Properties

Label 4050.2.c.t.649.1
Level $4050$
Weight $2$
Character 4050.649
Analytic conductor $32.339$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(649,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,0,12,0,0,2,0,2,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4050.649
Dual form 4050.2.c.t.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} +1.00000i q^{8} +6.00000 q^{11} +2.00000i q^{13} +1.00000 q^{14} +1.00000 q^{16} +4.00000 q^{19} -6.00000i q^{22} +9.00000i q^{23} +2.00000 q^{26} -1.00000i q^{28} -3.00000 q^{29} -4.00000 q^{31} -1.00000i q^{32} -8.00000i q^{37} -4.00000i q^{38} -3.00000 q^{41} +8.00000i q^{43} -6.00000 q^{44} +9.00000 q^{46} +3.00000i q^{47} +6.00000 q^{49} -2.00000i q^{52} +6.00000i q^{53} -1.00000 q^{56} +3.00000i q^{58} -6.00000 q^{59} -13.0000 q^{61} +4.00000i q^{62} -1.00000 q^{64} +13.0000i q^{67} -6.00000 q^{71} -4.00000i q^{73} -8.00000 q^{74} -4.00000 q^{76} +6.00000i q^{77} +10.0000 q^{79} +3.00000i q^{82} -9.00000i q^{83} +8.00000 q^{86} +6.00000i q^{88} -9.00000 q^{89} -2.00000 q^{91} -9.00000i q^{92} +3.00000 q^{94} -2.00000i q^{97} -6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 12 q^{11} + 2 q^{14} + 2 q^{16} + 8 q^{19} + 4 q^{26} - 6 q^{29} - 8 q^{31} - 6 q^{41} - 12 q^{44} + 18 q^{46} + 12 q^{49} - 2 q^{56} - 12 q^{59} - 26 q^{61} - 2 q^{64} - 12 q^{71} - 16 q^{74}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times\).

\(n\) \(2351\) \(3727\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 6.00000i − 1.27920i
\(23\) 9.00000i 1.87663i 0.345782 + 0.938315i \(0.387614\pi\)
−0.345782 + 0.938315i \(0.612386\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) − 1.00000i − 0.188982i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.00000i − 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) − 4.00000i − 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 9.00000 1.32698
\(47\) 3.00000i 0.437595i 0.975770 + 0.218797i \(0.0702134\pi\)
−0.975770 + 0.218797i \(0.929787\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) − 2.00000i − 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 3.00000i 0.393919i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 13.0000i 1.58820i 0.607785 + 0.794101i \(0.292058\pi\)
−0.607785 + 0.794101i \(0.707942\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) − 4.00000i − 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.00000i 0.331295i
\(83\) − 9.00000i − 0.987878i −0.869496 0.493939i \(-0.835557\pi\)
0.869496 0.493939i \(-0.164443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 6.00000i 0.639602i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) − 9.00000i − 0.938315i
\(93\) 0 0
\(94\) 3.00000 0.309426
\(95\) 0 0
\(96\) 0 0
\(97\) − 2.00000i − 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) − 6.00000i − 0.606092i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) 6.00000i 0.552345i
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 13.0000i 1.17696i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000i 0.621150i 0.950549 + 0.310575i \(0.100522\pi\)
−0.950549 + 0.310575i \(0.899478\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 13.0000 1.12303
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 8.00000i 0.657596i
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 4.00000i 0.324443i
\(153\) 0 0
\(154\) 6.00000 0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.0000i − 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) − 10.0000i − 0.795557i
\(159\) 0 0
\(160\) 0 0
\(161\) −9.00000 −0.709299
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) − 8.00000i − 0.609994i
\(173\) 24.0000i 1.82469i 0.409426 + 0.912343i \(0.365729\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) 9.00000i 0.674579i
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 0 0
