Properties

Label 4032.3.d.n.449.9
Level $4032$
Weight $3$
Character 4032.449
Analytic conductor $109.864$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,3,Mod(449,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(109.864042590\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44x^{10} + 719x^{8} + 5356x^{6} + 17809x^{4} + 20000x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 2016)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.9
Root \(-3.75209i\) of defining polynomial
Character \(\chi\) \(=\) 4032.449
Dual form 4032.3.d.n.449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.85589i q^{5} +2.64575 q^{7} +6.89341i q^{11} -20.9186 q^{13} +3.42256i q^{17} -11.1466 q^{19} +25.1631i q^{23} +10.1321 q^{25} -0.948063i q^{29} +6.63987 q^{31} +10.2017i q^{35} -5.63459 q^{37} +30.2404i q^{41} +16.6926 q^{43} -9.40243i q^{47} +7.00000 q^{49} -44.4345i q^{53} -26.5802 q^{55} +52.2908i q^{59} -48.5469 q^{61} -80.6599i q^{65} -63.5263 q^{67} -35.6768i q^{71} +19.4279 q^{73} +18.2382i q^{77} -152.405 q^{79} -97.7442i q^{83} -13.1970 q^{85} -99.3657i q^{89} -55.3454 q^{91} -42.9803i q^{95} +133.405 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{13} - 64 q^{19} - 124 q^{25} + 160 q^{31} - 56 q^{37} + 64 q^{43} + 84 q^{49} - 160 q^{55} - 104 q^{61} + 64 q^{67} - 64 q^{73} + 32 q^{79} + 184 q^{85} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.85589i 0.771179i 0.922670 + 0.385589i \(0.126002\pi\)
−0.922670 + 0.385589i \(0.873998\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.89341i 0.626673i 0.949642 + 0.313337i \(0.101447\pi\)
−0.949642 + 0.313337i \(0.898553\pi\)
\(12\) 0 0
\(13\) −20.9186 −1.60912 −0.804562 0.593869i \(-0.797600\pi\)
−0.804562 + 0.593869i \(0.797600\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.42256i 0.201327i 0.994921 + 0.100664i \(0.0320966\pi\)
−0.994921 + 0.100664i \(0.967903\pi\)
\(18\) 0 0
\(19\) −11.1466 −0.586666 −0.293333 0.956010i \(-0.594764\pi\)
−0.293333 + 0.956010i \(0.594764\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.1631i 1.09405i 0.837117 + 0.547023i \(0.184239\pi\)
−0.837117 + 0.547023i \(0.815761\pi\)
\(24\) 0 0
\(25\) 10.1321 0.405283
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 0.948063i − 0.0326918i −0.999866 0.0163459i \(-0.994797\pi\)
0.999866 0.0163459i \(-0.00520330\pi\)
\(30\) 0 0
\(31\) 6.63987 0.214189 0.107095 0.994249i \(-0.465845\pi\)
0.107095 + 0.994249i \(0.465845\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.2017i 0.291478i
\(36\) 0 0
\(37\) −5.63459 −0.152286 −0.0761430 0.997097i \(-0.524261\pi\)
−0.0761430 + 0.997097i \(0.524261\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 30.2404i 0.737570i 0.929515 + 0.368785i \(0.120226\pi\)
−0.929515 + 0.368785i \(0.879774\pi\)
\(42\) 0 0
\(43\) 16.6926 0.388201 0.194100 0.980982i \(-0.437821\pi\)
0.194100 + 0.980982i \(0.437821\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.40243i − 0.200052i −0.994985 0.100026i \(-0.968107\pi\)
0.994985 0.100026i \(-0.0318925\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 44.4345i − 0.838387i −0.907897 0.419194i \(-0.862313\pi\)
0.907897 0.419194i \(-0.137687\pi\)
\(54\) 0 0
\(55\) −26.5802 −0.483277
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 52.2908i 0.886285i 0.896451 + 0.443143i \(0.146137\pi\)
−0.896451 + 0.443143i \(0.853863\pi\)
\(60\) 0 0
\(61\) −48.5469 −0.795852 −0.397926 0.917418i \(-0.630270\pi\)
−0.397926 + 0.917418i \(0.630270\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 80.6599i − 1.24092i
\(66\) 0 0
\(67\) −63.5263 −0.948154 −0.474077 0.880483i \(-0.657218\pi\)
−0.474077 + 0.880483i \(0.657218\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 35.6768i − 0.502490i −0.967924 0.251245i \(-0.919160\pi\)
0.967924 0.251245i \(-0.0808400\pi\)
\(72\) 0 0
\(73\) 19.4279 0.266135 0.133068 0.991107i \(-0.457517\pi\)
0.133068 + 0.991107i \(0.457517\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.2382i 0.236860i
\(78\) 0 0
\(79\) −152.405 −1.92918 −0.964588 0.263760i \(-0.915037\pi\)
