Properties

Label 4032.3.d.o.449.6
Level $4032$
Weight $3$
Character 4032.449
Analytic conductor $109.864$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,3,Mod(449,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(109.864042590\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44x^{10} + 719x^{8} + 5356x^{6} + 17809x^{4} + 20000x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 2016)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.6
Root \(-3.78561i\) of defining polynomial
Character \(\chi\) \(=\) 4032.449
Dual form 4032.3.d.o.449.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54305i q^{5} -2.64575 q^{7} -5.28100i q^{11} +17.4394 q^{13} -7.16491i q^{17} +12.1575 q^{19} -41.2578i q^{23} +22.6190 q^{25} +38.3304i q^{29} +45.2159 q^{31} +4.08252i q^{35} -52.5559 q^{37} +64.3356i q^{41} +40.6940 q^{43} +79.0301i q^{47} +7.00000 q^{49} -88.4071i q^{53} -8.14883 q^{55} -39.6751i q^{59} -94.2190 q^{61} -26.9098i q^{65} -13.2802 q^{67} -62.1050i q^{71} +12.8299 q^{73} +13.9722i q^{77} -114.290 q^{79} +42.7913i q^{83} -11.0558 q^{85} +9.41534i q^{89} -46.1403 q^{91} -18.7595i q^{95} +63.2873 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{13} + 64 q^{19} - 124 q^{25} - 160 q^{31} - 56 q^{37} - 64 q^{43} + 84 q^{49} + 160 q^{55} - 104 q^{61} - 64 q^{67} - 64 q^{73} - 32 q^{79} + 184 q^{85} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.54305i − 0.308609i −0.988023 0.154305i \(-0.950686\pi\)
0.988023 0.154305i \(-0.0493137\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.28100i − 0.480091i −0.970762 0.240045i \(-0.922838\pi\)
0.970762 0.240045i \(-0.0771623\pi\)
\(12\) 0 0
\(13\) 17.4394 1.34149 0.670746 0.741687i \(-0.265974\pi\)
0.670746 + 0.741687i \(0.265974\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.16491i − 0.421465i −0.977544 0.210733i \(-0.932415\pi\)
0.977544 0.210733i \(-0.0675849\pi\)
\(18\) 0 0
\(19\) 12.1575 0.639866 0.319933 0.947440i \(-0.396340\pi\)
0.319933 + 0.947440i \(0.396340\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 41.2578i − 1.79382i −0.442218 0.896908i \(-0.645808\pi\)
0.442218 0.896908i \(-0.354192\pi\)
\(24\) 0 0
\(25\) 22.6190 0.904760
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.3304i 1.32174i 0.750502 + 0.660868i \(0.229812\pi\)
−0.750502 + 0.660868i \(0.770188\pi\)
\(30\) 0 0
\(31\) 45.2159 1.45858 0.729288 0.684207i \(-0.239851\pi\)
0.729288 + 0.684207i \(0.239851\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.08252i 0.116643i
\(36\) 0 0
\(37\) −52.5559 −1.42043 −0.710215 0.703985i \(-0.751402\pi\)
−0.710215 + 0.703985i \(0.751402\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 64.3356i 1.56916i 0.620026 + 0.784581i \(0.287122\pi\)
−0.620026 + 0.784581i \(0.712878\pi\)
\(42\) 0 0
\(43\) 40.6940 0.946372 0.473186 0.880962i \(-0.343104\pi\)
0.473186 + 0.880962i \(0.343104\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 79.0301i 1.68149i 0.541430 + 0.840746i \(0.317883\pi\)
−0.541430 + 0.840746i \(0.682117\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 88.4071i − 1.66806i −0.551720 0.834030i \(-0.686028\pi\)
0.551720 0.834030i \(-0.313972\pi\)
\(54\) 0 0
\(55\) −8.14883 −0.148161
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 39.6751i − 0.672459i −0.941780 0.336229i \(-0.890848\pi\)
0.941780 0.336229i \(-0.109152\pi\)
\(60\) 0 0
\(61\) −94.2190 −1.54457 −0.772287 0.635273i \(-0.780887\pi\)
−0.772287 + 0.635273i \(0.780887\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 26.9098i − 0.413997i
\(66\) 0 0
\(67\) −13.2802 −0.198212 −0.0991062 0.995077i \(-0.531598\pi\)
−0.0991062 + 0.995077i \(0.531598\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 62.1050i − 0.874719i −0.899287 0.437359i \(-0.855914\pi\)
0.899287 0.437359i \(-0.144086\pi\)
\(72\) 0 0
\(73\) 12.8299 0.175753 0.0878764 0.996131i \(-0.471992\pi\)
0.0878764 + 0.996131i \(0.471992\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.9722i 0.181457i
\(78\) 0 0
\(79\) −114.290 −1.44670 −0.723352 0.690479i \(-0.757400\pi\)