\(184\) −9.00000 −0.663489
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) − 3.00000i − 0.218797i
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 6.00000i − 0.422159i
\(203\) − 3.00000i − 0.210559i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 2.00000i 0.138675i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) 0 0
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 0 0
\(217\) − 4.00000i − 0.271538i
\(218\) − 7.00000i − 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 1.00000i − 0.0669650i −0.999439 0.0334825i \(-0.989340\pi\)
0.999439 0.0334825i \(-0.0106598\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 3.00000i − 0.196960i
\(233\) − 12.0000i − 0.786146i −0.919507 0.393073i \(-0.871412\pi\)
0.919507 0.393073i \(-0.128588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 29.0000 1.86805 0.934027 0.357202i \(-0.116269\pi\)
0.934027 + 0.357202i \(0.116269\pi\)
\(242\) − 25.0000i − 1.60706i
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) − 4.00000i − 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 54.0000i 3.39495i
\(254\) 7.00000 0.439219
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 18.0000i 1.11204i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) − 13.0000i − 0.794101i
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) − 8.00000i − 0.480673i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(278\) − 16.0000i − 0.959616i
\(279\) 0 0
\(280\) 0 0
\(281\) −15.0000 −0.894825 −0.447412 0.894328i \(-0.647654\pi\)
−0.447412 + 0.894328i \(0.647654\pi\)
\(282\) 0 0
\(283\) − 13.0000i − 0.772770i −0.922338 0.386385i \(-0.873724\pi\)
0.922338 0.386385i \(-0.126276\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) − 3.00000i − 0.177084i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 4.00000i 0.234082i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) − 3.00000i − 0.173785i
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) − 14.0000i − 0.805609i
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000i 0.399511i 0.979846 + 0.199756i \(0.0640148\pi\)
−0.979846 + 0.199756i \(0.935985\pi\)
\(308\) − 6.00000i − 0.341882i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 2.00000i 0.113047i 0.998401 + 0.0565233i \(0.0180015\pi\)
−0.998401 + 0.0565233i \(0.981998\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) 9.00000i 0.501550i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) − 3.00000i − 0.165647i
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 9.00000i 0.493939i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) 0 0
\(336\) 0 0
\(337\) − 8.00000i − 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) 0 0
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 24.0000 1.29025
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −23.0000 −1.23116 −0.615581 0.788074i \(-0.711079\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 6.00000i − 0.319801i
\(353\) 24.0000i 1.27739i 0.769460 + 0.638696i \(0.220526\pi\)
−0.769460 + 0.638696i \(0.779474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.00000 0.476999
\(357\) 0 0
\(358\) − 18.0000i − 0.951330i
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) − 5.00000i − 0.262794i
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 9.00000i 0.469157i
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 26.0000i 1.34623i 0.739538 + 0.673114i \(0.235044\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) − 6.00000i − 0.309016i
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.0000i 0.613973i
\(383\) − 12.0000i − 0.613171i −0.951843 0.306586i \(-0.900813\pi\)
0.951843 0.306586i \(-0.0991866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 2.00000i 0.101535i
\(389\) −21.0000 −1.06474 −0.532371 0.846511i \(-0.678699\pi\)
−0.532371 + 0.846511i \(0.678699\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 6.00000i 0.303046i
