Properties

Label 405.3.n.a.179.34
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(44,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.34
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.60298 + 1.31138i) q^{2} +(8.19760 + 6.87860i) q^{4} +(-2.60972 - 4.26490i) q^{5} +(5.01113 + 5.97203i) q^{7} +(12.8469 + 22.2515i) q^{8} +(-3.80988 - 18.7887i) q^{10} +(9.63258 - 1.69848i) q^{11} +(-3.91628 - 10.7599i) q^{13} +(10.2234 + 28.0886i) q^{14} +(9.67410 + 54.8645i) q^{16} +(-4.13818 + 7.16754i) q^{17} +(6.12499 + 10.6088i) q^{19} +(7.94311 - 52.9131i) q^{20} +(36.9334 + 6.51235i) q^{22} +(-15.9927 - 13.4195i) q^{23} +(-11.3787 + 22.2604i) q^{25} -43.9034i q^{26} +83.4258i q^{28} +(-4.79335 + 13.1696i) q^{29} +(-32.9893 - 27.6813i) q^{31} +(-19.2458 + 109.148i) q^{32} +(-24.3092 + 20.3978i) q^{34} +(12.3925 - 36.9573i) q^{35} +(9.27687 + 5.35600i) q^{37} +(8.15609 + 46.2555i) q^{38} +(61.3736 - 112.861i) q^{40} +(-14.9116 - 40.9693i) q^{41} +(43.1958 - 7.61658i) q^{43} +(90.6472 + 52.3352i) q^{44} +(-40.0234 - 69.3225i) q^{46} +(57.2199 - 48.0132i) q^{47} +(-2.04496 + 11.5976i) q^{49} +(-70.1892 + 65.2820i) q^{50} +(41.9089 - 115.144i) q^{52} -2.58820 q^{53} +(-32.3822 - 36.6494i) q^{55} +(-68.5091 + 188.227i) q^{56} +(-34.5407 + 41.1640i) q^{58} +(-108.318 - 19.0993i) q^{59} +(12.2356 - 10.2669i) q^{61} +(-82.5593 - 142.997i) q^{62} +(-101.055 + 175.033i) q^{64} +(-35.6695 + 44.7829i) q^{65} +(-10.8906 - 29.9217i) q^{67} +(-83.2258 + 30.2917i) q^{68} +(93.1148 - 116.905i) q^{70} +(-65.2964 - 37.6989i) q^{71} +(6.13041 - 3.53939i) q^{73} +(26.4006 + 31.4631i) q^{74} +(-22.7635 + 129.098i) q^{76} +(58.4135 + 49.0147i) q^{77} +(-32.2143 - 11.7251i) q^{79} +(208.745 - 184.440i) q^{80} -167.166i q^{82} +(-24.1153 - 8.77724i) q^{83} +(41.3683 - 1.05634i) q^{85} +(165.622 + 29.2036i) q^{86} +(161.543 + 192.519i) q^{88} +(-66.9037 + 38.6269i) q^{89} +(44.6334 - 77.3073i) q^{91} +(-38.7945 - 220.015i) q^{92} +(269.126 - 97.9538i) q^{94} +(29.2609 - 53.8085i) q^{95} +(-88.6588 + 15.6329i) q^{97} +(-22.5768 + 39.1041i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.60298 + 1.31138i 1.80149 + 0.655689i 0.998191 + 0.0601148i \(0.0191467\pi\)
0.803300 + 0.595575i \(0.203076\pi\)
\(3\) 0 0
\(4\) 8.19760 + 6.87860i 2.04940 + 1.71965i
\(5\) −2.60972 4.26490i −0.521944 0.852980i
\(6\) 0 0
\(7\) 5.01113 + 5.97203i 0.715875 + 0.853147i 0.994223 0.107334i \(-0.0342313\pi\)
−0.278348 + 0.960480i \(0.589787\pi\)
\(8\) 12.8469 + 22.2515i 1.60587 + 2.78144i
\(9\) 0 0
\(10\) −3.80988 18.7887i −0.380988 1.87887i
\(11\) 9.63258 1.69848i 0.875689 0.154408i 0.282303 0.959325i \(-0.408902\pi\)
0.593387 + 0.804918i \(0.297791\pi\)
\(12\) 0 0
\(13\) −3.91628 10.7599i −0.301252 0.827684i −0.994283 0.106776i \(-0.965947\pi\)
0.693031 0.720908i \(-0.256275\pi\)
\(14\) 10.2234 + 28.0886i 0.730244 + 2.00633i
\(15\) 0 0
\(16\) 9.67410 + 54.8645i 0.604631 + 3.42903i
\(17\) −4.13818 + 7.16754i −0.243422 + 0.421620i −0.961687 0.274150i \(-0.911603\pi\)
0.718265 + 0.695770i \(0.244937\pi\)
\(18\) 0 0
\(19\) 6.12499 + 10.6088i 0.322368 + 0.558358i 0.980976 0.194128i \(-0.0621878\pi\)
−0.658608 + 0.752486i \(0.728854\pi\)
\(20\) 7.94311 52.9131i 0.397155 2.64566i
\(21\) 0 0
\(22\) 36.9334 + 6.51235i 1.67879 + 0.296016i
\(23\) −15.9927 13.4195i −0.695334 0.583455i 0.225108 0.974334i \(-0.427727\pi\)
−0.920442 + 0.390879i \(0.872171\pi\)
\(24\) 0 0
\(25\) −11.3787 + 22.2604i −0.455149 + 0.890415i
\(26\) 43.9034i 1.68859i
\(27\) 0 0
\(28\) 83.4258i 2.97949i
\(29\) −4.79335 + 13.1696i −0.165288 + 0.454125i −0.994491 0.104823i \(-0.966572\pi\)
0.829203 + 0.558947i \(0.188795\pi\)
\(30\) 0 0
\(31\) −32.9893 27.6813i −1.06417 0.892946i −0.0696597 0.997571i \(-0.522191\pi\)
−0.994512 + 0.104625i \(0.966636\pi\)
\(32\) −19.2458 + 109.148i −0.601431 + 3.41089i
\(33\) 0 0
\(34\) −24.3092 + 20.3978i −0.714975 + 0.599935i
\(35\) 12.3925 36.9573i 0.354070 1.05592i
\(36\) 0 0
\(37\) 9.27687 + 5.35600i 0.250726 + 0.144757i 0.620097 0.784525i \(-0.287093\pi\)
−0.369371 + 0.929282i \(0.620427\pi\)
\(38\) 8.15609 + 46.2555i 0.214634 + 1.21725i
\(39\) 0 0
\(40\) 61.3736 112.861i 1.53434 2.82153i
\(41\) −14.9116 40.9693i −0.363698 0.999251i −0.977711 0.209956i \(-0.932668\pi\)
0.614013 0.789296i \(-0.289554\pi\)
\(42\) 0 0
\(43\) 43.1958 7.61658i 1.00455 0.177130i 0.352911 0.935657i \(-0.385192\pi\)
0.651641 + 0.758527i \(0.274081\pi\)
\(44\) 90.6472 + 52.3352i 2.06016 + 1.18944i
\(45\) 0 0
\(46\) −40.0234 69.3225i −0.870074 1.50701i
\(47\) 57.2199 48.0132i 1.21745 1.02156i 0.218491 0.975839i \(-0.429887\pi\)
0.998954 0.0457191i \(-0.0145579\pi\)
\(48\) 0 0
\(49\) −2.04496 + 11.5976i −0.0417339 + 0.236685i
\(50\) −70.1892 + 65.2820i −1.40378 + 1.30564i
\(51\) 0 0
\(52\) 41.9089 115.144i 0.805941 2.21430i
\(53\) −2.58820 −0.0488340 −0.0244170 0.999702i \(-0.507773\pi\)
−0.0244170 + 0.999702i \(0.507773\pi\)
\(54\) 0 0
\(55\) −32.3822 36.6494i −0.588767 0.666353i
\(56\) −68.5091 + 188.227i −1.22338 + 3.36120i
\(57\) 0 0
\(58\) −34.5407 + 41.1640i −0.595529 + 0.709724i
\(59\) −108.318 19.0993i −1.83589 0.323717i −0.855054 0.518539i \(-0.826476\pi\)
−0.980839 + 0.194821i \(0.937587\pi\)
\(60\) 0 0
\(61\) 12.2356 10.2669i 0.200584 0.168310i −0.536963 0.843606i \(-0.680428\pi\)
0.737547 + 0.675296i \(0.235984\pi\)
\(62\) −82.5593 142.997i −1.33160 2.30640i
\(63\) 0 0
\(64\) −101.055 + 175.033i −1.57899 + 2.73489i
\(65\) −35.6695 + 44.7829i −0.548761 + 0.688967i
\(66\) 0 0
\(67\) −10.8906 29.9217i −0.162546 0.446593i 0.831503 0.555520i \(-0.187481\pi\)
−0.994050 + 0.108927i \(0.965259\pi\)
\(68\) −83.2258 + 30.2917i −1.22391 + 0.445466i
\(69\) 0 0
\(70\) 93.1148 116.905i 1.33021 1.67007i
\(71\) −65.2964 37.6989i −0.919668 0.530970i −0.0361385 0.999347i \(-0.511506\pi\)
−0.883529 + 0.468377i \(0.844839\pi\)
\(72\) 0 0
\(73\) 6.13041 3.53939i 0.0839782 0.0484849i −0.457423 0.889249i \(-0.651227\pi\)
0.541401 + 0.840764i \(0.317894\pi\)
\(74\) 26.4006 + 31.4631i 0.356765 + 0.425177i
\(75\) 0 0
\(76\) −22.7635 + 129.098i −0.299519 + 1.69866i
\(77\) 58.4135 + 49.0147i 0.758617 + 0.636555i
\(78\) 0 0
\(79\) −32.2143 11.7251i −0.407776 0.148418i 0.129984 0.991516i \(-0.458507\pi\)