−0.964588 + 0.263760i \(0.915037\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 97.7442i − 1.17764i −0.808264 0.588821i \(-0.799592\pi\)
0.808264 0.588821i \(-0.200408\pi\)
\(84\) 0 0
\(85\) −13.1970 −0.155259
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 99.3657i − 1.11647i −0.829684 0.558234i \(-0.811479\pi\)
0.829684 0.558234i \(-0.188521\pi\)
\(90\) 0 0
\(91\) −55.3454 −0.608192
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 42.9803i − 0.452424i
\(96\) 0 0
\(97\) 133.405 1.37531 0.687657 0.726036i \(-0.258639\pi\)
0.687657 + 0.726036i \(0.258639\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 161.774i 1.60172i 0.598852 + 0.800860i \(0.295624\pi\)
−0.598852 + 0.800860i \(0.704376\pi\)
\(102\) 0 0
\(103\) 88.2106 0.856414 0.428207 0.903681i \(-0.359145\pi\)
0.428207 + 0.903681i \(0.359145\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 128.321i − 1.19926i −0.800276 0.599632i \(-0.795314\pi\)
0.800276 0.599632i \(-0.204686\pi\)
\(108\) 0 0
\(109\) −158.797 −1.45686 −0.728429 0.685122i \(-0.759749\pi\)
−0.728429 + 0.685122i \(0.759749\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 9.63061i − 0.0852266i −0.999092 0.0426133i \(-0.986432\pi\)
0.999092 0.0426133i \(-0.0135684\pi\)
\(114\) 0 0
\(115\) −97.0261 −0.843705
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.05525i 0.0760946i
\(120\) 0 0
\(121\) 73.4809 0.607280
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 135.466i 1.08372i
\(126\) 0 0
\(127\) −187.202 −1.47403 −0.737017 0.675875i \(-0.763766\pi\)
−0.737017 + 0.675875i \(0.763766\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 103.874i − 0.792928i −0.918050 0.396464i \(-0.870237\pi\)
0.918050 0.396464i \(-0.129763\pi\)
\(132\) 0 0
\(133\) −29.4913 −0.221739
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 198.199i − 1.44671i −0.690476 0.723356i \(-0.742599\pi\)
0.690476 0.723356i \(-0.257401\pi\)
\(138\) 0 0
\(139\) 59.7079 0.429554 0.214777 0.976663i \(-0.431098\pi\)
0.214777 + 0.976663i \(0.431098\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 144.200i − 1.00839i
\(144\) 0 0
\(145\) 3.65563 0.0252112
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 56.1968i 0.377160i 0.982058 + 0.188580i \(0.0603884\pi\)
−0.982058 + 0.188580i \(0.939612\pi\)
\(150\) 0 0
\(151\) 8.98303 0.0594903 0.0297451 0.999558i \(-0.490530\pi\)
0.0297451 + 0.999558i \(0.490530\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 25.6026i 0.165178i
\(156\) 0 0
\(157\) 13.3517 0.0850424 0.0425212 0.999096i \(-0.486461\pi\)
0.0425212 + 0.999096i \(0.486461\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 66.5752i 0.413511i
\(162\) 0 0
\(163\) −136.711 −0.838715 −0.419358 0.907821i \(-0.637745\pi\)
−0.419358 + 0.907821i \(0.637745\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 45.5297i − 0.272633i −0.990665 0.136316i \(-0.956474\pi\)
0.990665 0.136316i \(-0.0435264\pi\)
\(168\) 0 0
\(169\) 268.588 1.58928
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 38.8939i 0.224820i 0.993662 + 0.112410i \(0.0358570\pi\)
−0.993662 + 0.112410i \(0.964143\pi\)
\(174\) 0 0
\(175\) 26.8070 0.153183
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 68.6751i 0.383660i 0.981428 + 0.191830i \(0.0614422\pi\)
−0.981428 + 0.191830i \(0.938558\pi\)
\(180\) 0 0
\(181\) 104.985 0.580026 0.290013 0.957023i \(-0.406340\pi\)
0.290013 + 0.957023i \(0.406340\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 21.7264i − 0.117440i
\(186\) 0 0
\(187\) −23.5931 −0.126166
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 43.1970i − 0.226162i −0.993586 0.113081i \(-0.963928\pi\)
0.993586 0.113081i \(-0.0360720\pi\)
\(192\) 0 0
\(193\) −92.0404 −0.476893 −0.238447 0.971156i \(-0.576638\pi\)
−0.238447 + 0.971156i \(0.576638\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 86.2740i 0.437939i 0.975732 + 0.218969i \(0.0702695\pi\)
−0.975732 + 0.218969i \(0.929730\pi\)
\(198\) 0 0
\(199\) −3.93405 −0.0197691 −0.00988456 0.999951i \(-0.503146\pi\)
−0.00988456 + 0.999951i \(0.503146\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 2.50834i − 0.0123563i