\(393\) 0 0
\(394\) 12.0000 0.604551
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.00000i − 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) − 48.0000i − 2.37927i
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 8.00000i − 0.394132i
\(413\) − 6.00000i − 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) − 24.0000i − 1.17388i
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) − 2.00000i − 0.0973585i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) − 13.0000i − 0.629114i
\(428\) − 3.00000i − 0.145010i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) − 16.0000i − 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −7.00000 −0.335239
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.00000i 0.427603i 0.976877 + 0.213801i \(0.0685846\pi\)
−0.976877 + 0.213801i \(0.931415\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 −0.0473514
\(447\) 0 0
\(448\) − 1.00000i − 0.0472456i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.00000i − 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) − 13.0000i − 0.607450i
\(459\) 0 0
\(460\) 0 0
\(461\) −27.0000 −1.25752 −0.628758 0.777601i \(-0.716436\pi\)
−0.628758 + 0.777601i \(0.716436\pi\)
\(462\) 0 0
\(463\) − 4.00000i − 0.185896i −0.995671 0.0929479i \(-0.970371\pi\)
0.995671 0.0929479i \(-0.0296290\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −12.0000 −0.555889
\(467\) − 36.0000i − 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) −13.0000 −0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) − 6.00000i − 0.276172i
\(473\) 48.0000i 2.20704i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.0000 1.37073 0.685367 0.728197i \(-0.259642\pi\)
0.685367 + 0.728197i \(0.259642\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) − 29.0000i − 1.32091i
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) 0 0
\(486\) 0 0
\(487\) − 8.00000i − 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) − 13.0000i − 0.588482i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) − 6.00000i − 0.269137i
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 12.0000i − 0.535586i
\(503\) 27.0000i 1.20387i 0.798545 + 0.601935i \(0.205603\pi\)
−0.798545 + 0.601935i \(0.794397\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 54.0000 2.40059
\(507\) 0 0
\(508\) − 7.00000i − 0.310575i
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000i 0.791639i
\(518\) − 8.00000i − 0.351500i
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) − 19.0000i − 0.830812i −0.909636 0.415406i \(-0.863640\pi\)
0.909636 0.415406i \(-0.136360\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −58.0000 −2.52174
\(530\) 0 0
\(531\) 0 0
\(532\) − 4.00000i − 0.173422i
\(533\) − 6.00000i − 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) −13.0000 −0.561514
\(537\) 0 0
\(538\) 21.0000i 0.905374i
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 43.0000i 1.83855i 0.393619 + 0.919274i \(0.371223\pi\)
−0.393619 + 0.919274i \(0.628777\pi\)
\(548\) − 12.0000i − 0.512615i
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 15.0000i 0.632737i
\(563\) − 3.00000i − 0.126435i −0.998000 0.0632175i \(-0.979864\pi\)
0.998000 0.0632175i \(-0.0201362\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −13.0000 −0.546431
\(567\) 0 0
\(568\) − 6.00000i − 0.251754i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) − 12.0000i − 0.501745i
\(573\) 0 0
\(574\) −3.00000 −0.125218
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) − 17.0000i − 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) 9.00000 0.373383
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000i 0.619116i 0.950881 + 0.309558i \(0.100181\pi\)
−0.950881 + 0.309558i \(0.899819\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) − 8.00000i − 0.328798i