−0.723352 + 0.690479i \(0.757400\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 42.7913i 0.515557i 0.966204 + 0.257779i \(0.0829905\pi\)
−0.966204 + 0.257779i \(0.917009\pi\)
\(84\) 0 0
\(85\) −11.0558 −0.130068
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.41534i 0.105790i 0.998600 + 0.0528952i \(0.0168449\pi\)
−0.998600 + 0.0528952i \(0.983155\pi\)
\(90\) 0 0
\(91\) −46.1403 −0.507037
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 18.7595i − 0.197469i
\(96\) 0 0
\(97\) 63.2873 0.652446 0.326223 0.945293i \(-0.394224\pi\)
0.326223 + 0.945293i \(0.394224\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 20.8527i − 0.206462i −0.994657 0.103231i \(-0.967082\pi\)
0.994657 0.103231i \(-0.0329181\pi\)
\(102\) 0 0
\(103\) 160.552 1.55876 0.779378 0.626554i \(-0.215535\pi\)
0.779378 + 0.626554i \(0.215535\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 65.0567i − 0.608007i −0.952671 0.304003i \(-0.901677\pi\)
0.952671 0.304003i \(-0.0983234\pi\)
\(108\) 0 0
\(109\) 71.1695 0.652932 0.326466 0.945209i \(-0.394142\pi\)
0.326466 + 0.945209i \(0.394142\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 199.450i 1.76504i 0.470274 + 0.882520i \(0.344155\pi\)
−0.470274 + 0.882520i \(0.655845\pi\)
\(114\) 0 0
\(115\) −63.6627 −0.553588
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.9566i 0.159299i
\(120\) 0 0
\(121\) 93.1110 0.769513
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 73.4784i − 0.587827i
\(126\) 0 0
\(127\) 159.752 1.25789 0.628944 0.777451i \(-0.283488\pi\)
0.628944 + 0.777451i \(0.283488\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.89656i 0.0602791i 0.999546 + 0.0301396i \(0.00959517\pi\)
−0.999546 + 0.0301396i \(0.990405\pi\)
\(132\) 0 0
\(133\) −32.1656 −0.241847
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 79.5045i − 0.580325i −0.956977 0.290162i \(-0.906291\pi\)
0.956977 0.290162i \(-0.0937093\pi\)
\(138\) 0 0
\(139\) 205.295 1.47694 0.738471 0.674285i \(-0.235548\pi\)
0.738471 + 0.674285i \(0.235548\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 92.0975i − 0.644038i
\(144\) 0 0
\(145\) 59.1455 0.407900
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 116.708i − 0.783272i −0.920120 0.391636i \(-0.871909\pi\)
0.920120 0.391636i \(-0.128091\pi\)
\(150\) 0 0
\(151\) −24.0881 −0.159524 −0.0797619 0.996814i \(-0.525416\pi\)
−0.0797619 + 0.996814i \(0.525416\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 69.7702i − 0.450130i
\(156\) 0 0
\(157\) −294.586 −1.87634 −0.938170 0.346174i \(-0.887481\pi\)
−0.938170 + 0.346174i \(0.887481\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 109.158i 0.677998i
\(162\) 0 0
\(163\) 206.907 1.26937 0.634683 0.772772i \(-0.281131\pi\)
0.634683 + 0.772772i \(0.281131\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 20.1697i − 0.120776i −0.998175 0.0603882i \(-0.980766\pi\)
0.998175 0.0603882i \(-0.0192339\pi\)
\(168\) 0 0
\(169\) 135.133 0.799603
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 192.928i − 1.11519i −0.830113 0.557595i \(-0.811724\pi\)
0.830113 0.557595i \(-0.188276\pi\)
\(174\) 0 0
\(175\) −59.8443 −0.341967
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 162.749i − 0.909215i −0.890692 0.454607i \(-0.849780\pi\)
0.890692 0.454607i \(-0.150220\pi\)
\(180\) 0 0
\(181\) −328.731 −1.81620 −0.908098 0.418758i \(-0.862465\pi\)
−0.908098 + 0.418758i \(0.862465\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 81.0963i 0.438358i
\(186\) 0 0
\(187\) −37.8379 −0.202342
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 246.878i − 1.29255i −0.763103 0.646277i \(-0.776325\pi\)
0.763103 0.646277i \(-0.223675\pi\)
\(192\) 0 0
\(193\) 298.678 1.54755 0.773777 0.633458i \(-0.218365\pi\)
0.773777 + 0.633458i \(0.218365\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 93.8072i − 0.476179i −0.971243 0.238089i \(-0.923479\pi\)
0.971243 0.238089i \(-0.0765211\pi\)
\(198\) 0 0
\(199\) −158.584 −0.796906 −0.398453 0.917189i \(-0.630453\pi\)
−0.398453 + 0.917189i \(0.630453\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 101.413i − 0.499569i