\(204\) 0 0
\(205\) −116.604 −0.568798
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 76.8384i − 0.367648i
\(210\) 0 0
\(211\) 94.1420 0.446171 0.223085 0.974799i \(-0.428387\pi\)
0.223085 + 0.974799i \(0.428387\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 64.3650i 0.299372i
\(216\) 0 0
\(217\) 17.5675 0.0809560
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 71.5953i − 0.323961i
\(222\) 0 0
\(223\) 149.630 0.670986 0.335493 0.942043i \(-0.391097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 24.5021i − 0.107939i −0.998543 0.0539693i \(-0.982813\pi\)
0.998543 0.0539693i \(-0.0171873\pi\)
\(228\) 0 0
\(229\) −335.268 −1.46405 −0.732027 0.681276i \(-0.761425\pi\)
−0.732027 + 0.681276i \(0.761425\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 60.9364i − 0.261530i −0.991413 0.130765i \(-0.958257\pi\)
0.991413 0.130765i \(-0.0417433\pi\)
\(234\) 0 0
\(235\) 36.2548 0.154276
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 319.472i − 1.33670i −0.743846 0.668351i \(-0.767000\pi\)
0.743846 0.668351i \(-0.233000\pi\)
\(240\) 0 0
\(241\) 274.230 1.13789 0.568943 0.822377i \(-0.307353\pi\)
0.568943 + 0.822377i \(0.307353\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 26.9913i 0.110168i
\(246\) 0 0
\(247\) 233.172 0.944017
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 455.650i − 1.81534i −0.419687 0.907669i \(-0.637860\pi\)
0.419687 0.907669i \(-0.362140\pi\)
\(252\) 0 0
\(253\) −173.459 −0.685610
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 86.2818i 0.335727i 0.985810 + 0.167863i \(0.0536868\pi\)
−0.985810 + 0.167863i \(0.946313\pi\)
\(258\) 0 0
\(259\) −14.9077 −0.0575587
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 290.234i − 1.10355i −0.833992 0.551776i \(-0.813950\pi\)
0.833992 0.551776i \(-0.186050\pi\)
\(264\) 0 0
\(265\) 171.335 0.646546
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 309.859i 1.15189i 0.817488 + 0.575945i \(0.195366\pi\)
−0.817488 + 0.575945i \(0.804634\pi\)
\(270\) 0 0
\(271\) −475.422 −1.75432 −0.877162 0.480195i \(-0.840566\pi\)
−0.877162 + 0.480195i \(0.840566\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 69.8446i 0.253980i
\(276\) 0 0
\(277\) −399.021 −1.44051 −0.720254 0.693710i \(-0.755975\pi\)
−0.720254 + 0.693710i \(0.755975\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 57.9182i − 0.206115i −0.994675 0.103057i \(-0.967137\pi\)
0.994675 0.103057i \(-0.0328625\pi\)
\(282\) 0 0
\(283\) 187.466 0.662423 0.331211 0.943557i \(-0.392543\pi\)
0.331211 + 0.943557i \(0.392543\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 80.0085i 0.278775i
\(288\) 0 0
\(289\) 277.286 0.959467
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 59.4001i 0.202731i 0.994849 + 0.101365i \(0.0323211\pi\)
−0.994849 + 0.101365i \(0.967679\pi\)
\(294\) 0 0
\(295\) −201.628 −0.683485
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 526.376i − 1.76046i
\(300\) 0 0
\(301\) 44.1646 0.146726
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 187.192i − 0.613744i
\(306\) 0 0
\(307\) −230.365 −0.750374 −0.375187 0.926949i \(-0.622421\pi\)
−0.375187 + 0.926949i \(0.622421\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 285.635i − 0.918440i −0.888323 0.459220i \(-0.848129\pi\)
0.888323 0.459220i \(-0.151871\pi\)
\(312\) 0 0
\(313\) −158.225 −0.505513 −0.252756 0.967530i \(-0.581337\pi\)
−0.252756 + 0.967530i \(0.581337\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 398.409i − 1.25681i −0.777887 0.628405i \(-0.783708\pi\)
0.777887 0.628405i \(-0.216292\pi\)
\(318\) 0 0
\(319\) 6.53538 0.0204871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 38.1501i − 0.118112i
\(324\) 0 0
\(325\) −211.949 −0.652151
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 24.8765i − 0.0756124i
\(330\) 0 0
\(331\) −625.718 −1.89039 −0.945193 0.326511i \(-0.894127\pi\)
−0.945193 + 0.326511i \(0.894127\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 244.951i − 0.731196i
\(336\) 0 0