\(593\) 24.0000i 0.985562i 0.870153 + 0.492781i \(0.164020\pi\)
−0.870153 + 0.492781i \(0.835980\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 −0.122885
\(597\) 0 0
\(598\) 18.0000i 0.736075i
\(599\) 6.00000 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 0 0
\(604\) −14.0000 −0.569652
\(605\) 0 0
\(606\) 0 0
\(607\) − 29.0000i − 1.17707i −0.808470 0.588537i \(-0.799704\pi\)
0.808470 0.588537i \(-0.200296\pi\)
\(608\) − 4.00000i − 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) − 40.0000i − 1.61558i −0.589467 0.807792i \(-0.700662\pi\)
0.589467 0.807792i \(-0.299338\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) −6.00000 −0.241747
\(617\) − 12.0000i − 0.483102i −0.970388 0.241551i \(-0.922344\pi\)
0.970388 0.241551i \(-0.0776561\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 12.0000i − 0.481156i
\(623\) − 9.00000i − 0.360577i
\(624\) 0 0
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) 14.0000i 0.558661i
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 10.0000i 0.397779i
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) 12.0000i 0.475457i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) 33.0000 1.30342 0.651711 0.758468i \(-0.274052\pi\)
0.651711 + 0.758468i \(0.274052\pi\)
\(642\) 0 0
\(643\) − 31.0000i − 1.22252i −0.791430 0.611260i \(-0.790663\pi\)
0.791430 0.611260i \(-0.209337\pi\)
\(644\) 9.00000 0.354650
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00000i 0.117942i 0.998260 + 0.0589711i \(0.0187820\pi\)
−0.998260 + 0.0589711i \(0.981218\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) 3.00000i 0.116952i
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 10.0000i 0.388661i
\(663\) 0 0
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) 0 0
\(667\) − 27.0000i − 1.04544i
\(668\) − 3.00000i − 0.116073i
\(669\) 0 0
\(670\) 0 0
\(671\) −78.0000 −3.01116
\(672\) 0 0
\(673\) − 46.0000i − 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) − 18.0000i − 0.691796i −0.938272 0.345898i \(-0.887574\pi\)
0.938272 0.345898i \(-0.112426\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 24.0000i 0.919007i
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) 8.00000i 0.304997i
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) − 24.0000i − 0.912343i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 23.0000i 0.870563i
\(699\) 0 0
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 0 0
\(703\) − 32.0000i − 1.20690i
\(704\) −6.00000 −0.226134
\(705\) 0 0
\(706\) 24.0000 0.903252
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) −11.0000 −0.413114 −0.206557 0.978435i \(-0.566226\pi\)
−0.206557 + 0.978435i \(0.566226\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 9.00000i − 0.337289i
\(713\) − 36.0000i − 1.34821i
\(714\) 0 0
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) 0 0
\(718\) − 12.0000i − 0.447836i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) −5.00000 −0.185824
\(725\) 0 0
\(726\) 0 0
\(727\) − 53.0000i − 1.96566i −0.184510 0.982831i \(-0.559070\pi\)
0.184510 0.982831i \(-0.440930\pi\)
\(728\) − 2.00000i − 0.0741249i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 9.00000 0.331744
\(737\) 78.0000i 2.87317i
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) − 15.0000i − 0.550297i −0.961402 0.275148i \(-0.911273\pi\)
0.961402 0.275148i \(-0.0887270\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) −3.00000 −0.109618
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 3.00000i 0.109399i
\(753\) 0 0
\(754\) −6.00000 −0.218507
\(755\) 0 0
\(756\) 0 0
\(757\) 46.0000i 1.67190i 0.548807 + 0.835949i \(0.315082\pi\)
−0.548807 + 0.835949i \(0.684918\pi\)
\(758\) − 22.0000i − 0.799076i
\(759\) 0 0
\(760\) 0 0
\(761\) −33.0000 −1.19625 −0.598125 0.801403i \(-0.704087\pi\)
−0.598125 + 0.801403i \(0.704087\pi\)