\(204\) 0 0
\(205\) 99.2729 0.484258
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 64.2035i − 0.307194i
\(210\) 0 0
\(211\) −75.0497 −0.355686 −0.177843 0.984059i \(-0.556912\pi\)
−0.177843 + 0.984059i \(0.556912\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 62.7928i − 0.292059i
\(216\) 0 0
\(217\) −119.630 −0.551290
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 124.952i − 0.565392i
\(222\) 0 0
\(223\) 383.762 1.72090 0.860452 0.509531i \(-0.170181\pi\)
0.860452 + 0.509531i \(0.170181\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 35.1635i 0.154905i 0.996996 + 0.0774526i \(0.0246787\pi\)
−0.996996 + 0.0774526i \(0.975321\pi\)
\(228\) 0 0
\(229\) 219.763 0.959663 0.479832 0.877361i \(-0.340698\pi\)
0.479832 + 0.877361i \(0.340698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 263.627i 1.13145i 0.824596 + 0.565723i \(0.191403\pi\)
−0.824596 + 0.565723i \(0.808597\pi\)
\(234\) 0 0
\(235\) 121.947 0.518924
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 155.414i − 0.650267i −0.945668 0.325133i \(-0.894591\pi\)
0.945668 0.325133i \(-0.105409\pi\)
\(240\) 0 0
\(241\) 166.284 0.689977 0.344988 0.938607i \(-0.387883\pi\)
0.344988 + 0.938607i \(0.387883\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 10.8013i − 0.0440871i
\(246\) 0 0
\(247\) 212.019 0.858376
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 381.832i − 1.52124i −0.649196 0.760621i \(-0.724894\pi\)
0.649196 0.760621i \(-0.275106\pi\)
\(252\) 0 0
\(253\) −217.882 −0.861194
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 133.076i − 0.517805i −0.965903 0.258902i \(-0.916639\pi\)
0.965903 0.258902i \(-0.0833608\pi\)
\(258\) 0 0
\(259\) 139.050 0.536872
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 360.430i − 1.37045i −0.728329 0.685227i \(-0.759703\pi\)
0.728329 0.685227i \(-0.240297\pi\)
\(264\) 0 0
\(265\) −136.416 −0.514779
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 62.5750i 0.232621i 0.993213 + 0.116310i \(0.0371067\pi\)
−0.993213 + 0.116310i \(0.962893\pi\)
\(270\) 0 0
\(271\) −102.805 −0.379353 −0.189677 0.981847i \(-0.560744\pi\)
−0.189677 + 0.981847i \(0.560744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 119.451i − 0.434367i
\(276\) 0 0
\(277\) −265.912 −0.959972 −0.479986 0.877276i \(-0.659358\pi\)
−0.479986 + 0.877276i \(0.659358\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.9943i 0.0391256i 0.999809 + 0.0195628i \(0.00622743\pi\)
−0.999809 + 0.0195628i \(0.993773\pi\)
\(282\) 0 0
\(283\) 370.671 1.30979 0.654897 0.755719i \(-0.272712\pi\)
0.654897 + 0.755719i \(0.272712\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 170.216i − 0.593088i
\(288\) 0 0
\(289\) 237.664 0.822367
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 400.085i 1.36548i 0.730663 + 0.682738i \(0.239211\pi\)
−0.730663 + 0.682738i \(0.760789\pi\)
\(294\) 0 0
\(295\) −61.2205 −0.207527
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 719.511i − 2.40639i
\(300\) 0 0
\(301\) −107.666 −0.357695
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 145.384i 0.476670i
\(306\) 0 0
\(307\) −160.824 −0.523858 −0.261929 0.965087i \(-0.584359\pi\)
−0.261929 + 0.965087i \(0.584359\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 68.7757i − 0.221144i −0.993868 0.110572i \(-0.964732\pi\)
0.993868 0.110572i \(-0.0352682\pi\)
\(312\) 0 0
\(313\) 410.532 1.31160 0.655801 0.754934i \(-0.272331\pi\)
0.655801 + 0.754934i \(0.272331\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 102.907i 0.324627i 0.986739 + 0.162314i \(0.0518956\pi\)
−0.986739 + 0.162314i \(0.948104\pi\)
\(318\) 0 0
\(319\) 202.423 0.634554
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 87.1070i − 0.269681i
\(324\) 0 0
\(325\) 394.462 1.21373
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 209.094i − 0.635544i
\(330\) 0 0
\(331\) −161.830 −0.488911 −0.244456 0.969660i \(-0.578609\pi\)
−0.244456 + 0.969660i \(0.578609\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.4920i 0.0611702i
\(336\) 0 0