−0.537760 + 0.843098i \(0.680730\pi\)
\(80\) 208.745 184.440i 2.60931 2.30550i
\(81\) 0 0
\(82\) 167.166i 2.03862i
\(83\) −24.1153 8.77724i −0.290545 0.105750i 0.192636 0.981270i \(-0.438296\pi\)
−0.483181 + 0.875520i \(0.660519\pi\)
\(84\) 0 0
\(85\) 41.3683 1.05634i 0.486686 0.0124276i
\(86\) 165.622 + 29.2036i 1.92583 + 0.339577i
\(87\) 0 0
\(88\) 161.543 + 192.519i 1.83571 + 2.18772i
\(89\) −66.9037 + 38.6269i −0.751727 + 0.434010i −0.826317 0.563205i \(-0.809568\pi\)
0.0745907 + 0.997214i \(0.476235\pi\)
\(90\) 0 0
\(91\) 44.6334 77.3073i 0.490477 0.849531i
\(92\) −38.7945 220.015i −0.421679 2.39146i
\(93\) 0 0
\(94\) 269.126 97.9538i 2.86304 1.04206i
\(95\) 29.2609 53.8085i 0.308010 0.566405i
\(96\) 0 0
\(97\) −88.6588 + 15.6329i −0.914008 + 0.161164i −0.610823 0.791767i \(-0.709161\pi\)
−0.303185 + 0.952932i \(0.598050\pi\)
\(98\) −22.5768 + 39.1041i −0.230375 + 0.399021i
\(99\) 0 0
\(100\) −246.398 + 104.212i −2.46398 + 1.04212i
\(101\) 45.2669 + 53.9469i 0.448187 + 0.534128i 0.942077 0.335396i \(-0.108870\pi\)
−0.493891 + 0.869524i \(0.664426\pi\)
\(102\) 0 0
\(103\) 179.880 + 31.7177i 1.74641 + 0.307939i 0.953497 0.301401i \(-0.0974543\pi\)
0.792909 + 0.609340i \(0.208565\pi\)
\(104\) 189.112 225.375i 1.81838 2.16706i
\(105\) 0 0
\(106\) −9.32526 3.39412i −0.0879741 0.0320200i
\(107\) −39.8116 −0.372071 −0.186035 0.982543i \(-0.559564\pi\)
−0.186035 + 0.982543i \(0.559564\pi\)
\(108\) 0 0
\(109\) −24.9651 −0.229038 −0.114519 0.993421i \(-0.536533\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(110\) −68.6113 174.513i −0.623739 1.58648i
\(111\) 0 0
\(112\) −279.174 + 332.707i −2.49263 + 2.97060i
\(113\) −24.1751 + 137.104i −0.213939 + 1.21331i 0.668799 + 0.743444i \(0.266809\pi\)
−0.882738 + 0.469866i \(0.844302\pi\)
\(114\) 0 0
\(115\) −15.4962 + 103.228i −0.134750 + 0.897637i
\(116\) −129.882 + 74.9877i −1.11968 + 0.646445i
\(117\) 0 0
\(118\) −365.220 210.860i −3.09509 1.78695i
\(119\) −63.5417 + 11.2041i −0.533964 + 0.0941522i
\(120\) 0 0
\(121\) −23.8010 + 8.66285i −0.196702 + 0.0715938i
\(122\) 57.5486 20.9460i 0.471710 0.171688i
\(123\) 0 0
\(124\) −80.0243 453.841i −0.645358 3.66000i
\(125\) 124.634 9.56422i 0.997069 0.0765138i
\(126\) 0 0
\(127\) 141.775 81.8538i 1.11634 0.644518i 0.175874 0.984413i \(-0.443725\pi\)
0.940464 + 0.339895i \(0.110391\pi\)
\(128\) −254.026 + 213.153i −1.98458 + 1.66526i
\(129\) 0 0
\(130\) −187.244 + 114.576i −1.44034 + 0.881351i
\(131\) −68.0937 + 81.1509i −0.519799 + 0.619472i −0.960533 0.278165i \(-0.910274\pi\)
0.440734 + 0.897638i \(0.354718\pi\)
\(132\) 0 0
\(133\) −32.6629 + 89.7406i −0.245586 + 0.674742i
\(134\) 122.089i 0.911113i
\(135\) 0 0
\(136\) −212.651 −1.56361
\(137\) 153.987 + 56.0467i 1.12399 + 0.409100i 0.836108 0.548565i \(-0.184826\pi\)
0.287885 + 0.957665i \(0.407048\pi\)
\(138\) 0 0
\(139\) 50.1389 + 42.0716i 0.360712 + 0.302673i 0.805074 0.593174i \(-0.202125\pi\)
−0.444363 + 0.895847i \(0.646570\pi\)
\(140\) 355.803 217.718i 2.54145 1.55513i
\(141\) 0 0
\(142\) −185.824 221.457i −1.30862 1.55955i
\(143\) −55.9994 96.9938i −0.391604 0.678279i
\(144\) 0 0
\(145\) 68.6764 13.9259i 0.473630 0.0960404i
\(146\) 26.7293 4.71309i 0.183077 0.0322814i
\(147\) 0 0
\(148\) 39.2062 + 107.718i 0.264907 + 0.727825i
\(149\) −24.8288 68.2166i −0.166636 0.457829i 0.828066 0.560631i \(-0.189441\pi\)
−0.994702 + 0.102802i \(0.967219\pi\)
\(150\) 0 0
\(151\) 8.47334 + 48.0547i 0.0561148 + 0.318243i 0.999925 0.0122450i \(-0.00389781\pi\)
−0.943810 + 0.330488i \(0.892787\pi\)
\(152\) −157.375 + 272.581i −1.03536 + 1.79329i
\(153\) 0 0
\(154\) 146.186 + 253.201i 0.949259 + 1.64416i
\(155\) −31.9652 + 212.937i −0.206227 + 1.37378i
\(156\) 0 0
\(157\) 107.804 + 19.0087i 0.686648 + 0.121075i 0.506078 0.862488i \(-0.331095\pi\)
0.180570 + 0.983562i \(0.442206\pi\)
\(158\) −100.692 84.4903i −0.637289 0.534749i
\(159\) 0 0
\(160\) 515.733 202.765i 3.22333 1.26728i
\(161\) 162.755i 1.01090i
\(162\) 0 0
\(163\) 275.362i 1.68934i 0.535291 + 0.844668i \(0.320202\pi\)
−0.535291 + 0.844668i \(0.679798\pi\)
\(164\) 159.572 438.421i 0.973001 2.67330i
\(165\) 0 0
\(166\) −75.3766 63.2485i −0.454076 0.381015i
\(167\) −39.6434 + 224.829i −0.237385 + 1.34628i 0.600146 + 0.799891i \(0.295109\pi\)
−0.837531 + 0.546389i \(0.816002\pi\)
\(168\) 0 0
\(169\) 29.0234 24.3536i 0.171736 0.144104i
\(170\) 150.435 + 50.4435i 0.884910 + 0.296727i
\(171\) 0 0
\(172\) 406.493 + 234.689i 2.36333 + 1.36447i
\(173\) −27.2423 154.498i −0.157470 0.893055i −0.956493 0.291755i \(-0.905761\pi\)
0.799023 0.601300i \(-0.205350\pi\)
\(174\) 0 0
\(175\) −189.960 + 43.5955i −1.08548 + 0.249117i
\(176\) 186.373 + 512.056i 1.05894 + 2.90941i
\(177\) 0 0
\(178\) −291.707 + 51.4359i −1.63880 + 0.288966i
\(179\) −27.5045 15.8797i −0.153656 0.0887136i 0.421200 0.906968i \(-0.361609\pi\)
−0.574857 + 0.818254i \(0.694942\pi\)
\(180\) 0 0
\(181\) 103.811 + 179.806i 0.573542 + 0.993404i 0.996198 + 0.0871137i \(0.0277643\pi\)
−0.422657 + 0.906290i \(0.638902\pi\)
\(182\) 262.193 220.006i 1.44062 1.20882i
\(183\) 0 0
\(184\) 93.1465 528.260i 0.506231 2.87098i
\(185\) −1.36721 53.5426i −0.00739034 0.289419i
\(186\) 0 0
\(187\) −27.6874 + 76.0705i −0.148061 + 0.406794i
\(188\) 799.330 4.25175
\(189\) 0 0
\(190\) 175.990 155.499i 0.926263 0.818415i
\(191\) −46.4729 + 127.683i −0.243314 + 0.668498i 0.756580 + 0.653901i \(0.226869\pi\)
−0.999893 + 0.0145972i \(0.995353\pi\)
\(192\) 0 0
\(193\) 70.1004 83.5424i 0.363215 0.432862i −0.553227 0.833030i \(-0.686604\pi\)
0.916442 + 0.400168i \(0.131048\pi\)
\(194\) −339.937 59.9400i −1.75225 0.308969i
\(195\) 0 0
\(196\) −96.5388 + 81.0057i −0.492545 + 0.413294i
\(197\) −15.7639 27.3039i −0.0800199 0.138598i 0.823238 0.567696i \(-0.192165\pi\)
−0.903258 + 0.429097i \(0.858832\pi\)
\(198\) 0 0
\(199\) 145.414 251.865i 0.730724 1.26565i −0.225850 0.974162i \(-0.572516\pi\)
0.956574 0.291489i \(-0.0941508\pi\)
\(200\) −641.509 + 32.7834i −3.20754 + 0.163917i
\(201\) 0 0
\(202\) 92.3509 + 253.732i 0.457182 + 1.25610i
\(203\) −102.669 + 37.3686i −0.505760 + 0.184082i
\(204\) 0 0
\(205\) −135.815 + 170.515i −0.662511 + 0.831780i