\(762\) 0 0
\(763\) 7.00000i 0.253417i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) − 12.0000i − 0.433295i
\(768\) 0 0
\(769\) −29.0000 −1.04577 −0.522883 0.852404i \(-0.675144\pi\)
−0.522883 + 0.852404i \(0.675144\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 2.00000i − 0.0719816i
\(773\) − 48.0000i − 1.72644i −0.504828 0.863220i \(-0.668444\pi\)
0.504828 0.863220i \(-0.331556\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 21.0000i 0.752886i
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) − 20.0000i − 0.712923i −0.934310 0.356462i \(-0.883983\pi\)
0.934310 0.356462i \(-0.116017\pi\)
\(788\) − 12.0000i − 0.427482i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 26.0000i − 0.923287i
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 42.0000i 1.48772i 0.668338 + 0.743858i \(0.267006\pi\)
−0.668338 + 0.743858i \(0.732994\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) − 6.00000i − 0.211867i
\(803\) − 24.0000i − 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) 6.00000i 0.211079i
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 3.00000i 0.105279i
\(813\) 0 0
\(814\) −48.0000 −1.68240
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000i 1.11954i
\(818\) − 10.0000i − 0.349642i
\(819\) 0 0
\(820\) 0 0
\(821\) 27.0000 0.942306 0.471153 0.882051i \(-0.343838\pi\)
0.471153 + 0.882051i \(0.343838\pi\)
\(822\) 0 0
\(823\) − 25.0000i − 0.871445i −0.900081 0.435723i \(-0.856493\pi\)
0.900081 0.435723i \(-0.143507\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) −6.00000 −0.208767
\(827\) − 3.00000i − 0.104320i −0.998639 0.0521601i \(-0.983389\pi\)
0.998639 0.0521601i \(-0.0166106\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 2.00000i − 0.0693375i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −24.0000 −0.830057
\(837\) 0 0
\(838\) − 30.0000i − 1.03633i
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 22.0000i 0.758170i
\(843\) 0 0
\(844\) −2.00000 −0.0688428
\(845\) 0 0
\(846\) 0 0
\(847\) 25.0000i 0.859010i
\(848\) 6.00000i 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) 72.0000 2.46813
\(852\) 0 0
\(853\) − 10.0000i − 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) −13.0000 −0.444851
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) 42.0000i 1.43469i 0.696717 + 0.717346i \(0.254643\pi\)
−0.696717 + 0.717346i \(0.745357\pi\)
\(858\) 0 0
\(859\) 34.0000 1.16007 0.580033 0.814593i \(-0.303040\pi\)
0.580033 + 0.814593i \(0.303040\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 6.00000i − 0.204361i
\(863\) 3.00000i 0.102121i 0.998696 + 0.0510606i \(0.0162602\pi\)
−0.998696 + 0.0510606i \(0.983740\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) 4.00000i 0.135769i
\(869\) 60.0000 2.03536
\(870\) 0 0
\(871\) −26.0000 −0.880976
\(872\) 7.00000i 0.237050i
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) − 28.0000i − 0.944954i
\(879\) 0 0
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 0 0
\(883\) − 31.0000i − 1.04323i −0.853180 0.521617i \(-0.825329\pi\)
0.853180 0.521617i \(-0.174671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 9.00000 0.302361
\(887\) − 36.0000i − 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) 0 0
\(889\) −7.00000 −0.234772
\(890\) 0 0
\(891\) 0 0
\(892\) 1.00000i 0.0334825i
\(893\) 12.0000i 0.401565i
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 6.00000i 0.200223i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) 18.0000i 0.599334i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 37.0000i 1.22856i 0.789086 + 0.614282i \(0.210554\pi\)
−0.789086 + 0.614282i \(0.789446\pi\)
\(908\) − 12.0000i − 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 0 0
\(913\) − 54.0000i − 1.78714i
\(914\) −8.00000 −0.264616
\(915\) 0 0
\(916\) −13.0000 −0.429532
\(917\) − 18.0000i − 0.594412i