\(337\) −194.690 −0.577715 −0.288858 0.957372i \(-0.593275\pi\)
−0.288858 + 0.957372i \(0.593275\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 238.785i − 0.700249i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 605.635i 1.74534i 0.488306 + 0.872672i \(0.337615\pi\)
−0.488306 + 0.872672i \(0.662385\pi\)
\(348\) 0 0
\(349\) 178.942 0.512727 0.256363 0.966580i \(-0.417476\pi\)
0.256363 + 0.966580i \(0.417476\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 171.611i 0.486150i 0.970007 + 0.243075i \(0.0781562\pi\)
−0.970007 + 0.243075i \(0.921844\pi\)
\(354\) 0 0
\(355\) −95.8310 −0.269946
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 167.294i 0.465999i 0.972477 + 0.232999i \(0.0748540\pi\)
−0.972477 + 0.232999i \(0.925146\pi\)
\(360\) 0 0
\(361\) −213.196 −0.590571
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 19.7972i − 0.0542389i
\(366\) 0 0
\(367\) 382.371 1.04188 0.520942 0.853592i \(-0.325581\pi\)
0.520942 + 0.853592i \(0.325581\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 233.903i 0.630467i
\(372\) 0 0
\(373\) −76.7573 −0.205784 −0.102892 0.994693i \(-0.532810\pi\)
−0.102892 + 0.994693i \(0.532810\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 668.459i 1.77310i
\(378\) 0 0
\(379\) −468.534 −1.23624 −0.618119 0.786085i \(-0.712105\pi\)
−0.618119 + 0.786085i \(0.712105\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 352.388i − 0.920072i −0.887900 0.460036i \(-0.847836\pi\)
0.887900 0.460036i \(-0.152164\pi\)
\(384\) 0 0
\(385\) 21.5598 0.0559994
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 28.3218i − 0.0728066i −0.999337 0.0364033i \(-0.988410\pi\)
0.999337 0.0364033i \(-0.0115901\pi\)
\(390\) 0 0
\(391\) −295.608 −0.756031
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 176.354i 0.446467i
\(396\) 0 0
\(397\) −394.854 −0.994593 −0.497297 0.867581i \(-0.665674\pi\)
−0.497297 + 0.867581i \(0.665674\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 458.679i − 1.14384i −0.820310 0.571919i \(-0.806199\pi\)
0.820310 0.571919i \(-0.193801\pi\)
\(402\) 0 0
\(403\) 788.538 1.95667
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 277.548i 0.681936i
\(408\) 0 0
\(409\) −200.052 −0.489126 −0.244563 0.969633i \(-0.578644\pi\)
−0.244563 + 0.969633i \(0.578644\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 104.970i 0.254166i
\(414\) 0 0
\(415\) 66.0289 0.159106
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 282.592i − 0.674443i −0.941425 0.337222i \(-0.890513\pi\)
0.941425 0.337222i \(-0.109487\pi\)
\(420\) 0 0
\(421\) −131.289 −0.311850 −0.155925 0.987769i \(-0.549836\pi\)
−0.155925 + 0.987769i \(0.549836\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 162.063i − 0.381325i
\(426\) 0 0
\(427\) 249.280 0.583794
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 10.2557i − 0.0237951i −0.999929 0.0118976i \(-0.996213\pi\)
0.999929 0.0118976i \(-0.00378720\pi\)
\(432\) 0 0
\(433\) −2.74747 −0.00634520 −0.00317260 0.999995i \(-0.501010\pi\)
−0.00317260 + 0.999995i \(0.501010\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 501.589i − 1.14780i
\(438\) 0 0
\(439\) 532.249 1.21241 0.606206 0.795307i \(-0.292691\pi\)
0.606206 + 0.795307i \(0.292691\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 419.913i − 0.947885i −0.880556 0.473943i \(-0.842830\pi\)
0.880556 0.473943i \(-0.157170\pi\)
\(444\) 0 0
\(445\) 14.5283 0.0326479
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 417.221i − 0.929223i −0.885515 0.464611i \(-0.846194\pi\)
0.885515 0.464611i \(-0.153806\pi\)
\(450\) 0 0
\(451\) 339.757 0.753340
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 71.1967i 0.156476i
\(456\) 0 0
\(457\) −70.3057 −0.153842 −0.0769209 0.997037i \(-0.524509\pi\)
−0.0769209 + 0.997037i \(0.524509\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 252.219i − 0.547113i −0.961856 0.273557i \(-0.911800\pi\)
0.961856 0.273557i \(-0.0882001\pi\)
\(462\) 0 0
\(463\) 330.520 0.713865 0.356933 0.934130i \(-0.383823\pi\)
