Properties

Label 4032.3.d.n.449.10
Level $4032$
Weight $3$
Character 4032.449
Analytic conductor $109.864$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,3,Mod(449,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(109.864042590\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44x^{10} + 719x^{8} + 5356x^{6} + 17809x^{4} + 20000x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 2016)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.10
Root \(2.61146i\) of defining polynomial
Character \(\chi\) \(=\) 4032.449
Dual form 4032.3.d.n.449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.81315i q^{5} +2.64575 q^{7} +1.61241i q^{11} -0.520800 q^{13} +26.9683i q^{17} +17.8871 q^{19} +12.1896i q^{23} -21.4191 q^{25} -47.9985i q^{29} +46.8270 q^{31} +18.0259i q^{35} +1.85849 q^{37} +41.6825i q^{41} -2.33064 q^{43} +91.9001i q^{47} +7.00000 q^{49} -30.2708i q^{53} -10.9856 q^{55} +72.1273i q^{59} +32.1019 q^{61} -3.54829i q^{65} +45.0801 q^{67} -111.454i q^{71} +99.9042 q^{73} +4.26603i q^{77} +3.78325 q^{79} +35.2017i q^{83} -183.739 q^{85} +48.7809i q^{89} -1.37791 q^{91} +121.868i q^{95} +12.1334 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{13} - 64 q^{19} - 124 q^{25} + 160 q^{31} - 56 q^{37} + 64 q^{43} + 84 q^{49} - 160 q^{55} - 104 q^{61} + 64 q^{67} - 64 q^{73} + 32 q^{79} + 184 q^{85} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.81315i 1.36263i 0.731990 + 0.681315i \(0.238592\pi\)
−0.731990 + 0.681315i \(0.761408\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.61241i 0.146583i 0.997311 + 0.0732913i \(0.0233503\pi\)
−0.997311 + 0.0732913i \(0.976650\pi\)
\(12\) 0 0
\(13\) −0.520800 −0.0400616 −0.0200308 0.999799i \(-0.506376\pi\)
−0.0200308 + 0.999799i \(0.506376\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.9683i 1.58637i 0.608980 + 0.793186i \(0.291579\pi\)
−0.608980 + 0.793186i \(0.708421\pi\)
\(18\) 0 0
\(19\) 17.8871 0.941427 0.470713 0.882286i \(-0.343997\pi\)
0.470713 + 0.882286i \(0.343997\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 12.1896i 0.529982i 0.964251 + 0.264991i \(0.0853690\pi\)
−0.964251 + 0.264991i \(0.914631\pi\)
\(24\) 0 0
\(25\) −21.4191 −0.856763
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 47.9985i − 1.65512i −0.561377 0.827560i \(-0.689728\pi\)
0.561377 0.827560i \(-0.310272\pi\)
\(30\) 0 0
\(31\) 46.8270 1.51055 0.755274 0.655409i \(-0.227504\pi\)
0.755274 + 0.655409i \(0.227504\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 18.0259i 0.515026i
\(36\) 0 0
\(37\) 1.85849 0.0502295 0.0251148 0.999685i \(-0.492005\pi\)
0.0251148 + 0.999685i \(0.492005\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 41.6825i 1.01665i 0.861166 + 0.508324i \(0.169735\pi\)
−0.861166 + 0.508324i \(0.830265\pi\)
\(42\) 0 0
\(43\) −2.33064 −0.0542009 −0.0271005 0.999633i \(-0.508627\pi\)
−0.0271005 + 0.999633i \(0.508627\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 91.9001i 1.95532i 0.210188 + 0.977661i \(0.432592\pi\)
−0.210188 + 0.977661i \(0.567408\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 30.2708i − 0.571147i −0.958357 0.285574i \(-0.907816\pi\)
0.958357 0.285574i \(-0.0921841\pi\)
\(54\) 0 0
\(55\) −10.9856 −0.199738
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 72.1273i 1.22250i 0.791439 + 0.611249i \(0.209332\pi\)
−0.791439 + 0.611249i \(0.790668\pi\)
\(60\) 0 0
\(61\) 32.1019 0.526261 0.263131 0.964760i \(-0.415245\pi\)
0.263131 + 0.964760i \(0.415245\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 3.54829i − 0.0545891i
\(66\) 0 0
\(67\) 45.0801 0.672837 0.336419 0.941713i \(-0.390784\pi\)
0.336419 + 0.941713i \(0.390784\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 111.454i − 1.56978i −0.619635 0.784890i \(-0.712719\pi\)
0.619635 0.784890i \(-0.287281\pi\)
\(72\) 0 0
\(73\) 99.9042 1.36855 0.684276 0.729223i \(-0.260119\pi\)
0.684276 + 0.729223i \(0.260119\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.26603i 0.0554030i
\(78\) 0 0