\(918\) 0 0
\(919\) −38.0000 −1.25350 −0.626752 0.779219i \(-0.715616\pi\)
−0.626752 + 0.779219i \(0.715616\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 27.0000i 0.889198i
\(923\) − 12.0000i − 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 24.0000 0.786568
\(932\) 12.0000i 0.393073i
\(933\) 0 0
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) 0 0
\(937\) − 56.0000i − 1.82944i −0.404088 0.914720i \(-0.632411\pi\)
0.404088 0.914720i \(-0.367589\pi\)
\(938\) 13.0000i 0.424465i
\(939\) 0 0
\(940\) 0 0
\(941\) 21.0000 0.684580 0.342290 0.939594i \(-0.388797\pi\)
0.342290 + 0.939594i \(0.388797\pi\)
\(942\) 0 0
\(943\) − 27.0000i − 0.879241i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 48.0000 1.56061
\(947\) − 39.0000i − 1.26733i −0.773608 0.633665i \(-0.781550\pi\)
0.773608 0.633665i \(-0.218450\pi\)
\(948\) 0 0
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) − 30.0000i − 0.969256i
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 16.0000i − 0.515861i
\(963\) 0 0
\(964\) −29.0000 −0.934027
\(965\) 0 0
\(966\) 0 0
\(967\) 37.0000i 1.18984i 0.803785 + 0.594920i \(0.202816\pi\)
−0.803785 + 0.594920i \(0.797184\pi\)
\(968\) 25.0000i 0.803530i
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −13.0000 −0.416120
\(977\) 42.0000i 1.34370i 0.740688 + 0.671850i \(0.234500\pi\)
−0.740688 + 0.671850i \(0.765500\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) 0 0
\(981\) 0 0
\(982\) − 12.0000i − 0.382935i
\(983\) 9.00000i 0.287055i 0.989646 + 0.143528i \(0.0458446\pi\)
−0.989646 + 0.143528i \(0.954155\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) − 8.00000i − 0.254514i
\(989\) −72.0000 −2.28947
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 0 0
\(994\) −6.00000 −0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000i 0.316703i 0.987383 + 0.158352i \(0.0506179\pi\)
−0.987383 + 0.158352i \(0.949382\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.t.649.1 2
3.2 odd 2 4050.2.c.a.649.2 2
5.2 odd 4 810.2.a.g.1.1 1
5.3 odd 4 4050.2.a.n.1.1 1
5.4 even 2 inner 4050.2.c.t.649.2 2
9.2 odd 6 1350.2.j.e.199.2 4
9.4 even 3 450.2.j.c.349.2 4
9.5 odd 6 1350.2.j.e.1099.1 4
9.7 even 3 450.2.j.c.49.1 4
15.2 even 4 810.2.a.b.1.1 1
15.8 even 4 4050.2.a.ba.1.1 1
15.14 odd 2 4050.2.c.a.649.1 2
20.7 even 4 6480.2.a.g.1.1 1
45.2 even 12 270.2.e.b.91.1 2
45.4 even 6 450.2.j.c.349.1 4
45.7 odd 12 90.2.e.a.31.1 2
45.13 odd 12 450.2.e.e.151.1 2
45.14 odd 6 1350.2.j.e.1099.2 4
45.22 odd 12 90.2.e.a.61.1 yes 2
45.23 even 12 1350.2.e.b.451.1 2
45.29 odd 6 1350.2.j.e.199.1 4
45.32 even 12 270.2.e.b.181.1 2
45.34 even 6 450.2.j.c.49.2 4
45.38 even 12 1350.2.e.b.901.1 2
45.43 odd 12 450.2.e.e.301.1 2
60.47 odd 4 6480.2.a.v.1.1 1
180.7 even 12 720.2.q.b.481.1 2
180.47 odd 12 2160.2.q.b.1441.1 2
180.67 even 12 720.2.q.b.241.1 2
180.167 odd 12 2160.2.q.b.721.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.a.31.1 2 45.7 odd 12
90.2.e.a.61.1 yes 2 45.22 odd 12
270.2.e.b.91.1 2 45.2 even 12
270.2.e.b.181.1 2 45.32 even 12
450.2.e.e.151.1 2 45.13 odd 12
450.2.e.e.301.1 2 45.43 odd 12
450.2.j.c.49.1 4 9.7 even 3
450.2.j.c.49.2 4 45.34 even 6
450.2.j.c.349.1 4 45.4 even 6
450.2.j.c.349.2 4 9.4 even 3
720.2.q.b.241.1 2 180.67 even 12
720.2.q.b.481.1 2 180.7 even 12
810.2.a.b.1.1 1 15.2 even 4
810.2.a.g.1.1 1 5.2 odd 4
1350.2.e.b.451.1 2 45.23 even 12
1350.2.e.b.901.1 2 45.38 even 12
1350.2.j.e.199.1 4 45.29 odd 6
1350.2.j.e.199.2 4 9.2 odd 6
1350.2.j.e.1099.1 4 9.5 odd 6
1350.2.j.e.1099.2 4 45.14 odd 6
2160.2.q.b.721.1 2 180.167 odd 12
2160.2.q.b.1441.1 2 180.47 odd 12
4050.2.a.n.1.1 1 5.3 odd 4
4050.2.a.ba.1.1 1 15.8 even 4
4050.2.c.a.649.1 2 15.14 odd 2
4050.2.c.a.649.2 2 3.2 odd 2
4050.2.c.t.649.1 2 1.1 even 1 trivial
4050.2.c.t.649.2 2 5.4 even 2 inner
6480.2.a.g.1.1 1 20.7 even 4
6480.2.a.v.1.1 1 60.47 odd 4