0.356933 + 0.934130i \(0.383823\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 398.164i − 0.852599i −0.904582 0.426299i \(-0.859817\pi\)
0.904582 0.426299i \(-0.140183\pi\)
\(468\) 0 0
\(469\) 35.1362 0.0749173
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 214.905i − 0.454345i
\(474\) 0 0
\(475\) 274.990 0.578925
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 823.897i − 1.72003i −0.510265 0.860017i \(-0.670453\pi\)
0.510265 0.860017i \(-0.329547\pi\)
\(480\) 0 0
\(481\) −916.544 −1.90550
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 97.6553i − 0.201351i
\(486\) 0 0
\(487\) −421.546 −0.865597 −0.432799 0.901491i \(-0.642474\pi\)
−0.432799 + 0.901491i \(0.642474\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 670.944i − 1.36648i −0.730192 0.683242i \(-0.760569\pi\)
0.730192 0.683242i \(-0.239431\pi\)
\(492\) 0 0
\(493\) 274.633 0.557066
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 164.314i 0.330613i
\(498\) 0 0
\(499\) 297.920 0.597033 0.298517 0.954404i \(-0.403508\pi\)
0.298517 + 0.954404i \(0.403508\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 272.635i − 0.542017i −0.962577 0.271008i \(-0.912643\pi\)
0.962577 0.271008i \(-0.0873571\pi\)
\(504\) 0 0
\(505\) −32.1767 −0.0637161
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 623.480i 1.22491i 0.790505 + 0.612456i \(0.209818\pi\)
−0.790505 + 0.612456i \(0.790182\pi\)
\(510\) 0 0
\(511\) −33.9449 −0.0664283
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 247.739i − 0.481047i
\(516\) 0 0
\(517\) 417.358 0.807269
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 630.152i − 1.20950i −0.796414 0.604752i \(-0.793272\pi\)
0.796414 0.604752i \(-0.206728\pi\)
\(522\) 0 0
\(523\) −692.429 −1.32396 −0.661978 0.749524i \(-0.730283\pi\)
−0.661978 + 0.749524i \(0.730283\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 323.968i − 0.614739i
\(528\) 0 0
\(529\) −1173.20 −2.21777
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1121.98i 2.10502i
\(534\) 0 0
\(535\) −100.386 −0.187637
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 36.9670i − 0.0685844i
\(540\) 0 0
\(541\) 983.219 1.81741 0.908706 0.417438i \(-0.137072\pi\)
0.908706 + 0.417438i \(0.137072\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 109.818i − 0.201501i
\(546\) 0 0
\(547\) 223.847 0.409226 0.204613 0.978843i \(-0.434406\pi\)
0.204613 + 0.978843i \(0.434406\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 466.000i 0.845734i
\(552\) 0 0
\(553\) 302.382 0.546803
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 734.687i 1.31901i 0.751701 + 0.659504i \(0.229234\pi\)
−0.751701 + 0.659504i \(0.770766\pi\)
\(558\) 0 0
\(559\) 709.679 1.26955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 489.532i − 0.869506i −0.900550 0.434753i \(-0.856836\pi\)
0.900550 0.434753i \(-0.143164\pi\)
\(564\) 0 0
\(565\) 307.760 0.544708
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 12.4640i − 0.0219051i −0.999940 0.0109525i \(-0.996514\pi\)
0.999940 0.0109525i \(-0.00348637\pi\)
\(570\) 0 0
\(571\) 625.809 1.09599 0.547994 0.836482i \(-0.315392\pi\)
0.547994 + 0.836482i \(0.315392\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 933.209i − 1.62297i
\(576\) 0 0
\(577\) 51.9185 0.0899801 0.0449900 0.998987i \(-0.485674\pi\)
0.0449900 + 0.998987i \(0.485674\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 113.215i − 0.194862i
\(582\) 0 0
\(583\) −466.878 −0.800820
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 411.295i 0.700672i 0.936624 + 0.350336i \(0.113933\pi\)
−0.936624 + 0.350336i \(0.886067\pi\)
\(588\) 0 0
\(589\) 549.710 0.933293
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 554.879i 0.935715i 0.883804 + 0.467858i \(0.154974\pi\)
−0.883804 + 0.467858i \(0.845026\pi\)
\(594\) 0 0
\(595\) 29.2509 0.0491611
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 408.418i − 0.681834i −0.940093 0.340917i \(-0.889263\pi\)
0.940093 0.340917i \(-0.110737\pi\)
\(600\) 0 0
\(601\) 105.962 0.176309 0.0881547 0.996107i \(-0.471903\pi\)
0.0881547 + 0.996107i \(0.471903\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 143.675i − 0.237479i