\(337\) −62.6776 −0.185987 −0.0929934 0.995667i \(-0.529644\pi\)
−0.0929934 + 0.995667i \(0.529644\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 45.7713i 0.134227i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 470.894i − 1.35704i −0.734580 0.678522i \(-0.762621\pi\)
0.734580 0.678522i \(-0.237379\pi\)
\(348\) 0 0
\(349\) −99.3869 −0.284776 −0.142388 0.989811i \(-0.545478\pi\)
−0.142388 + 0.989811i \(0.545478\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 606.481i 1.71808i 0.511911 + 0.859039i \(0.328938\pi\)
−0.511911 + 0.859039i \(0.671062\pi\)
\(354\) 0 0
\(355\) 137.566 0.387510
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 572.425i − 1.59450i −0.603651 0.797249i \(-0.706288\pi\)
0.603651 0.797249i \(-0.293712\pi\)
\(360\) 0 0
\(361\) −236.752 −0.655823
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 74.9118i 0.205238i
\(366\) 0 0
\(367\) −384.530 −1.04777 −0.523883 0.851790i \(-0.675517\pi\)
−0.523883 + 0.851790i \(0.675517\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 117.563i − 0.316881i
\(372\) 0 0
\(373\) 579.800 1.55442 0.777212 0.629239i \(-0.216633\pi\)
0.777212 + 0.629239i \(0.216633\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.8322i 0.0526052i
\(378\) 0 0
\(379\) −128.966 −0.340280 −0.170140 0.985420i \(-0.554422\pi\)
−0.170140 + 0.985420i \(0.554422\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 525.916i 1.37315i 0.727059 + 0.686575i \(0.240887\pi\)
−0.727059 + 0.686575i \(0.759113\pi\)
\(384\) 0 0
\(385\) −70.3247 −0.182662
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 134.120i − 0.344781i −0.985029 0.172391i \(-0.944851\pi\)
0.985029 0.172391i \(-0.0551491\pi\)
\(390\) 0 0
\(391\) −86.1222 −0.220261
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 587.657i − 1.48774i
\(396\) 0 0
\(397\) 275.606 0.694222 0.347111 0.937824i \(-0.387163\pi\)
0.347111 + 0.937824i \(0.387163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 387.895i − 0.967320i −0.875256 0.483660i \(-0.839307\pi\)
0.875256 0.483660i \(-0.160693\pi\)
\(402\) 0 0
\(403\) −138.897 −0.344657
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 38.8415i − 0.0954336i
\(408\) 0 0
\(409\) −261.605 −0.639622 −0.319811 0.947481i \(-0.603619\pi\)
−0.319811 + 0.947481i \(0.603619\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 138.349i 0.334984i
\(414\) 0 0
\(415\) 376.891 0.908172
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 345.798i 0.825293i 0.910891 + 0.412646i \(0.135395\pi\)
−0.910891 + 0.412646i \(0.864605\pi\)
\(420\) 0 0
\(421\) 484.947 1.15189 0.575947 0.817487i \(-0.304633\pi\)
0.575947 + 0.817487i \(0.304633\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 34.6777i 0.0815946i
\(426\) 0 0
\(427\) −128.443 −0.300804
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 727.249i − 1.68735i −0.536851 0.843677i \(-0.680386\pi\)
0.536851 0.843677i \(-0.319614\pi\)
\(432\) 0 0
\(433\) −211.148 −0.487640 −0.243820 0.969821i \(-0.578401\pi\)
−0.243820 + 0.969821i \(0.578401\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 280.484i − 0.641840i
\(438\) 0 0
\(439\) −759.909 −1.73100 −0.865500 0.500908i \(-0.832999\pi\)
−0.865500 + 0.500908i \(0.832999\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 121.346i 0.273919i 0.990577 + 0.136959i \(0.0437330\pi\)
−0.990577 + 0.136959i \(0.956267\pi\)
\(444\) 0 0
\(445\) 383.143 0.860996
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 409.519i − 0.912068i −0.889962 0.456034i \(-0.849270\pi\)
0.889962 0.456034i \(-0.150730\pi\)
\(450\) 0 0
\(451\) −208.459 −0.462215
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 213.406i − 0.469024i
\(456\) 0 0
\(457\) 375.001 0.820570 0.410285 0.911957i \(-0.365429\pi\)
0.410285 + 0.911957i \(0.365429\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 713.233i − 1.54714i −0.633709 0.773571i \(-0.718468\pi\)
0.633709 0.773571i \(-0.281532\pi\)
\(462\) 0 0
\(463\) −642.413 −1.38750 −0.693751 0.720215i \(-0.744043\pi\)
−0.693751 + 0.720215i \(0.744043\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 251.943i − 0.539492i −0.962932 0.269746i \(-0.913060\pi\)