\(206\) 606.510 + 350.169i 2.94422 + 1.69985i
\(207\) 0 0
\(208\) 552.450 318.957i 2.65601 1.53345i
\(209\) 77.0184 + 91.7869i 0.368509 + 0.439172i
\(210\) 0 0
\(211\) −33.6259 + 190.702i −0.159365 + 0.903802i 0.795322 + 0.606188i \(0.207302\pi\)
−0.954686 + 0.297614i \(0.903809\pi\)
\(212\) −21.2171 17.8032i −0.100080 0.0839775i
\(213\) 0 0
\(214\) −143.440 52.2080i −0.670282 0.243963i
\(215\) −145.213 164.348i −0.675408 0.764411i
\(216\) 0 0
\(217\) 335.728i 1.54713i
\(218\) −89.9489 32.7387i −0.412610 0.150178i
\(219\) 0 0
\(220\) −13.3595 523.181i −0.0607249 2.37810i
\(221\) 93.3282 + 16.4563i 0.422300 + 0.0744628i
\(222\) 0 0
\(223\) −41.0916 48.9710i −0.184267 0.219601i 0.666001 0.745951i \(-0.268005\pi\)
−0.850268 + 0.526350i \(0.823560\pi\)
\(224\) −748.280 + 432.020i −3.34054 + 1.92866i
\(225\) 0 0
\(226\) −266.898 + 462.280i −1.18096 + 2.04549i
\(227\) 0.416906 + 2.36439i 0.00183659 + 0.0104158i 0.985712 0.168438i \(-0.0538722\pi\)
−0.983876 + 0.178854i \(0.942761\pi\)
\(228\) 0 0
\(229\) −269.280 + 98.0101i −1.17590 + 0.427992i −0.854751 0.519038i \(-0.826290\pi\)
−0.321146 + 0.947030i \(0.604068\pi\)
\(230\) −191.204 + 351.608i −0.831321 + 1.52873i
\(231\) 0 0
\(232\) −354.624 + 62.5297i −1.52855 + 0.269525i
\(233\) −162.379 + 281.248i −0.696904 + 1.20707i 0.272630 + 0.962119i \(0.412106\pi\)
−0.969535 + 0.244955i \(0.921227\pi\)
\(234\) 0 0
\(235\) −354.100 118.736i −1.50681 0.505260i
\(236\) −756.568 901.642i −3.20580 3.82052i
\(237\) 0 0
\(238\) −243.632 42.9590i −1.02367 0.180500i
\(239\) −131.433 + 156.636i −0.549931 + 0.655382i −0.967383 0.253317i \(-0.918478\pi\)
0.417453 + 0.908699i \(0.362923\pi\)
\(240\) 0 0
\(241\) −343.921 125.177i −1.42706 0.519406i −0.490970 0.871176i \(-0.663358\pi\)
−0.936086 + 0.351770i \(0.885580\pi\)
\(242\) −97.1149 −0.401301
\(243\) 0 0
\(244\) 170.925 0.700511
\(245\) 54.7992 21.5448i 0.223670 0.0879381i
\(246\) 0 0
\(247\) 90.1624 107.451i 0.365030 0.435026i
\(248\) 192.140 1089.68i 0.774760 4.39388i
\(249\) 0 0
\(250\) 461.595 + 128.982i 1.84638 + 0.515928i
\(251\) 111.953 64.6362i 0.446028 0.257515i −0.260123 0.965575i \(-0.583763\pi\)
0.706151 + 0.708061i \(0.250430\pi\)
\(252\) 0 0
\(253\) −176.844 102.101i −0.698987 0.403560i
\(254\) 618.154 108.997i 2.43368 0.429123i
\(255\) 0 0
\(256\) −435.087 + 158.359i −1.69956 + 0.618589i
\(257\) 319.339 116.230i 1.24256 0.452256i 0.364681 0.931133i \(-0.381178\pi\)
0.877882 + 0.478877i \(0.158956\pi\)
\(258\) 0 0
\(259\) 14.5014 + 82.2413i 0.0559898 + 0.317534i
\(260\) −600.447 + 121.756i −2.30941 + 0.468291i
\(261\) 0 0
\(262\) −351.760 + 203.089i −1.34259 + 0.775147i
\(263\) −153.344 + 128.671i −0.583056 + 0.489242i −0.885949 0.463783i \(-0.846492\pi\)
0.302893 + 0.953024i \(0.402047\pi\)
\(264\) 0 0
\(265\) 6.75449 + 11.0384i 0.0254886 + 0.0416545i
\(266\) −235.368 + 280.501i −0.884842 + 1.05451i
\(267\) 0 0
\(268\) 116.543 320.198i 0.434861 1.19477i
\(269\) 124.840i 0.464089i 0.972705 + 0.232044i \(0.0745414\pi\)
−0.972705 + 0.232044i \(0.925459\pi\)
\(270\) 0 0
\(271\) 275.919 1.01815 0.509075 0.860722i \(-0.329988\pi\)
0.509075 + 0.860722i \(0.329988\pi\)
\(272\) −433.277 157.700i −1.59293 0.579779i
\(273\) 0 0
\(274\) 481.314 + 403.870i 1.75662 + 1.47398i
\(275\) −71.7976 + 233.752i −0.261082 + 0.850006i
\(276\) 0 0
\(277\) 88.2597 + 105.184i 0.318627 + 0.379725i 0.901457 0.432870i \(-0.142499\pi\)
−0.582830 + 0.812594i \(0.698055\pi\)
\(278\) 125.478 + 217.334i 0.451360 + 0.781778i
\(279\) 0 0
\(280\) 981.560 199.036i 3.50557 0.710843i
\(281\) 387.161 68.2669i 1.37780 0.242943i 0.564808 0.825222i \(-0.308950\pi\)
0.812989 + 0.582280i \(0.197839\pi\)
\(282\) 0 0
\(283\) 68.9761 + 189.510i 0.243732 + 0.669648i 0.999884 + 0.0152514i \(0.00485486\pi\)
−0.756152 + 0.654396i \(0.772923\pi\)
\(284\) −275.958 758.188i −0.971683 2.66968i
\(285\) 0 0
\(286\) −74.5693 422.904i −0.260732 1.47868i
\(287\) 169.946 294.355i 0.592146 1.02563i
\(288\) 0 0
\(289\) 110.251 + 190.960i 0.381491 + 0.660762i
\(290\) 265.702 + 39.8861i 0.916213 + 0.137538i
\(291\) 0 0
\(292\) 74.6007 + 13.1541i 0.255482 + 0.0450483i
\(293\) 12.8492 + 10.7817i 0.0438538 + 0.0367977i 0.664451 0.747332i \(-0.268665\pi\)
−0.620597 + 0.784129i \(0.713110\pi\)
\(294\) 0 0
\(295\) 201.222 + 511.808i 0.682109 + 1.73494i
\(296\) 275.232i 0.929839i
\(297\) 0 0
\(298\) 278.343i 0.934037i
\(299\) −81.7601 + 224.634i −0.273445 + 0.751284i
\(300\) 0 0
\(301\) 261.946 + 219.799i 0.870252 + 0.730228i
\(302\) −32.4886 + 184.252i −0.107578 + 0.610106i
\(303\) 0 0
\(304\) −522.793 + 438.675i −1.71971 + 1.44301i
\(305\) −75.7189 25.3900i −0.248259 0.0832458i
\(306\) 0 0
\(307\) −324.909 187.586i −1.05834 0.611030i −0.133364 0.991067i \(-0.542578\pi\)
−0.924971 + 0.380037i \(0.875911\pi\)
\(308\) 141.697 + 803.606i 0.460056 + 2.60911i
\(309\) 0 0
\(310\) −394.411 + 725.288i −1.27229 + 2.33964i
\(311\) −49.1638 135.076i −0.158083 0.434330i 0.835213 0.549926i \(-0.185344\pi\)
−0.993296 + 0.115597i \(0.963122\pi\)
\(312\) 0 0
\(313\) −2.11086 + 0.372201i −0.00674396 + 0.00118914i −0.177019 0.984207i \(-0.556645\pi\)
0.170275 + 0.985397i \(0.445534\pi\)
\(314\) 363.488 + 209.860i 1.15760 + 0.668343i
\(315\) 0 0
\(316\) −183.428 317.707i −0.580468 1.00540i
\(317\) 56.8404 47.6947i 0.179307 0.150457i −0.548717 0.836008i \(-0.684883\pi\)
0.728024 + 0.685552i \(0.240439\pi\)
\(318\) 0 0
\(319\) −23.8039 + 134.999i −0.0746205 + 0.423194i
\(320\) 1010.22 25.7962i 3.15695 0.0806130i
\(321\) 0 0
\(322\) 213.434 586.405i 0.662838 1.82113i
\(323\) −101.385 −0.313886
\(324\) 0 0
\(325\) 284.082 + 35.2560i 0.874097 + 0.108480i
\(326\) −361.103 + 992.123i −1.10768 + 3.04332i
\(327\) 0 0
\(328\) 720.061 858.135i 2.19531 2.61627i
\(329\) 573.473 + 101.119i 1.74308 + 0.307352i
\(330\) 0 0
\(331\) −84.9014 + 71.2408i −0.256500 + 0.215229i −0.761965 0.647618i \(-0.775765\pi\)
0.505465 + 0.862847i \(0.331321\pi\)
\(332\) −137.312 237.832i −0.413591 0.716360i
\(333\) 0 0
\(334\) −437.670 + 758.067i −1.31039 + 2.26966i
\(335\) −99.1917 + 124.535i −0.296095 + 0.371745i
\(336\) 0 0
\(337\) −139.991 384.623i −0.415405 1.14132i −0.954276 0.298927i \(-0.903371\pi\)