\(606\) 0 0
\(607\) 831.924 1.37055 0.685275 0.728284i \(-0.259682\pi\)
0.685275 + 0.728284i \(0.259682\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1378.24i 2.25571i
\(612\) 0 0
\(613\) −20.6017 −0.0336080 −0.0168040 0.999859i \(-0.505349\pi\)
−0.0168040 + 0.999859i \(0.505349\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 377.279i 0.611474i 0.952116 + 0.305737i \(0.0989027\pi\)
−0.952116 + 0.305737i \(0.901097\pi\)
\(618\) 0 0
\(619\) 770.486 1.24473 0.622364 0.782728i \(-0.286173\pi\)
0.622364 + 0.782728i \(0.286173\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 24.9107i − 0.0399850i
\(624\) 0 0
\(625\) 452.095 0.723351
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 376.558i 0.598662i
\(630\) 0 0
\(631\) 741.949 1.17583 0.587915 0.808923i \(-0.299949\pi\)
0.587915 + 0.808923i \(0.299949\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 246.504i − 0.388196i
\(636\) 0 0
\(637\) 122.076 0.191642
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 138.310i 0.215772i 0.994163 + 0.107886i \(0.0344082\pi\)
−0.994163 + 0.107886i \(0.965592\pi\)
\(642\) 0 0
\(643\) −1196.49 −1.86079 −0.930396 0.366556i \(-0.880537\pi\)
−0.930396 + 0.366556i \(0.880537\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 318.477i 0.492237i 0.969240 + 0.246118i \(0.0791552\pi\)
−0.969240 + 0.246118i \(0.920845\pi\)
\(648\) 0 0
\(649\) −209.524 −0.322841
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 223.357i − 0.342047i −0.985267 0.171023i \(-0.945293\pi\)
0.985267 0.171023i \(-0.0547074\pi\)
\(654\) 0 0
\(655\) 12.1848 0.0186027
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 218.539i 0.331622i 0.986158 + 0.165811i \(0.0530242\pi\)
−0.986158 + 0.165811i \(0.946976\pi\)
\(660\) 0 0
\(661\) 136.291 0.206189 0.103095 0.994672i \(-0.467126\pi\)
0.103095 + 0.994672i \(0.467126\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 49.6330i 0.0746361i
\(666\) 0 0
\(667\) 1581.42 2.37095
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 497.571i 0.741536i
\(672\) 0 0
\(673\) −486.602 −0.723034 −0.361517 0.932365i \(-0.617741\pi\)
−0.361517 + 0.932365i \(0.617741\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 164.519i 0.243012i 0.992591 + 0.121506i \(0.0387724\pi\)
−0.992591 + 0.121506i \(0.961228\pi\)
\(678\) 0 0
\(679\) −167.442 −0.246602
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 1165.64i − 1.70664i −0.521385 0.853322i \(-0.674584\pi\)
0.521385 0.853322i \(-0.325416\pi\)
\(684\) 0 0
\(685\) −122.679 −0.179094
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1541.77i − 2.23769i
\(690\) 0 0
\(691\) −972.997 −1.40810 −0.704050 0.710150i \(-0.748627\pi\)
−0.704050 + 0.710150i \(0.748627\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 316.780i − 0.455798i
\(696\) 0 0
\(697\) 460.959 0.661347
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 912.244i − 1.30135i −0.759358 0.650674i \(-0.774487\pi\)
0.759358 0.650674i \(-0.225513\pi\)
\(702\) 0 0
\(703\) −638.946 −0.908885
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 55.1710i 0.0780353i
\(708\) 0 0
\(709\) −20.6221 −0.0290862 −0.0145431 0.999894i \(-0.504629\pi\)
−0.0145431 + 0.999894i \(0.504629\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 1865.50i − 2.61642i
\(714\) 0 0
\(715\) −142.111 −0.198756
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1172.99i 1.63142i 0.578461 + 0.815710i \(0.303653\pi\)
−0.578461 + 0.815710i \(0.696347\pi\)
\(720\) 0 0
\(721\) −424.780 −0.589154
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 866.995i 1.19585i
\(726\) 0 0
\(727\) −309.756 −0.426075 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 291.569i − 0.398863i
\(732\) 0 0
\(733\) 525.414 0.716800 0.358400 0.933568i \(-0.383322\pi\)
0.358400 + 0.933568i \(0.383322\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 70.1329i 0.0951600i
\(738\) 0 0
\(739\) −942.991 −1.27604 −0.638018 0.770021i \(-0.720246\pi\)
−0.638018 + 0.770021i \(0.720246\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1425.24i 1.91822i 0.283027 + 0.959112i \(0.408661\pi\)