0.962932 0.269746i \(-0.0869397\pi\)
\(468\) 0 0
\(469\) −168.075 −0.358369
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 115.069i 0.243275i
\(474\) 0 0
\(475\) −112.939 −0.237766
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 174.575i − 0.364458i −0.983256 0.182229i \(-0.941669\pi\)
0.983256 0.182229i \(-0.0583312\pi\)
\(480\) 0 0
\(481\) 117.868 0.245047
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 514.397i 1.06061i
\(486\) 0 0
\(487\) 169.624 0.348304 0.174152 0.984719i \(-0.444282\pi\)
0.174152 + 0.984719i \(0.444282\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 56.9134i 0.115913i 0.998319 + 0.0579566i \(0.0184585\pi\)
−0.998319 + 0.0579566i \(0.981541\pi\)
\(492\) 0 0
\(493\) 3.24481 0.00658176
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 94.3919i − 0.189923i
\(498\) 0 0
\(499\) −21.0923 −0.0422691 −0.0211345 0.999777i \(-0.506728\pi\)
−0.0211345 + 0.999777i \(0.506728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 420.228i 0.835444i 0.908575 + 0.417722i \(0.137171\pi\)
−0.908575 + 0.417722i \(0.862829\pi\)
\(504\) 0 0
\(505\) −623.782 −1.23521
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 242.312i 0.476055i 0.971258 + 0.238028i \(0.0765009\pi\)
−0.971258 + 0.238028i \(0.923499\pi\)
\(510\) 0 0
\(511\) 51.4013 0.100590
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 340.131i 0.660448i
\(516\) 0 0
\(517\) 64.8148 0.125367
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 52.9968i 0.101721i 0.998706 + 0.0508607i \(0.0161965\pi\)
−0.998706 + 0.0508607i \(0.983804\pi\)
\(522\) 0 0
\(523\) 136.510 0.261013 0.130506 0.991447i \(-0.458340\pi\)
0.130506 + 0.991447i \(0.458340\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.7254i 0.0431222i
\(528\) 0 0
\(529\) −104.180 −0.196938
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 632.586i − 1.18684i
\(534\) 0 0
\(535\) 494.793 0.924847
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 48.2538i 0.0895248i
\(540\) 0 0
\(541\) 305.615 0.564908 0.282454 0.959281i \(-0.408852\pi\)
0.282454 + 0.959281i \(0.408852\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 612.306i − 1.12350i
\(546\) 0 0
\(547\) 102.020 0.186508 0.0932542 0.995642i \(-0.470273\pi\)
0.0932542 + 0.995642i \(0.470273\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.5677i 0.0191792i
\(552\) 0 0
\(553\) −403.226 −0.729160
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 403.429i 0.724289i 0.932122 + 0.362145i \(0.117955\pi\)
−0.932122 + 0.362145i \(0.882045\pi\)
\(558\) 0 0
\(559\) −349.187 −0.624663
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 813.539i 1.44501i 0.691367 + 0.722503i \(0.257009\pi\)
−0.691367 + 0.722503i \(0.742991\pi\)
\(564\) 0 0
\(565\) 37.1346 0.0657250
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1045.50i 1.83743i 0.394923 + 0.918714i \(0.370771\pi\)
−0.394923 + 0.918714i \(0.629229\pi\)
\(570\) 0 0
\(571\) −939.318 −1.64504 −0.822521 0.568735i \(-0.807433\pi\)
−0.822521 + 0.568735i \(0.807433\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 254.954i 0.443399i
\(576\) 0 0
\(577\) −456.546 −0.791241 −0.395620 0.918414i \(-0.629470\pi\)
−0.395620 + 0.918414i \(0.629470\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 258.607i − 0.445107i
\(582\) 0 0
\(583\) 306.305 0.525395
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 555.407i − 0.946178i −0.881015 0.473089i \(-0.843139\pi\)
0.881015 0.473089i \(-0.156861\pi\)
\(588\) 0 0
\(589\) −74.0123 −0.125658
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 506.971i 0.854925i 0.904033 + 0.427463i \(0.140592\pi\)
−0.904033 + 0.427463i \(0.859408\pi\)
\(594\) 0 0
\(595\) −34.9161 −0.0586825
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 730.835i 1.22009i 0.792366 + 0.610046i \(0.208849\pi\)
−0.792366 + 0.610046i \(0.791151\pi\)
\(600\) 0 0
\(601\) −196.232 −0.326510 −0.163255 0.986584i \(-0.552199\pi\)
−0.163255 + 0.986584i \(0.552199\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 283.335i 0.468322i