0.538871 0.842388i \(-0.318851\pi\)
\(338\) 136.508 49.6847i 0.403869 0.146996i
\(339\) 0 0
\(340\) 346.387 + 275.897i 1.01879 + 0.811461i
\(341\) −364.789 210.611i −1.06976 0.617627i
\(342\) 0 0
\(343\) 251.314 145.096i 0.732693 0.423020i
\(344\) 724.413 + 863.322i 2.10585 + 2.50966i
\(345\) 0 0
\(346\) 104.453 592.380i 0.301886 1.71208i
\(347\) 219.470 + 184.158i 0.632480 + 0.530713i 0.901698 0.432366i \(-0.142321\pi\)
−0.269219 + 0.963079i \(0.586765\pi\)
\(348\) 0 0
\(349\) −130.481 47.4911i −0.373870 0.136078i 0.148249 0.988950i \(-0.452636\pi\)
−0.522119 + 0.852872i \(0.674858\pi\)
\(350\) −741.592 92.0354i −2.11883 0.262958i
\(351\) 0 0
\(352\) 1084.07i 3.07974i
\(353\) 280.331 + 102.032i 0.794137 + 0.289042i 0.707055 0.707159i \(-0.250023\pi\)
0.0870826 + 0.996201i \(0.472246\pi\)
\(354\) 0 0
\(355\) 9.62331 + 376.866i 0.0271079 + 1.06159i
\(356\) −814.148 143.556i −2.28693 0.403248i
\(357\) 0 0
\(358\) −78.2739 93.2833i −0.218642 0.260568i
\(359\) 4.31662 2.49220i 0.0120240 0.00694207i −0.493976 0.869476i \(-0.664457\pi\)
0.506000 + 0.862534i \(0.331124\pi\)
\(360\) 0 0
\(361\) 105.469 182.678i 0.292158 0.506032i
\(362\) 138.236 + 783.974i 0.381867 + 2.16567i
\(363\) 0 0
\(364\) 897.653 326.719i 2.46608 0.897579i
\(365\) −31.0938 16.9088i −0.0851885 0.0463254i
\(366\) 0 0
\(367\) 255.507 45.0529i 0.696205 0.122760i 0.185664 0.982613i \(-0.440556\pi\)
0.510541 + 0.859853i \(0.329445\pi\)
\(368\) 581.537 1007.25i 1.58026 2.73710i
\(369\) 0 0
\(370\) 65.2885 194.706i 0.176455 0.526232i
\(371\) −12.9698 15.4568i −0.0349591 0.0416626i
\(372\) 0 0
\(373\) −478.468 84.3667i −1.28275 0.226184i −0.509605 0.860408i \(-0.670209\pi\)
−0.773149 + 0.634224i \(0.781320\pi\)
\(374\) −199.515 + 237.772i −0.533461 + 0.635755i
\(375\) 0 0
\(376\) 1803.47 + 656.408i 4.79646 + 1.74577i
\(377\) 160.476 0.425665
\(378\) 0 0
\(379\) −556.277 −1.46775 −0.733875 0.679284i \(-0.762290\pi\)
−0.733875 + 0.679284i \(0.762290\pi\)
\(380\) 609.996 239.826i 1.60525 0.631120i
\(381\) 0 0
\(382\) −334.882 + 399.097i −0.876655 + 1.04476i
\(383\) −92.0688 + 522.148i −0.240389 + 1.36331i 0.590574 + 0.806983i \(0.298901\pi\)
−0.830963 + 0.556328i \(0.812210\pi\)
\(384\) 0 0
\(385\) 56.6001 377.042i 0.147013 0.979331i
\(386\) 362.126 209.074i 0.938151 0.541642i
\(387\) 0 0
\(388\) −834.321 481.696i −2.15031 1.24148i
\(389\) 203.603 35.9007i 0.523400 0.0922896i 0.0942954 0.995544i \(-0.469940\pi\)
0.429105 + 0.903255i \(0.358829\pi\)
\(390\) 0 0
\(391\) 162.365 59.0961i 0.415256 0.151141i
\(392\) −284.335 + 103.489i −0.725344 + 0.264004i
\(393\) 0 0
\(394\) −20.9914 119.048i −0.0532776 0.302152i
\(395\) 34.0642 + 167.990i 0.0862384 + 0.425291i
\(396\) 0 0
\(397\) 72.2431 41.7096i 0.181973 0.105062i −0.406247 0.913764i \(-0.633163\pi\)
0.588219 + 0.808702i \(0.299829\pi\)
\(398\) 854.214 716.771i 2.14627 1.80093i
\(399\) 0 0
\(400\) −1331.38 408.939i −3.32846 1.02235i
\(401\) 319.064 380.246i 0.795671 0.948244i −0.203855 0.979001i \(-0.565347\pi\)
0.999527 + 0.0307567i \(0.00979170\pi\)
\(402\) 0 0
\(403\) −168.653 + 463.369i −0.418493 + 1.14980i
\(404\) 753.608i 1.86537i
\(405\) 0 0
\(406\) −418.920 −1.03182
\(407\) 98.4573 + 35.8355i 0.241910 + 0.0880479i
\(408\) 0 0
\(409\) −217.774 182.734i −0.532455 0.446783i 0.336493 0.941686i \(-0.390759\pi\)
−0.868948 + 0.494903i \(0.835204\pi\)
\(410\) −712.948 + 436.258i −1.73890 + 1.06404i
\(411\) 0 0
\(412\) 1256.41 + 1497.33i 3.04954 + 3.63430i
\(413\) −428.732 742.585i −1.03809 1.79803i
\(414\) 0 0
\(415\) 25.5000 + 125.755i 0.0614459 + 0.303025i
\(416\) 1249.80 220.373i 3.00432 0.529743i
\(417\) 0 0
\(418\) 157.129 + 431.707i 0.375906 + 1.03279i
\(419\) −243.883 670.063i −0.582060 1.59920i −0.784655 0.619933i \(-0.787160\pi\)
0.202595 0.979263i \(-0.435063\pi\)
\(420\) 0 0
\(421\) −24.1546 136.988i −0.0573744 0.325386i 0.942589 0.333955i \(-0.108383\pi\)
−0.999963 + 0.00856911i \(0.997272\pi\)
\(422\) −371.237 + 643.001i −0.879707 + 1.52370i
\(423\) 0 0
\(424\) −33.2505 57.5915i −0.0784209 0.135829i
\(425\) −112.465 173.675i −0.264623 0.408647i
\(426\) 0 0
\(427\) 122.629 + 21.6227i 0.287186 + 0.0506387i
\(428\) −326.359 273.848i −0.762521 0.639831i
\(429\) 0 0
\(430\) −307.676 782.573i −0.715526 1.81994i
\(431\) 357.284i 0.828966i −0.910057 0.414483i \(-0.863963\pi\)
0.910057 0.414483i \(-0.136037\pi\)
\(432\) 0 0
\(433\) 61.8658i 0.142877i −0.997445 0.0714386i \(-0.977241\pi\)
0.997445 0.0714386i \(-0.0227590\pi\)
\(434\) 440.266 1209.62i 1.01444 2.78715i
\(435\) 0 0
\(436\) −204.654 171.725i −0.469390 0.393865i
\(437\) 44.4092 251.857i 0.101623 0.576332i
\(438\) 0 0
\(439\) −389.862 + 327.133i −0.888068 + 0.745177i −0.967822 0.251637i \(-0.919031\pi\)
0.0797540 + 0.996815i \(0.474587\pi\)
\(440\) 399.494 1191.39i 0.907941 2.70769i
\(441\) 0 0
\(442\) 314.680 + 181.680i 0.711945 + 0.411042i
\(443\) −85.0329 482.245i −0.191948 1.08859i −0.916699 0.399579i \(-0.869156\pi\)
0.724751 0.689011i \(-0.241955\pi\)
\(444\) 0 0
\(445\) 339.340 + 184.532i 0.762561 + 0.414679i
\(446\) −83.8327 230.328i −0.187966 0.516431i
\(447\) 0 0
\(448\) −1551.70 + 273.607i −3.46362 + 0.610730i
\(449\) 6.62400 + 3.82437i 0.0147528 + 0.00851752i 0.507358 0.861735i \(-0.330622\pi\)
−0.492605 + 0.870253i \(0.663955\pi\)
\(450\) 0 0
\(451\) −213.223 369.313i −0.472778 0.818876i
\(452\) −1141.26 + 957.632i −2.52491 + 2.11865i
\(453\) 0 0
\(454\) −1.59851 + 9.06559i −0.00352094 + 0.0199683i
\(455\) −446.189 + 11.3935i −0.980634 + 0.0250406i
\(456\) 0 0
\(457\) 54.2230 148.976i 0.118650 0.325988i −0.866124 0.499830i \(-0.833396\pi\)
0.984774 + 0.173842i \(0.0556182\pi\)
\(458\) −1098.74 −2.39900
\(459\) 0 0
\(460\) −837.097 + 739.631i −1.81978 + 1.60789i
\(461\) −292.341 + 803.199i −0.634145 + 1.74230i 0.0352369 + 0.999379i \(0.488781\pi\)
−0.669381 + 0.742919i \(0.733441\pi\)
\(462\) 0 0
\(463\) 93.5751 111.518i 0.202106 0.240861i −0.655466 0.755225i \(-0.727528\pi\)
0.857572 + 0.514364i \(0.171972\pi\)
\(464\) −768.916 135.581i −1.65715 0.292200i
\(465\) 0 0
\(466\) −953.871 + 800.392i −2.04693 + 1.71758i
\(467\) 293.155 + 507.759i 0.627740 + 1.08728i 0.988004 + 0.154428i \(0.0493534\pi\)