−0.283027 + 0.959112i \(0.591339\pi\)
\(744\) 0 0
\(745\) −180.085 −0.241725
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 172.124i 0.229805i
\(750\) 0 0
\(751\) −1239.56 −1.65055 −0.825276 0.564730i \(-0.808980\pi\)
−0.825276 + 0.564730i \(0.808980\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 37.1690i 0.0492305i
\(756\) 0 0
\(757\) 670.688 0.885981 0.442991 0.896526i \(-0.353917\pi\)
0.442991 + 0.896526i \(0.353917\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 705.573i − 0.927166i −0.886054 0.463583i \(-0.846564\pi\)
0.886054 0.463583i \(-0.153436\pi\)
\(762\) 0 0
\(763\) −188.297 −0.246785
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 691.910i − 0.902099i
\(768\) 0 0
\(769\) 230.155 0.299292 0.149646 0.988740i \(-0.452187\pi\)
0.149646 + 0.988740i \(0.452187\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1448.15i − 1.87342i −0.350113 0.936708i \(-0.613857\pi\)
0.350113 0.936708i \(-0.386143\pi\)
\(774\) 0 0
\(775\) 1022.74 1.31966
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 782.158i 1.00405i
\(780\) 0 0
\(781\) −327.977 −0.419944
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 454.559i 0.579056i
\(786\) 0 0
\(787\) −1302.64 −1.65520 −0.827600 0.561318i \(-0.810294\pi\)
−0.827600 + 0.561318i \(0.810294\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 527.694i − 0.667123i
\(792\) 0 0
\(793\) −1643.12 −2.07204
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 322.552i 0.404707i 0.979313 + 0.202354i \(0.0648590\pi\)
−0.979313 + 0.202354i \(0.935141\pi\)
\(798\) 0 0
\(799\) 566.243 0.708690
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 67.7549i − 0.0843773i
\(804\) 0 0
\(805\) 168.436 0.209237
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1351.66i 1.67078i 0.549658 + 0.835390i \(0.314758\pi\)
−0.549658 + 0.835390i \(0.685242\pi\)
\(810\) 0 0
\(811\) 780.010 0.961789 0.480894 0.876779i \(-0.340312\pi\)
0.480894 + 0.876779i \(0.340312\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 319.267i − 0.391738i
\(816\) 0 0
\(817\) 494.736 0.605552
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1622.00i 1.97563i 0.155621 + 0.987817i \(0.450262\pi\)
−0.155621 + 0.987817i \(0.549738\pi\)
\(822\) 0 0
\(823\) −1349.34 −1.63954 −0.819770 0.572693i \(-0.805899\pi\)
−0.819770 + 0.572693i \(0.805899\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 922.170i − 1.11508i −0.830150 0.557539i \(-0.811746\pi\)
0.830150 0.557539i \(-0.188254\pi\)
\(828\) 0 0
\(829\) 408.532 0.492801 0.246401 0.969168i \(-0.420752\pi\)
0.246401 + 0.969168i \(0.420752\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 50.1544i − 0.0602093i
\(834\) 0 0
\(835\) −31.1228 −0.0372728
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 39.9837i − 0.0476564i −0.999716 0.0238282i \(-0.992415\pi\)
0.999716 0.0238282i \(-0.00758547\pi\)
\(840\) 0 0
\(841\) −628.216 −0.746987
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 208.516i − 0.246765i
\(846\) 0 0
\(847\) −246.349 −0.290848
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2168.34i 2.54799i
\(852\) 0 0
\(853\) 825.840 0.968159 0.484080 0.875024i \(-0.339154\pi\)
0.484080 + 0.875024i \(0.339154\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1679.49i − 1.95973i −0.199653 0.979867i \(-0.563981\pi\)
0.199653 0.979867i \(-0.436019\pi\)
\(858\) 0 0
\(859\) −131.762 −0.153390 −0.0766949 0.997055i \(-0.524437\pi\)
−0.0766949 + 0.997055i \(0.524437\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 905.936i − 1.04975i −0.851179 0.524876i \(-0.824112\pi\)
0.851179 0.524876i \(-0.175888\pi\)
\(864\) 0 0
\(865\) −297.697 −0.344158
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 603.564i 0.694550i
\(870\) 0 0
\(871\) −231.599 −0.265901
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 194.405i 0.222178i
\(876\) 0 0
\(877\) −238.592 −0.272055 −0.136028 0.990705i \(-0.543434\pi\)
−0.136028 + 0.990705i \(0.543434\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 511.426i 0.580506i 0.956950 + 0.290253i \(0.0937394\pi\)