\(79\) 3.78325 0.0478892 0.0239446 0.999713i \(-0.492377\pi\)
0.0239446 + 0.999713i \(0.492377\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 35.2017i 0.424117i 0.977257 + 0.212059i \(0.0680168\pi\)
−0.977257 + 0.212059i \(0.931983\pi\)
\(84\) 0 0
\(85\) −183.739 −2.16164
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 48.7809i 0.548100i 0.961716 + 0.274050i \(0.0883633\pi\)
−0.961716 + 0.274050i \(0.911637\pi\)
\(90\) 0 0
\(91\) −1.37791 −0.0151418
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 121.868i 1.28282i
\(96\) 0 0
\(97\) 12.1334 0.125087 0.0625434 0.998042i \(-0.480079\pi\)
0.0625434 + 0.998042i \(0.480079\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.7469i 0.116306i 0.998308 + 0.0581529i \(0.0185211\pi\)
−0.998308 + 0.0581529i \(0.981479\pi\)
\(102\) 0 0
\(103\) −153.740 −1.49262 −0.746310 0.665599i \(-0.768176\pi\)
−0.746310 + 0.665599i \(0.768176\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 54.3156i − 0.507622i −0.967254 0.253811i \(-0.918316\pi\)
0.967254 0.253811i \(-0.0816841\pi\)
\(108\) 0 0
\(109\) −172.032 −1.57828 −0.789139 0.614215i \(-0.789473\pi\)
−0.789139 + 0.614215i \(0.789473\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 64.8360i − 0.573770i −0.957965 0.286885i \(-0.907380\pi\)
0.957965 0.286885i \(-0.0926198\pi\)
\(114\) 0 0
\(115\) −83.0496 −0.722170
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 71.3515i 0.599592i
\(120\) 0 0
\(121\) 118.400 0.978514
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.3974i 0.195179i
\(126\) 0 0
\(127\) 185.124 1.45767 0.728834 0.684690i \(-0.240062\pi\)
0.728834 + 0.684690i \(0.240062\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 31.0619i 0.237114i 0.992947 + 0.118557i \(0.0378268\pi\)
−0.992947 + 0.118557i \(0.962173\pi\)
\(132\) 0 0
\(133\) 47.3248 0.355826
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 85.6561i 0.625227i 0.949880 + 0.312614i \(0.101204\pi\)
−0.949880 + 0.312614i \(0.898796\pi\)
\(138\) 0 0
\(139\) 2.59091 0.0186396 0.00931982 0.999957i \(-0.497033\pi\)
0.00931982 + 0.999957i \(0.497033\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 0.839742i − 0.00587232i
\(144\) 0 0
\(145\) 327.021 2.25532
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 113.941i − 0.764703i −0.924017 0.382351i \(-0.875114\pi\)
0.924017 0.382351i \(-0.124886\pi\)
\(150\) 0 0
\(151\) 11.2688 0.0746277 0.0373138 0.999304i \(-0.488120\pi\)
0.0373138 + 0.999304i \(0.488120\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 319.039i 2.05832i
\(156\) 0 0
\(157\) −41.7543 −0.265951 −0.132976 0.991119i \(-0.542453\pi\)
−0.132976 + 0.991119i \(0.542453\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 32.2506i 0.200314i
\(162\) 0 0
\(163\) 141.787 0.869860 0.434930 0.900464i \(-0.356773\pi\)
0.434930 + 0.900464i \(0.356773\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 166.816i 0.998897i 0.866344 + 0.499449i \(0.166464\pi\)
−0.866344 + 0.499449i \(0.833536\pi\)
\(168\) 0 0
\(169\) −168.729 −0.998395
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.0306i 0.0579805i 0.999580 + 0.0289903i \(0.00922918\pi\)
−0.999580 + 0.0289903i \(0.990771\pi\)
\(174\) 0 0
\(175\) −56.6695 −0.323826
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 99.4270i 0.555458i 0.960659 + 0.277729i \(0.0895817\pi\)
−0.960659 + 0.277729i \(0.910418\pi\)
\(180\) 0 0
\(181\) −217.242 −1.20023 −0.600115 0.799914i \(-0.704878\pi\)
−0.600115 + 0.799914i \(0.704878\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.6622i 0.0684443i
\(186\) 0 0
\(187\) −43.4839 −0.232534
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 237.181i 1.24179i 0.783895 + 0.620893i \(0.213230\pi\)
−0.783895 + 0.620893i \(0.786770\pi\)
\(192\) 0 0
\(193\) 234.019 1.21253 0.606266 0.795262i \(-0.292667\pi\)
0.606266 + 0.795262i \(0.292667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 277.878i − 1.41055i −0.708934 0.705274i \(-0.750824\pi\)
0.708934 0.705274i \(-0.249176\pi\)
\(198\) 0 0
\(199\) −169.646 −0.852494 −0.426247 0.904607i \(-0.640164\pi\)