−0.360264 + 0.932851i \(0.617313\pi\)
\(468\) 0 0
\(469\) 124.119 214.981i 0.264646 0.458381i
\(470\) −1120.11 892.163i −2.38321 1.89822i
\(471\) 0 0
\(472\) −966.559 2655.60i −2.04780 5.62627i
\(473\) 403.150 146.735i 0.852326 0.310221i
\(474\) 0 0
\(475\) −305.851 + 15.6300i −0.643896 + 0.0329053i
\(476\) −597.957 345.231i −1.25621 0.725275i
\(477\) 0 0
\(478\) −678.962 + 391.999i −1.42042 + 0.820081i
\(479\) 206.264 + 245.816i 0.430614 + 0.513186i 0.937099 0.349063i \(-0.113500\pi\)
−0.506485 + 0.862249i \(0.669056\pi\)
\(480\) 0 0
\(481\) 21.2992 120.794i 0.0442811 0.251130i
\(482\) −1074.99 902.020i −2.23026 1.87141i
\(483\) 0 0
\(484\) −254.699 92.7029i −0.526238 0.191535i
\(485\) 298.047 + 337.323i 0.614531 + 0.695511i
\(486\) 0 0
\(487\) 392.682i 0.806328i 0.915128 + 0.403164i \(0.132090\pi\)
−0.915128 + 0.403164i \(0.867910\pi\)
\(488\) 385.645 + 140.363i 0.790255 + 0.287629i
\(489\) 0 0
\(490\) 225.694 5.76312i 0.460600 0.0117615i
\(491\) 781.670 + 137.830i 1.59200 + 0.280712i 0.898242 0.439500i \(-0.144845\pi\)
0.693754 + 0.720212i \(0.255956\pi\)
\(492\) 0 0
\(493\) −74.5580 88.8547i −0.151233 0.180233i
\(494\) 465.763 268.908i 0.942840 0.544349i
\(495\) 0 0
\(496\) 1199.58 2077.73i 2.41851 4.18898i
\(497\) −102.070 578.866i −0.205371 1.16472i
\(498\) 0 0
\(499\) −206.900 + 75.3054i −0.414629 + 0.150913i −0.540907 0.841082i \(-0.681919\pi\)
0.126278 + 0.991995i \(0.459697\pi\)
\(500\) 1087.48 + 778.901i 2.17497 + 1.55780i
\(501\) 0 0
\(502\) 488.128 86.0701i 0.972366 0.171454i
\(503\) 274.373 475.228i 0.545473 0.944787i −0.453104 0.891458i \(-0.649683\pi\)
0.998577 0.0533293i \(-0.0169833\pi\)
\(504\) 0 0
\(505\) 111.944 333.845i 0.221672 0.661079i
\(506\) −503.272 599.776i −0.994609 1.18533i
\(507\) 0 0
\(508\) 1725.25 + 304.209i 3.39617 + 0.598836i
\(509\) −589.405 + 702.425i −1.15797 + 1.38001i −0.246241 + 0.969209i \(0.579196\pi\)
−0.911725 + 0.410802i \(0.865249\pi\)
\(510\) 0 0
\(511\) 51.8576 + 18.8746i 0.101483 + 0.0369366i
\(512\) −448.851 −0.876663
\(513\) 0 0
\(514\) 1302.99 2.53501
\(515\) −334.163 849.944i −0.648861 1.65038i
\(516\) 0 0
\(517\) 469.626 559.679i 0.908368 1.08255i
\(518\) −55.6013 + 315.331i −0.107338 + 0.608746i
\(519\) 0 0
\(520\) −1454.73 218.378i −2.79756 0.419958i
\(521\) −505.296 + 291.733i −0.969858 + 0.559948i −0.899193 0.437552i \(-0.855845\pi\)
−0.0706651 + 0.997500i \(0.522512\pi\)
\(522\) 0 0
\(523\) 787.733 + 454.798i 1.50618 + 0.869595i 0.999974 + 0.00718333i \(0.00228654\pi\)
0.506208 + 0.862411i \(0.331047\pi\)
\(524\) −1116.41 + 196.853i −2.13055 + 0.375674i
\(525\) 0 0
\(526\) −721.230 + 262.506i −1.37116 + 0.499062i
\(527\) 334.923 121.902i 0.635527 0.231313i
\(528\) 0 0
\(529\) −16.1757 91.7369i −0.0305779 0.173416i
\(530\) 9.86074 + 48.6290i 0.0186052 + 0.0917528i
\(531\) 0 0
\(532\) −885.047 + 510.982i −1.66362 + 0.960493i
\(533\) −382.427 + 320.895i −0.717500 + 0.602054i
\(534\) 0 0
\(535\) 103.897 + 169.792i 0.194200 + 0.317369i
\(536\) 525.893 626.735i 0.981143 1.16928i
\(537\) 0 0
\(538\) −163.712 + 449.796i −0.304298 + 0.836052i
\(539\) 115.188i 0.213707i
\(540\) 0 0
\(541\) 854.408 1.57931 0.789656 0.613550i \(-0.210259\pi\)
0.789656 + 0.613550i \(0.210259\pi\)
\(542\) 994.130 + 361.834i 1.83419 + 0.667590i
\(543\) 0 0
\(544\) −702.683 589.621i −1.29170 1.08386i
\(545\) 65.1520 + 106.474i 0.119545 + 0.195365i
\(546\) 0 0
\(547\) −342.347 407.993i −0.625863 0.745874i 0.356204 0.934408i \(-0.384071\pi\)
−0.982067 + 0.188534i \(0.939626\pi\)
\(548\) 876.800 + 1518.66i 1.60000 + 2.77128i
\(549\) 0 0
\(550\) −565.222 + 748.049i −1.02768 + 1.36009i
\(551\) −169.073 + 29.8121i −0.306848 + 0.0541055i
\(552\) 0 0
\(553\) −91.4077 251.140i −0.165294 0.454142i
\(554\) 180.062 + 494.717i 0.325022 + 0.892991i
\(555\) 0 0
\(556\) 121.625 + 689.771i 0.218750 + 1.24060i
\(557\) 408.575 707.673i 0.733528 1.27051i −0.221837 0.975084i \(-0.571205\pi\)
0.955366 0.295425i \(-0.0954612\pi\)
\(558\) 0 0
\(559\) −251.120 434.953i −0.449231 0.778091i
\(560\) 2147.53 + 322.378i 3.83487 + 0.575676i
\(561\) 0 0
\(562\) 1484.46 + 261.750i 2.64138 + 0.465747i
\(563\) −217.558 182.553i −0.386426 0.324250i 0.428793 0.903403i \(-0.358939\pi\)
−0.815219 + 0.579153i \(0.803383\pi\)
\(564\) 0 0
\(565\) 647.825 254.698i 1.14659 0.450794i
\(566\) 773.256i 1.36618i
\(567\) 0 0
\(568\) 1937.26i 3.41067i
\(569\) 146.231 401.765i 0.256996 0.706090i −0.742353 0.670009i \(-0.766290\pi\)
0.999349 0.0360812i \(-0.0114875\pi\)
\(570\) 0 0
\(571\) −795.674 667.649i −1.39347 1.16926i −0.963910 0.266227i \(-0.914223\pi\)
−0.429564 0.903037i \(-0.641333\pi\)
\(572\) 208.121 1180.31i 0.363848 2.06349i
\(573\) 0 0
\(574\) 998.323 837.692i 1.73924 1.45939i
\(575\) 480.699 203.307i 0.835998 0.353577i
\(576\) 0 0
\(577\) 13.7068 + 7.91361i 0.0237552 + 0.0137151i 0.511831 0.859086i \(-0.328968\pi\)
−0.488075 + 0.872801i \(0.662301\pi\)
\(578\) 146.811 + 832.607i 0.253998 + 1.44050i
\(579\) 0 0
\(580\) 658.772 + 358.239i 1.13581 + 0.617653i
\(581\) −68.4267 188.001i −0.117774 0.323582i
\(582\) 0 0
\(583\) −24.9311 + 4.39602i −0.0427635 + 0.00754035i
\(584\) 157.514 + 90.9406i 0.269715 + 0.155720i
\(585\) 0 0
\(586\) 32.1564 + 55.6965i 0.0548744 + 0.0950452i
\(587\) 88.9241 74.6162i 0.151489 0.127114i −0.563893 0.825848i \(-0.690697\pi\)
0.715382 + 0.698733i \(0.246253\pi\)
\(588\) 0 0
\(589\) 91.6063 519.525i 0.155528 0.882046i
\(590\) 53.8258 + 2107.91i 0.0912301 + 3.57273i
\(591\) 0 0
\(592\) −204.109 + 560.785i −0.344779 + 0.947272i
\(593\) 70.0516 0.118131 0.0590654 0.998254i \(-0.481188\pi\)
0.0590654 + 0.998254i \(0.481188\pi\)
\(594\) 0 0
\(595\) 213.610 + 241.759i 0.359009 + 0.406318i
\(596\) 265.698 729.999i 0.445802 1.22483i
\(597\) 0 0
\(598\) −589.160 + 702.134i −0.985218 + 1.17414i
\(599\) −102.432 18.0615i −0.171005 0.0301528i 0.0874899 0.996165i \(-0.472115\pi\)
−0.258495 + 0.966013i \(0.583227\pi\)
\(600\) 0 0
\(601\) 405.512 340.265i 0.674729 0.566165i −0.239732 0.970839i \(-0.577059\pi\)
0.914461 + 0.404674i \(0.132615\pi\)
\(602\) 655.547 + 1135.44i 1.08895 + 1.88611i
\(603\) 0 0
\(604\) −261.088 + 452.218i −0.432265 + 0.748705i