−0.956950 + 0.290253i \(0.906261\pi\)
\(882\) 0 0
\(883\) 735.153 0.832563 0.416281 0.909236i \(-0.363333\pi\)
0.416281 + 0.909236i \(0.363333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1593.66i 1.79669i 0.439295 + 0.898343i \(0.355228\pi\)
−0.439295 + 0.898343i \(0.644772\pi\)
\(888\) 0 0
\(889\) −422.663 −0.475437
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 960.805i 1.07593i
\(894\) 0 0
\(895\) −251.130 −0.280592
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1733.14i 1.92785i
\(900\) 0 0
\(901\) −633.429 −0.703029
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 507.248i 0.560495i
\(906\) 0 0
\(907\) 421.538 0.464761 0.232380 0.972625i \(-0.425349\pi\)
0.232380 + 0.972625i \(0.425349\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1025.61i 1.12581i 0.826522 + 0.562904i \(0.190316\pi\)
−0.826522 + 0.562904i \(0.809684\pi\)
\(912\) 0 0
\(913\) 225.981 0.247514
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 20.8923i − 0.0227834i
\(918\) 0 0
\(919\) −601.821 −0.654865 −0.327432 0.944875i \(-0.606183\pi\)
−0.327432 + 0.944875i \(0.606183\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1083.07i − 1.17343i
\(924\) 0 0
\(925\) −1188.76 −1.28515
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 291.928i − 0.314239i −0.987580 0.157120i \(-0.949779\pi\)
0.987580 0.157120i \(-0.0502208\pi\)
\(930\) 0 0
\(931\) 85.1022 0.0914094
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 58.3856i 0.0624445i
\(936\) 0 0
\(937\) −831.922 −0.887857 −0.443929 0.896062i \(-0.646416\pi\)
−0.443929 + 0.896062i \(0.646416\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 537.447i 0.571144i 0.958357 + 0.285572i \(0.0921836\pi\)
−0.958357 + 0.285572i \(0.907816\pi\)
\(942\) 0 0
\(943\) 2654.34 2.81479
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 461.676i − 0.487514i −0.969836 0.243757i \(-0.921620\pi\)
0.969836 0.243757i \(-0.0783800\pi\)
\(948\) 0 0
\(949\) 223.747 0.235771
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 379.663i 0.398387i 0.979960 + 0.199193i \(0.0638322\pi\)
−0.979960 + 0.199193i \(0.936168\pi\)
\(954\) 0 0
\(955\) −380.944 −0.398894
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 210.349i 0.219342i
\(960\) 0 0
\(961\) 1083.47 1.12744
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 460.874i − 0.477590i
\(966\) 0 0
\(967\) −382.730 −0.395791 −0.197896 0.980223i \(-0.563411\pi\)
−0.197896 + 0.980223i \(0.563411\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 812.948i − 0.837227i −0.908164 0.418614i \(-0.862516\pi\)
0.908164 0.418614i \(-0.137484\pi\)
\(972\) 0 0
\(973\) −543.159 −0.558232
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 810.148i 0.829220i 0.909999 + 0.414610i \(0.136082\pi\)
−0.909999 + 0.414610i \(0.863918\pi\)
\(978\) 0 0
\(979\) 49.7224 0.0507890
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 519.397i 0.528379i 0.964471 + 0.264190i \(0.0851045\pi\)
−0.964471 + 0.264190i \(0.914896\pi\)
\(984\) 0 0
\(985\) −144.749 −0.146953
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1678.94i − 1.69762i
\(990\) 0 0
\(991\) −1240.08 −1.25134 −0.625669 0.780089i \(-0.715174\pi\)
−0.625669 + 0.780089i \(0.715174\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 244.703i 0.245933i
\(996\) 0 0
\(997\) 647.369 0.649317 0.324658 0.945831i \(-0.394751\pi\)
0.324658 + 0.945831i \(0.394751\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.3.d.o.449.6 12
3.2 odd 2 inner 4032.3.d.o.449.7 12
4.3 odd 2 4032.3.d.n.449.6 12
8.3 odd 2 2016.3.d.f.449.7 yes 12
8.5 even 2 2016.3.d.e.449.7 yes 12
12.11 even 2 4032.3.d.n.449.7 12
24.5 odd 2 2016.3.d.e.449.6 12
24.11 even 2 2016.3.d.f.449.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.3.d.e.449.6 12 24.5 odd 2
2016.3.d.e.449.7 yes 12 8.5 even 2
2016.3.d.f.449.6 yes 12 24.11 even 2
2016.3.d.f.449.7 yes 12 8.3 odd 2
4032.3.d.n.449.6 12 4.3 odd 2
4032.3.d.n.449.7 12 12.11 even 2
4032.3.d.o.449.6 12 1.1 even 1 trivial
4032.3.d.o.449.7 12 3.2 odd 2 inner