4 1.1 even 1 trivial
4056.2.c.p.337.1 8 13.5 odd 4
4056.2.c.p.337.8 8 13.8 odd 4
8112.2.a.cq.1.1 4 52.51 odd 2
8112.2.a.cs.1.4 4 4.3 odd 2