\(605\) 99.0601 + 78.9012i 0.163736 + 0.130415i
\(606\) 0 0
\(607\) −355.728 977.354i −0.586043 1.61014i −0.777671 0.628671i \(-0.783599\pi\)
0.191628 0.981468i \(-0.438623\pi\)
\(608\) −1275.81 + 464.358i −2.09838 + 0.763747i
\(609\) 0 0
\(610\) −239.518 190.776i −0.392653 0.312747i
\(611\) −740.707 427.647i −1.21229 0.699914i
\(612\) 0 0
\(613\) 14.5370 8.39292i 0.0237145 0.0136916i −0.488096 0.872790i \(-0.662308\pi\)
0.511810 + 0.859098i \(0.328975\pi\)
\(614\) −924.645 1101.95i −1.50594 1.79470i
\(615\) 0 0
\(616\) −340.219 + 1929.48i −0.552303 + 3.13227i
\(617\) −536.704 450.348i −0.869860 0.729899i 0.0942085 0.995552i \(-0.469968\pi\)
−0.964069 + 0.265653i \(0.914412\pi\)
\(618\) 0 0
\(619\) 235.061 + 85.5552i 0.379743 + 0.138215i 0.524837 0.851203i \(-0.324126\pi\)
−0.145094 + 0.989418i \(0.546348\pi\)
\(620\) −1726.74 + 1525.69i −2.78507 + 2.46079i
\(621\) 0 0
\(622\) 551.151i 0.886094i
\(623\) −565.943 205.987i −0.908416 0.330636i
\(624\) 0 0
\(625\) −366.049 506.590i −0.585679 0.810543i
\(626\) −8.09349 1.42710i −0.0129289 0.00227971i
\(627\) 0 0
\(628\) 752.979 + 897.365i 1.19901 + 1.42892i
\(629\) −76.7787 + 44.3282i −0.122065 + 0.0704741i
\(630\) 0 0
\(631\) −567.250 + 982.505i −0.898969 + 1.55706i −0.0701553 + 0.997536i \(0.522349\pi\)
−0.828814 + 0.559524i \(0.810984\pi\)
\(632\) −152.955 867.448i −0.242017 1.37254i
\(633\) 0 0
\(634\) 267.341 97.3041i 0.421673 0.153476i
\(635\) −719.091 391.040i −1.13243 0.615811i
\(636\) 0 0
\(637\) 132.797 23.4157i 0.208473 0.0367594i
\(638\) −262.800 + 455.183i −0.411912 + 0.713452i
\(639\) 0 0
\(640\) 1572.01 + 527.125i 2.45627 + 0.823633i
\(641\) 540.058 + 643.616i 0.842524 + 1.00408i 0.999863 + 0.0165365i \(0.00526398\pi\)
−0.157339 + 0.987545i \(0.550292\pi\)
\(642\) 0 0
\(643\) −704.771 124.270i −1.09607 0.193266i −0.403757 0.914866i \(-0.632296\pi\)
−0.692310 + 0.721600i \(0.743407\pi\)
\(644\) 1119.53 1334.20i 1.73840 2.07174i
\(645\) 0 0
\(646\) −365.290 132.955i −0.565464 0.205812i
\(647\) 54.6299 0.0844358 0.0422179 0.999108i \(-0.486558\pi\)
0.0422179 + 0.999108i \(0.486558\pi\)
\(648\) 0 0
\(649\) −1075.82 −1.65766
\(650\) 977.307 + 499.565i 1.50355 + 0.768562i
\(651\) 0 0
\(652\) −1894.10 + 2257.30i −2.90506 + 3.46212i
\(653\) 76.2276 432.308i 0.116734 0.662034i −0.869142 0.494562i \(-0.835329\pi\)
0.985877 0.167472i \(-0.0535604\pi\)
\(654\) 0 0
\(655\) 523.806 + 78.6316i 0.799703 + 0.120048i
\(656\) 2103.51 1214.46i 3.20656 1.85131i
\(657\) 0 0
\(658\) 1933.61 + 1116.37i 2.93861 + 1.69661i
\(659\) −1007.40 + 177.632i −1.52868 + 0.269548i −0.873838 0.486217i \(-0.838377\pi\)
−0.654843 + 0.755765i \(0.727265\pi\)
\(660\) 0 0
\(661\) 653.995 238.035i 0.989403 0.360113i 0.203914 0.978989i \(-0.434634\pi\)
0.785489 + 0.618876i \(0.212412\pi\)
\(662\) −399.322 + 145.341i −0.603205 + 0.219549i
\(663\) 0 0
\(664\) −114.500 649.362i −0.172440 0.977955i
\(665\) 467.976 94.8938i 0.703723 0.142698i
\(666\) 0 0
\(667\) 253.388 146.293i 0.379891 0.219330i
\(668\) −1871.49 + 1570.36i −2.80163 + 2.35084i
\(669\) 0 0
\(670\) −520.698 + 318.618i −0.777161 + 0.475550i
\(671\) 100.423 119.679i 0.149661 0.178359i
\(672\) 0 0
\(673\) 254.284 698.639i 0.377836 1.03810i −0.594415 0.804159i \(-0.702616\pi\)
0.972251 0.233939i \(-0.0751615\pi\)
\(674\) 1569.37i 2.32845i
\(675\) 0 0
\(676\) 405.441 0.599765
\(677\) −732.006 266.428i −1.08125 0.393542i −0.260877 0.965372i \(-0.584012\pi\)
−0.820372 + 0.571830i \(0.806234\pi\)
\(678\) 0 0
\(679\) −537.640 451.134i −0.791812 0.664409i
\(680\) 554.961 + 906.937i 0.816119 + 1.33373i
\(681\) 0 0
\(682\) −1038.14 1237.20i −1.52219 1.81408i
\(683\) 396.792 + 687.263i 0.580954 + 1.00624i 0.995367 + 0.0961530i \(0.0306538\pi\)
−0.414412 + 0.910089i \(0.636013\pi\)
\(684\) 0 0
\(685\) −162.829 803.005i −0.237707 1.17227i
\(686\) 1095.75 193.211i 1.59731 0.281649i
\(687\) 0 0
\(688\) 835.760 + 2296.23i 1.21477 + 3.33755i
\(689\) 10.1361 + 27.8488i 0.0147114 + 0.0404192i
\(690\) 0 0
\(691\) 70.9748 + 402.518i 0.102713 + 0.582516i 0.992109 + 0.125378i \(0.0400143\pi\)
−0.889396 + 0.457138i \(0.848875\pi\)
\(692\) 839.412 1453.90i 1.21302 2.10102i
\(693\) 0 0
\(694\) 549.248 + 951.325i 0.791424 + 1.37079i
\(695\) 48.5824 323.632i 0.0699027 0.465658i
\(696\) 0 0
\(697\) 355.356 + 62.6589i 0.509836 + 0.0898979i
\(698\) −407.841 342.219i −0.584299 0.490285i
\(699\) 0 0
\(700\) −1857.09 949.279i −2.65299 1.35611i
\(701\) 101.996i 0.145500i 0.997350 + 0.0727502i \(0.0231776\pi\)
−0.997350 + 0.0727502i \(0.976822\pi\)
\(702\) 0 0
\(703\) 131.222i 0.186660i
\(704\) −676.133 + 1857.66i −0.960417 + 2.63872i
\(705\) 0 0
\(706\) 876.224 + 735.239i 1.24111 + 1.04141i
\(707\) −95.3347 + 540.670i −0.134844 + 0.764738i
\(708\) 0 0
\(709\) 736.947 618.372i 1.03942 0.872175i 0.0474760 0.998872i \(-0.484882\pi\)
0.991941 + 0.126698i \(0.0404378\pi\)
\(710\) −459.541 + 1370.46i −0.647241 + 1.93023i
\(711\) 0 0
\(712\) −1719.01 992.472i −2.41434 1.39392i
\(713\) 156.119 + 885.397i 0.218961 + 1.24179i
\(714\) 0 0
\(715\) −267.526 + 491.959i −0.374162 + 0.688054i
\(716\) −116.241 319.368i −0.162347 0.446045i
\(717\) 0 0
\(718\) 18.8209 3.31864i 0.0262130 0.00462206i
\(719\) 13.4440 + 7.76189i 0.0186982 + 0.0107954i 0.509320 0.860577i \(-0.329897\pi\)
−0.490622 + 0.871373i \(0.663230\pi\)
\(720\) 0 0
\(721\) 711.982 + 1233.19i 0.987492 + 1.71039i
\(722\) 619.562 519.874i 0.858119 0.720048i
\(723\) 0 0
\(724\) −385.813 + 2188.05i −0.532890 + 3.02217i
\(725\) −238.618 256.555i −0.329129 0.353869i
\(726\) 0 0
\(727\) −81.8003 + 224.744i −0.112518 + 0.309139i −0.983152 0.182792i \(-0.941487\pi\)
0.870634 + 0.491931i \(0.163709\pi\)
\(728\) 2293.61 3.15056
\(729\) 0 0
\(730\) −89.8567 101.698i −0.123091 0.139312i
\(731\) −124.160 + 341.126i −0.169849 + 0.466657i
\(732\) 0 0
\(733\) −817.513 + 974.274i −1.11530 + 1.32916i −0.176653 + 0.984273i \(0.556527\pi\)
−0.938645 + 0.344886i \(0.887918\pi\)
\(734\) 979.670 + 172.742i 1.33470 + 0.235344i
\(735\) 0 0
\(736\) 1772.50 1487.31i 2.40829 2.02080i
\(737\) −155.726 269.726i −0.211298 0.365978i
\(738\) 0 0
\(739\) 542.460 939.569i 0.734046 1.27141i −0.221094 0.975252i \(-0.570963\pi\)
0.955140 0.296153i \(-0.0957039\pi\)