\(606\) 0 0
\(607\) −655.779 −1.08036 −0.540180 0.841549i \(-0.681644\pi\)
−0.540180 + 0.841549i \(0.681644\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 196.686i 0.321908i
\(612\) 0 0
\(613\) 341.221 0.556641 0.278320 0.960488i \(-0.410222\pi\)
0.278320 + 0.960488i \(0.410222\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 246.010i 0.398720i 0.979926 + 0.199360i \(0.0638863\pi\)
−0.979926 + 0.199360i \(0.936114\pi\)
\(618\) 0 0
\(619\) −760.921 −1.22928 −0.614638 0.788810i \(-0.710698\pi\)
−0.614638 + 0.788810i \(0.710698\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 262.897i − 0.421985i
\(624\) 0 0
\(625\) −269.039 −0.430462
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 19.2847i − 0.0306594i
\(630\) 0 0
\(631\) 70.2909 0.111396 0.0556980 0.998448i \(-0.482262\pi\)
0.0556980 + 0.998448i \(0.482262\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 721.832i − 1.13674i
\(636\) 0 0
\(637\) −146.430 −0.229875
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1116.18i 1.74130i 0.491900 + 0.870652i \(0.336303\pi\)
−0.491900 + 0.870652i \(0.663697\pi\)
\(642\) 0 0
\(643\) 513.359 0.798381 0.399191 0.916868i \(-0.369291\pi\)
0.399191 + 0.916868i \(0.369291\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 249.620i − 0.385812i −0.981217 0.192906i \(-0.938209\pi\)
0.981217 0.192906i \(-0.0617912\pi\)
\(648\) 0 0
\(649\) −360.462 −0.555412
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 916.213i − 1.40308i −0.712629 0.701541i \(-0.752496\pi\)
0.712629 0.701541i \(-0.247504\pi\)
\(654\) 0 0
\(655\) 400.525 0.611489
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 1080.96i − 1.64030i −0.572149 0.820149i \(-0.693890\pi\)
0.572149 0.820149i \(-0.306110\pi\)
\(660\) 0 0
\(661\) 449.943 0.680701 0.340350 0.940299i \(-0.389454\pi\)
0.340350 + 0.940299i \(0.389454\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 113.715i − 0.171000i
\(666\) 0 0
\(667\) 23.8562 0.0357664
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 334.654i − 0.498739i
\(672\) 0 0
\(673\) −614.341 −0.912840 −0.456420 0.889764i \(-0.650869\pi\)
−0.456420 + 0.889764i \(0.650869\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 211.920i − 0.313029i −0.987676 0.156514i \(-0.949974\pi\)
0.987676 0.156514i \(-0.0500258\pi\)
\(678\) 0 0
\(679\) 352.957 0.519820
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 816.178i 1.19499i 0.801873 + 0.597495i \(0.203837\pi\)
−0.801873 + 0.597495i \(0.796163\pi\)
\(684\) 0 0
\(685\) 764.236 1.11567
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 929.508i 1.34907i
\(690\) 0 0
\(691\) 1070.12 1.54866 0.774330 0.632782i \(-0.218087\pi\)
0.774330 + 0.632782i \(0.218087\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 230.227i 0.331263i
\(696\) 0 0
\(697\) −103.500 −0.148493
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 600.000i − 0.855920i −0.903798 0.427960i \(-0.859232\pi\)
0.903798 0.427960i \(-0.140768\pi\)
\(702\) 0 0
\(703\) 62.8067 0.0893410
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 428.013i 0.605393i
\(708\) 0 0
\(709\) 911.547 1.28568 0.642840 0.766001i \(-0.277756\pi\)
0.642840 + 0.766001i \(0.277756\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 167.080i 0.234333i
\(714\) 0 0
\(715\) 556.022 0.777653
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 515.213i − 0.716569i −0.933612 0.358284i \(-0.883362\pi\)
0.933612 0.358284i \(-0.116638\pi\)
\(720\) 0 0
\(721\) 233.383 0.323694
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 9.60586i − 0.0132495i
\(726\) 0 0
\(727\) −1223.59 −1.68307 −0.841534 0.540204i \(-0.818347\pi\)
−0.841534 + 0.540204i \(0.818347\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 57.1316i 0.0781554i
\(732\) 0 0
\(733\) 376.404 0.513512 0.256756 0.966476i \(-0.417346\pi\)
0.256756 + 0.966476i \(0.417346\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 437.913i − 0.594183i
\(738\) 0 0
\(739\) −504.166 −0.682228 −0.341114 0.940022i \(-0.610804\pi\)
−0.341114 + 0.940022i \(0.610804\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1134.40i 1.52679i 0.645934 + 0.763393i \(0.276468\pi\)
−0.645934 + 0.763393i \(0.723532\pi\)
\(744\) 0 0
\(745\) −216.689 −0.290857
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 339.506i − 0.453279i
\(750\) 0 0
\(751\) −949.876 −1.26481 −0.632407 0.774636i \(-0.717933\pi\)
−0.632407 + 0.774636i \(0.717933\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 34.6376i 0.0458777i
\(756\) 0 0
\(757\) −750.370 −0.991241 −0.495621 0.868539i \(-0.665059\pi\)
−0.495621 + 0.868539i \(0.665059\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1100.48i 1.44610i 0.690794 + 0.723052i \(0.257261\pi\)
−0.690794 + 0.723052i \(0.742739\pi\)
\(762\) 0 0
\(763\) −420.139 −0.550640
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1093.85i − 1.42614i
\(768\) 0 0
\(769\) −525.202 −0.682968 −0.341484 0.939888i \(-0.610929\pi\)
−0.341484 + 0.939888i \(0.610929\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 211.562i 0.273689i 0.990593 + 0.136845i \(0.0436961\pi\)
−0.990593 + 0.136845i \(0.956304\pi\)
\(774\) 0 0
\(775\) 67.2758 0.0868074
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 337.079i − 0.432707i
\(780\) 0 0
\(781\) 245.935 0.314897
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51.4826i 0.0655829i
\(786\) 0 0
\(787\) −1219.20 −1.54917 −0.774585 0.632470i \(-0.782041\pi\)
−0.774585 + 0.632470i \(0.782041\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 25.4802i − 0.0322126i
\(792\) 0 0
\(793\) 1015.53 1.28062
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1096.10i − 1.37528i −0.726053 0.687639i \(-0.758647\pi\)
0.726053 0.687639i \(-0.241353\pi\)
\(798\) 0 0
\(799\) 32.1804 0.0402759
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 133.924i 0.166780i
\(804\) 0 0
\(805\) −256.707 −0.318891
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 213.728i − 0.264188i −0.991237 0.132094i \(-0.957830\pi\)
0.991237 0.132094i \(-0.0421701\pi\)
\(810\) 0 0
\(811\) 263.712 0.325169 0.162585 0.986695i \(-0.448017\pi\)
0.162585 + 0.986695i \(0.448017\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 527.141i − 0.646799i
\(816\) 0 0
\(817\) −186.067 −0.227744
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 401.805i 0.489409i 0.969598 + 0.244705i \(0.0786910\pi\)
−0.969598 + 0.244705i \(0.921309\pi\)
\(822\) 0 0
\(823\) 682.384 0.829142 0.414571 0.910017i \(-0.363932\pi\)
0.414571 + 0.910017i \(0.363932\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 964.623i − 1.16641i −0.812324 0.583206i \(-0.801798\pi\)
0.812324 0.583206i \(-0.198202\pi\)
\(828\) 0 0
\(829\) 379.477 0.457753 0.228877 0.973455i \(-0.426495\pi\)
0.228877 + 0.973455i \(0.426495\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.9580i 0.0287610i
\(834\) 0 0
\(835\) 175.558 0.210249
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 616.642i 0.734973i 0.930029 + 0.367487i \(0.119782\pi\)
−0.930029 + 0.367487i \(0.880218\pi\)
\(840\) 0 0
\(841\) 840.101 0.998931
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1035.65i 1.22562i
\(846\) 0 0
\(847\) 194.412 0.229530
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 141.783i − 0.166608i
\(852\) 0 0
\(853\) −411.601 −0.482533 −0.241267 0.970459i \(-0.577563\pi\)
−0.241267 + 0.970459i \(0.577563\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 564.267i − 0.658421i −0.944256 0.329211i \(-0.893217\pi\)
0.944256 0.329211i \(-0.106783\pi\)
\(858\) 0 0
\(859\) 1196.28 1.39265 0.696324 0.717728i \(-0.254818\pi\)
0.696324 + 0.717728i \(0.254818\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1171.34i − 1.35729i −0.734468 0.678644i \(-0.762568\pi\)
0.734468 0.678644i \(-0.237432\pi\)
\(864\) 0 0
\(865\) −149.971 −0.173377
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 1050.59i − 1.20896i
\(870\) 0 0
\(871\) 1328.88 1.52570
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 358.408i 0.409609i
\(876\) 0 0
\(877\) 239.563 0.273162 0.136581 0.990629i \(-0.456389\pi\)
0.136581 + 0.990629i \(0.456389\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1004.79i − 1.14051i −0.821468 0.570255i \(-0.806844\pi\)