\(740\) 357.090 448.325i 0.482554 0.605844i
\(741\) 0 0
\(742\) −26.4603 72.6990i −0.0356608 0.0979771i
\(743\) 980.589 356.905i 1.31977 0.480357i 0.416385 0.909188i \(-0.363297\pi\)
0.903384 + 0.428832i \(0.141075\pi\)
\(744\) 0 0
\(745\) −226.141 + 283.918i −0.303544 + 0.381099i
\(746\) −1613.27 931.424i −2.16257 1.24856i
\(747\) 0 0
\(748\) −750.229 + 433.145i −1.00298 + 0.579071i
\(749\) −199.501 237.756i −0.266356 0.317431i
\(750\) 0 0
\(751\) 223.514 1267.61i 0.297622 1.68790i −0.358727 0.933443i \(-0.616789\pi\)
0.656349 0.754457i \(-0.272100\pi\)
\(752\) 3187.77 + 2674.86i 4.23906 + 3.55699i
\(753\) 0 0
\(754\) 578.191 + 210.444i 0.766832 + 0.279104i
\(755\) 182.835 161.547i 0.242166 0.213970i
\(756\) 0 0
\(757\) 906.234i 1.19714i 0.801071 + 0.598569i \(0.204264\pi\)
−0.801071 + 0.598569i \(0.795736\pi\)
\(758\) −2004.26 729.490i −2.64414 0.962388i
\(759\) 0 0
\(760\) 1573.23 40.1727i 2.07004 0.0528588i
\(761\) 1063.75 + 187.569i 1.39784 + 0.246476i 0.821254 0.570562i \(-0.193275\pi\)
0.576583 + 0.817039i \(0.304386\pi\)
\(762\) 0 0
\(763\) −125.103 149.092i −0.163962 0.195403i
\(764\) −1259.25 + 727.027i −1.64823 + 0.951606i
\(765\) 0 0
\(766\) −1016.46 + 1760.55i −1.32697 + 2.29837i
\(767\) 218.696 + 1240.29i 0.285131 + 1.61706i
\(768\) 0 0
\(769\) −28.4739 + 10.3637i −0.0370272 + 0.0134768i −0.360467 0.932772i \(-0.617383\pi\)
0.323440 + 0.946249i \(0.395161\pi\)
\(770\) 698.374 1284.25i 0.906980 1.66786i
\(771\) 0 0
\(772\) 1149.31 202.654i 1.48874 0.262506i
\(773\) −188.396 + 326.311i −0.243720 + 0.422136i −0.961771 0.273855i \(-0.911701\pi\)
0.718051 + 0.695991i \(0.245035\pi\)
\(774\) 0 0
\(775\) 991.573 419.376i 1.27945 0.541131i
\(776\) −1486.85 1771.96i −1.91604 2.28345i
\(777\) 0 0
\(778\) 780.656 + 137.651i 1.00341 + 0.176929i
\(779\) 343.302 409.131i 0.440695 0.525200i
\(780\) 0 0
\(781\) −693.004 252.233i −0.887329 0.322961i
\(782\) 662.496 0.847182
\(783\) 0 0
\(784\) −656.078 −0.836834
\(785\) −200.267 509.380i −0.255118 0.648891i
\(786\) 0 0
\(787\) −287.757 + 342.936i −0.365638 + 0.435751i −0.917227 0.398366i \(-0.869578\pi\)
0.551588 + 0.834116i \(0.314022\pi\)
\(788\) 58.5864 332.260i 0.0743482 0.421650i
\(789\) 0 0
\(790\) −97.5658 + 649.936i −0.123501 + 0.822704i
\(791\) −939.933 + 542.671i −1.18828 + 0.686056i
\(792\) 0 0
\(793\) −158.389 91.4460i −0.199734 0.115316i
\(794\) 314.988 55.5409i 0.396710 0.0699507i
\(795\) 0 0
\(796\) 2924.52 1064.44i 3.67402 1.33723i
\(797\) 1344.71 489.434i 1.68721 0.614095i 0.692943 0.720993i \(-0.256314\pi\)
0.994270 + 0.106898i \(0.0340917\pi\)
\(798\) 0 0
\(799\) 107.350 + 608.813i 0.134356 + 0.761969i
\(800\) −2210.69 1670.39i −2.76336 2.08799i
\(801\) 0 0
\(802\) 1648.23 951.606i 2.05515 1.18654i
\(803\) 53.0401 44.5059i 0.0660524 0.0554246i
\(804\) 0 0
\(805\) −694.135 + 424.746i −0.862280 + 0.527634i
\(806\) −1215.31 + 1448.34i −1.50782 + 1.79695i
\(807\) 0 0
\(808\) −618.862 + 1700.31i −0.765918 + 2.10434i
\(809\) 1430.32i 1.76801i 0.467474 + 0.884007i \(0.345164\pi\)
−0.467474 + 0.884007i \(0.654836\pi\)
\(810\) 0 0
\(811\) −1216.28 −1.49973 −0.749866 0.661589i \(-0.769882\pi\)
−0.749866 + 0.661589i \(0.769882\pi\)
\(812\) −1098.69 399.889i −1.35306 0.492474i
\(813\) 0 0
\(814\) 307.746 + 258.229i 0.378066 + 0.317235i
\(815\) 1174.39 718.617i 1.44097 0.881738i
\(816\) 0 0
\(817\) 345.376 + 411.604i 0.422737 + 0.503799i
\(818\) −545.003 943.973i −0.666263 1.15400i
\(819\) 0 0
\(820\) −2286.26 + 463.596i −2.78812 + 0.565361i
\(821\) 290.704 51.2590i 0.354086 0.0624349i 0.00622377 0.999981i \(-0.498019\pi\)
0.347862 + 0.937546i \(0.386908\pi\)
\(822\) 0 0
\(823\) −119.432 328.138i −0.145118 0.398710i 0.845744 0.533590i \(-0.179157\pi\)
−0.990862 + 0.134880i \(0.956935\pi\)
\(824\) 1605.14 + 4410.08i 1.94798 + 5.35203i
\(825\) 0 0
\(826\) −570.903 3237.75i −0.691166 3.91980i
\(827\) −740.937 + 1283.34i −0.895933 + 1.55180i −0.0632873 + 0.997995i \(0.520158\pi\)
−0.832646 + 0.553806i \(0.813175\pi\)
\(828\) 0 0
\(829\) 39.5851 + 68.5634i 0.0477504 + 0.0827062i 0.888913 0.458077i \(-0.151461\pi\)
−0.841162 + 0.540783i \(0.818128\pi\)
\(830\) −73.0366 + 486.535i −0.0879959 + 0.586186i
\(831\) 0 0
\(832\) 2279.10 + 401.866i 2.73930 + 0.483013i
\(833\) −74.6636 62.6502i −0.0896321 0.0752103i
\(834\) 0 0
\(835\) 1062.33 417.665i 1.27225 0.500198i
\(836\) 1282.21i 1.53375i
\(837\) 0 0
\(838\) 2734.05i 3.26259i
\(839\) −44.6871 + 122.777i −0.0532624 + 0.146337i −0.963471 0.267813i \(-0.913699\pi\)
0.910208 + 0.414150i \(0.135921\pi\)
\(840\) 0 0
\(841\) 493.781 + 414.331i 0.587135 + 0.492665i
\(842\) 92.6139 525.240i 0.109993 0.623800i
\(843\) 0 0
\(844\) −1587.42 + 1332.00i −1.88082 + 1.57820i
\(845\) −179.609 60.2261i −0.212554 0.0712735i
\(846\) 0 0
\(847\) −171.005 98.7295i −0.201894 0.116564i
\(848\) −25.0385 142.001i −0.0295266 0.167454i
\(849\) 0 0
\(850\) −177.456 773.232i −0.208771 0.909685i
\(851\) −76.4874 210.147i −0.0898794 0.246942i
\(852\) 0 0
\(853\) 590.303 104.086i 0.692032 0.122024i 0.183439 0.983031i \(-0.441277\pi\)
0.508593 + 0.861007i \(0.330166\pi\)
\(854\) 413.473 + 238.719i 0.484160 + 0.279530i
\(855\) 0 0
\(856\) −511.456 885.868i −0.597495 1.03489i
\(857\) −214.669 + 180.129i −0.250489 + 0.210186i −0.759383 0.650644i \(-0.774499\pi\)
0.508894 + 0.860829i \(0.330055\pi\)
\(858\) 0 0
\(859\) −272.385 + 1544.77i −0.317095 + 1.79834i 0.243126 + 0.969995i \(0.421827\pi\)
−0.560222 + 0.828343i \(0.689284\pi\)
\(860\) −59.9084 2346.12i −0.0696610 2.72805i
\(861\) 0 0
\(862\) 468.535 1287.29i 0.543544 1.49337i
\(863\) −282.809 −0.327704 −0.163852 0.986485i \(-0.552392\pi\)
−0.163852 + 0.986485i \(0.552392\pi\)
\(864\) 0 0
\(865\) −587.826 + 519.383i −0.679567 + 0.600443i
\(866\) 81.1295 222.902i 0.0936831 0.257392i
\(867\) 0 0
\(868\) 2309.34 2752.16i 2.66053 3.17069i
\(869\) −330.222 58.2270i −0.380002 0.0670046i
\(870\) 0 0
\(871\) −279.304 + 234.364i −0.320670 + 0.269074i
\(872\) −320.725 555.512i −0.367804 0.637055i
\(873\) 0 0
\(874\) 490.286 849.200i 0.560968 0.971625i
\(875\) 681.672 + 696.387i 0.779054 + 0.795871i
\(876\) 0 0
\(877\) 488.442 + 1341.98i 0.556946 + 1.53020i 0.824043 + 0.566527i \(0.191713\pi\)
−0.267097 + 0.963670i \(0.586065\pi\)
\(878\) −1833.66 + 667.398i −2.08845 + 0.760134i
\(879\) 0 0
\(880\) 1697.48 2131.18i 1.92896 2.42180i
\(881\) 998.678 + 576.587i 1.13357 + 0.654469i 0.944831 0.327558i \(-0.106226\pi\)
0.188742 + 0.982027i \(0.439559\pi\)
\(882\) 0 0
\(883\) −23.9284 + 13.8151i −0.0270990 + 0.0156456i −0.513488 0.858097i \(-0.671647\pi\)
0.486389 + 0.873742i \(0.338314\pi\)
\(884\) 651.871 + 776.870i 0.737411 + 0.878812i
\(885\) 0 0
\(886\) 326.034 1849.03i 0.367984 2.08694i
\(887\) −168.475 141.368i −0.189938 0.159377i 0.542860 0.839823i \(-0.317342\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(888\) 0 0
\(889\) 1199.28 + 436.504i 1.34903 + 0.491006i
\(890\) 980.643 + 1109.87i 1.10185 + 1.24704i
\(891\) 0 0
\(892\) 684.097i 0.766925i
\(893\) 859.834 + 312.954i 0.962861 + 0.350453i
\(894\) 0 0
\(895\) 4.05358 + 158.746i 0.00452914 + 0.177369i
\(896\) −2545.91 448.913i −2.84142 0.501019i
\(897\) 0 0
\(898\) 18.8510 + 22.4657i 0.0209922 + 0.0250175i
\(899\) 522.682 301.770i 0.581403 0.335673i
\(900\) 0 0
\(901\) 10.7105 18.5511i 0.0118873 0.0205894i
\(902\) −283.930 1610.25i −0.314778 1.78519i
\(903\) 0 0
\(904\) −3361.35 + 1223.43i −3.71830 + 1.35335i
\(905\) 495.937 911.987i 0.547997 1.00772i
\(906\) 0 0
\(907\) −871.694 + 153.703i −0.961073 + 0.169463i −0.632109 0.774879i \(-0.717811\pi\)
−0.328964 + 0.944342i \(0.606700\pi\)
\(908\) −12.8461 + 22.2501i −0.0141477 + 0.0245045i
\(909\) 0 0
\(910\) −1622.55 544.072i −1.78302 0.597881i
\(911\) −695.382 828.724i −0.763317 0.909686i 0.234736 0.972059i \(-0.424577\pi\)
−0.998053 + 0.0623734i \(0.980133\pi\)
\(912\) 0 0
\(913\) −247.200 43.5881i −0.270756 0.0477416i
\(914\) 390.729 465.653i 0.427493 0.509467i
\(915\) 0 0
\(916\) −2881.62 1048.83i −3.14588 1.14501i
\(917\) −825.861 −0.900612
\(918\) 0 0
\(919\) −227.334 −0.247371 −0.123686 0.992321i \(-0.539471\pi\)
−0.123686 + 0.992321i \(0.539471\pi\)
\(920\) −2496.06 + 981.351i −2.71311 + 1.06669i
\(921\) 0 0
\(922\) −2106.60 + 2510.54i −2.28481 + 2.72293i
\(923\) −149.917 + 850.222i −0.162424 + 0.921150i
\(924\) 0 0
\(925\) −224.786 + 145.562i −0.243011 + 0.157364i
\(926\) 483.392 279.087i 0.522022 0.301389i
\(927\) 0 0
\(928\) −1345.19 776.646i −1.44956 0.836903i
\(929\) 195.920 34.5460i 0.210894 0.0371862i −0.0672031 0.997739i \(-0.521408\pi\)
0.278097 + 0.960553i \(0.410296\pi\)
\(930\) 0 0
\(931\) −135.562 + 49.3404i −0.145609 + 0.0529972i
\(932\) −3265.71 + 1188.62i −3.50398 + 1.27534i
\(933\) 0 0
\(934\) 390.367 + 2213.88i 0.417952 + 2.37033i
\(935\) 396.690 80.4388i 0.424267 0.0860308i
\(936\) 0 0
\(937\) −634.949 + 366.588i −0.677640 + 0.391236i −0.798965 0.601377i \(-0.794619\pi\)
0.121325 + 0.992613i \(0.461286\pi\)
\(938\) 729.120 611.804i 0.777313 0.652243i
\(939\) 0 0
\(940\) −2086.03 3409.06i −2.21918 3.62666i
\(941\) 489.023 582.795i 0.519684 0.619336i −0.440822 0.897595i \(-0.645313\pi\)
0.960506 + 0.278259i \(0.0897574\pi\)
\(942\) 0 0
\(943\) −311.309 + 855.315i −0.330126 + 0.907015i
\(944\) 6127.57i 6.49107i
\(945\) 0 0
\(946\) 1644.97 1.73887
\(947\) −570.175 207.527i −0.602085 0.219141i 0.0229512 0.999737i \(-0.492694\pi\)
−0.625037 + 0.780595i \(0.714916\pi\)
\(948\) 0 0
\(949\) −62.0919 52.1013i −0.0654288 0.0549013i
\(950\) −1122.47 344.771i −1.18155 0.362917i
\(951\) 0 0
\(952\) −1065.62 1269.96i −1.11935 1.33399i
\(953\) 283.652 + 491.299i 0.297641 + 0.515529i 0.975596 0.219574i \(-0.0704669\pi\)
−0.677955 + 0.735104i \(0.737134\pi\)
\(954\) 0 0
\(955\) 665.837 135.015i 0.697212 0.141377i
\(956\) −2154.88 + 379.963i −2.25405 + 0.397451i
\(957\) 0 0
\(958\) 420.808 + 1156.16i 0.439257 + 1.20685i
\(959\) 436.936 + 1200.47i 0.455616 + 1.25179i
\(960\) 0 0
\(961\) 155.163 + 879.975i 0.161460 + 0.915687i
\(962\) 235.147 407.286i 0.244435 0.423375i
\(963\) 0 0
\(964\) −1958.28 3391.84i −2.03141 3.51851i
\(965\) −539.243 80.9489i −0.558801 0.0838849i
\(966\) 0 0
\(967\) −935.891 165.023i −0.967830 0.170654i −0.332677 0.943041i \(-0.607952\pi\)
−0.635153 + 0.772386i \(0.719063\pi\)
\(968\) −498.531 418.317i −0.515012 0.432146i
\(969\) 0 0
\(970\) 631.501 + 1606.22i 0.651032 + 1.65590i
\(971\) 935.107i 0.963035i −0.876436 0.481518i \(-0.840086\pi\)
0.876436 0.481518i \(-0.159914\pi\)
\(972\) 0 0
\(973\) 510.257i 0.524416i
\(974\) −514.954 + 1414.83i −0.528700 + 1.45259i
\(975\) 0 0
\(976\) 681.658 + 571.979i 0.698420 + 0.586044i
\(977\) −146.223 + 829.272i −0.149665 + 0.848795i 0.813837 + 0.581094i \(0.197375\pi\)
−0.963502 + 0.267701i \(0.913736\pi\)
\(978\) 0 0
\(979\) −578.848 + 485.711i −0.591265 + 0.496130i
\(980\) 597.420 + 200.326i 0.609612 + 0.204414i
\(981\) 0 0
\(982\) 2635.60 + 1521.66i 2.68391 + 1.54955i
\(983\) −107.632 610.411i −0.109493 0.620967i −0.989330 0.145691i \(-0.953459\pi\)
0.879837 0.475276i \(-0.157652\pi\)
\(984\) 0 0
\(985\) −75.3090 + 138.487i −0.0764558 + 0.140596i
\(986\) −152.109 417.916i −0.154269 0.423850i
\(987\) 0 0
\(988\) 1478.23 260.652i 1.49618 0.263818i
\(989\) −793.027 457.854i −0.801847 0.462947i
\(990\) 0 0
\(991\) 971.444 + 1682.59i 0.980266 + 1.69787i 0.661330 + 0.750095i \(0.269992\pi\)
0.318936 + 0.947776i \(0.396674\pi\)
\(992\) 3656.28 3067.98i 3.68576 3.09272i
\(993\) 0 0
\(994\) 391.357 2219.50i 0.393719 2.23289i
\(995\) −1453.67 + 37.1195i −1.46097 + 0.0373061i
\(996\) 0 0
\(997\) 328.542 902.662i 0.329531 0.905378i −0.658700 0.752406i \(-0.728893\pi\)
0.988231 0.152972i \(-0.0488844\pi\)
\(998\) −844.210 −0.845902
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.34 204
3.2 odd 2 135.3.n.a.104.1 yes 204
5.4 even 2 inner 405.3.n.a.179.1 204
15.14 odd 2 135.3.n.a.104.34 yes 204
27.7 even 9 135.3.n.a.74.34 yes 204
27.20 odd 18 inner 405.3.n.a.224.1 204
135.34 even 18 135.3.n.a.74.1 204
135.74 odd 18 inner 405.3.n.a.224.34 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.1 204 135.34 even 18
135.3.n.a.74.34 yes 204 27.7 even 9
135.3.n.a.104.1 yes 204 3.2 odd 2
135.3.n.a.104.34 yes 204 15.14 odd 2
405.3.n.a.179.1 204 5.4 even 2 inner
405.3.n.a.179.34 204 1.1 even 1 trivial
405.3.n.a.224.1 204 27.20 odd 18 inner
405.3.n.a.224.34 204 135.74 odd 18 inner