0.821468 0.570255i \(-0.193156\pi\)
\(882\) 0 0
\(883\) 1469.24 1.66391 0.831957 0.554841i \(-0.187221\pi\)
0.831957 + 0.554841i \(0.187221\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1327.12i 1.49619i 0.663591 + 0.748096i \(0.269032\pi\)
−0.663591 + 0.748096i \(0.730968\pi\)
\(888\) 0 0
\(889\) −495.290 −0.557132
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 104.806i 0.117363i
\(894\) 0 0
\(895\) −264.804 −0.295870
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 6.29502i − 0.00700224i
\(900\) 0 0
\(901\) 152.080 0.168790
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 404.810i 0.447304i
\(906\) 0 0
\(907\) −1238.98 −1.36602 −0.683010 0.730409i \(-0.739329\pi\)
−0.683010 + 0.730409i \(0.739329\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 302.136i − 0.331653i −0.986155 0.165826i \(-0.946971\pi\)
0.986155 0.165826i \(-0.0530292\pi\)
\(912\) 0 0
\(913\) 673.791 0.737996
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 274.824i − 0.299699i
\(918\) 0 0
\(919\) 1023.81 1.11404 0.557022 0.830498i \(-0.311944\pi\)
0.557022 + 0.830498i \(0.311944\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 746.309i 0.808569i
\(924\) 0 0
\(925\) −57.0901 −0.0617190
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 330.204i 0.355441i 0.984081 + 0.177720i \(0.0568722\pi\)
−0.984081 + 0.177720i \(0.943128\pi\)
\(930\) 0 0
\(931\) −78.0265 −0.0838094
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 90.9726i − 0.0972969i
\(936\) 0 0
\(937\) −320.286 −0.341821 −0.170910 0.985287i \(-0.554671\pi\)
−0.170910 + 0.985287i \(0.554671\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1473.27i 1.56565i 0.622244 + 0.782823i \(0.286221\pi\)
−0.622244 + 0.782823i \(0.713779\pi\)
\(942\) 0 0
\(943\) −760.940 −0.806936
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1058.79i 1.11805i 0.829152 + 0.559023i \(0.188824\pi\)
−0.829152 + 0.559023i \(0.811176\pi\)
\(948\) 0 0
\(949\) −406.404 −0.428245
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1683.17i − 1.76619i −0.469199 0.883093i \(-0.655457\pi\)
0.469199 0.883093i \(-0.344543\pi\)
\(954\) 0 0
\(955\) 166.563 0.174412
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 524.387i − 0.546806i
\(960\) 0 0
\(961\) −916.912 −0.954123
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 354.898i − 0.367770i
\(966\) 0 0
\(967\) 764.881 0.790983 0.395492 0.918470i \(-0.370574\pi\)
0.395492 + 0.918470i \(0.370574\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 631.310i − 0.650165i −0.945686 0.325082i \(-0.894608\pi\)
0.945686 0.325082i \(-0.105392\pi\)
\(972\) 0 0
\(973\) 157.972 0.162356
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 367.900i 0.376560i 0.982115 + 0.188280i \(0.0602913\pi\)
−0.982115 + 0.188280i \(0.939709\pi\)
\(978\) 0 0
\(979\) 684.968 0.699661
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1678.27i 1.70729i 0.520852 + 0.853647i \(0.325614\pi\)
−0.520852 + 0.853647i \(0.674386\pi\)
\(984\) 0 0
\(985\) −332.663 −0.337729
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 420.038i 0.424710i
\(990\) 0 0
\(991\) 1079.56 1.08936 0.544681 0.838644i \(-0.316651\pi\)
0.544681 + 0.838644i \(0.316651\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 15.1693i − 0.0152455i
\(996\) 0 0
\(997\) 677.368 0.679406 0.339703 0.940533i \(-0.389673\pi\)
0.339703 + 0.940533i \(0.389673\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.3.d.n.449.9 12
3.2 odd 2 inner 4032.3.d.n.449.4 12
4.3 odd 2 4032.3.d.o.449.9 12
8.3 odd 2 2016.3.d.e.449.4 12
8.5 even 2 2016.3.d.f.449.4 yes 12
12.11 even 2 4032.3.d.o.449.4 12
24.5 odd 2 2016.3.d.f.449.9 yes 12
24.11 even 2 2016.3.d.e.449.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.3.d.e.449.4 12 8.3 odd 2
2016.3.d.e.449.9 yes 12 24.11 even 2
2016.3.d.f.449.4 yes 12 8.5 even 2
2016.3.d.f.449.9 yes 12 24.5 odd 2
4032.3.d.n.449.4 12 3.2 odd 2 inner
4032.3.d.n.449.9 12 1.1 even 1 trivial
4032.3.d.o.449.4 12 12.11 even 2
4032.3.d.o.449.9 12 4.3 odd 2