−0.426247 + 0.904607i \(0.640164\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 126.992i − 0.625576i
\(204\) 0 0
\(205\) −283.990 −1.38531
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.8413i 0.137997i
\(210\) 0 0
\(211\) −307.022 −1.45508 −0.727540 0.686066i \(-0.759336\pi\)
−0.727540 + 0.686066i \(0.759336\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 15.8790i − 0.0738559i
\(216\) 0 0
\(217\) 123.893 0.570933
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 14.0451i − 0.0635525i
\(222\) 0 0
\(223\) −317.188 −1.42237 −0.711185 0.703005i \(-0.751841\pi\)
−0.711185 + 0.703005i \(0.751841\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 205.937i 0.907214i 0.891202 + 0.453607i \(0.149863\pi\)
−0.891202 + 0.453607i \(0.850137\pi\)
\(228\) 0 0
\(229\) 55.1812 0.240966 0.120483 0.992715i \(-0.461556\pi\)
0.120483 + 0.992715i \(0.461556\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.0717i 0.0646855i 0.999477 + 0.0323427i \(0.0102968\pi\)
−0.999477 + 0.0323427i \(0.989703\pi\)
\(234\) 0 0
\(235\) −626.130 −2.66438
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 106.732i − 0.446576i −0.974753 0.223288i \(-0.928321\pi\)
0.974753 0.223288i \(-0.0716790\pi\)
\(240\) 0 0
\(241\) 21.9793 0.0912005 0.0456003 0.998960i \(-0.485480\pi\)
0.0456003 + 0.998960i \(0.485480\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 47.6921i 0.194662i
\(246\) 0 0
\(247\) −9.31561 −0.0377150
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 389.193i − 1.55057i −0.631613 0.775284i \(-0.717607\pi\)
0.631613 0.775284i \(-0.282393\pi\)
\(252\) 0 0
\(253\) −19.6546 −0.0776861
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 409.681i 1.59409i 0.603920 + 0.797045i \(0.293605\pi\)
−0.603920 + 0.797045i \(0.706395\pi\)
\(258\) 0 0
\(259\) 4.91711 0.0189850
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 288.396i − 1.09656i −0.836294 0.548281i \(-0.815282\pi\)
0.836294 0.548281i \(-0.184718\pi\)
\(264\) 0 0
\(265\) 206.240 0.778263
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 264.656i − 0.983852i −0.870637 0.491926i \(-0.836293\pi\)
0.870637 0.491926i \(-0.163707\pi\)
\(270\) 0 0
\(271\) −437.788 −1.61545 −0.807727 0.589556i \(-0.799303\pi\)
−0.807727 + 0.589556i \(0.799303\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 34.5363i − 0.125586i
\(276\) 0 0
\(277\) 438.941 1.58462 0.792312 0.610116i \(-0.208877\pi\)
0.792312 + 0.610116i \(0.208877\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 62.8497i 0.223664i 0.993727 + 0.111832i \(0.0356719\pi\)
−0.993727 + 0.111832i \(0.964328\pi\)
\(282\) 0 0
\(283\) −427.199 −1.50954 −0.754769 0.655990i \(-0.772251\pi\)
−0.754769 + 0.655990i \(0.772251\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 110.282i 0.384256i
\(288\) 0 0
\(289\) −438.290 −1.51657
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 375.101i − 1.28021i −0.768288 0.640104i \(-0.778891\pi\)
0.768288 0.640104i \(-0.221109\pi\)
\(294\) 0 0
\(295\) −491.415 −1.66581
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 6.34834i − 0.0212319i
\(300\) 0 0
\(301\) −6.16629 −0.0204860
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 218.716i 0.717100i
\(306\) 0 0
\(307\) 268.463 0.874473 0.437237 0.899347i \(-0.355957\pi\)
0.437237 + 0.899347i \(0.355957\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 156.940i 0.504629i 0.967645 + 0.252314i \(0.0811917\pi\)
−0.967645 + 0.252314i \(0.918808\pi\)
\(312\) 0 0
\(313\) −39.3100 −0.125591 −0.0627956 0.998026i \(-0.520002\pi\)
−0.0627956 + 0.998026i \(0.520002\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 491.176i − 1.54945i −0.632298 0.774725i \(-0.717888\pi\)
0.632298 0.774725i \(-0.282112\pi\)
\(318\) 0 0
\(319\) 77.3931 0.242612
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 482.385i 1.49345i
\(324\) 0 0
\(325\) 11.1551 0.0343233
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 243.145i 0.739042i
\(330\) 0 0
\(331\) −571.594 −1.72687 −0.863435 0.504460i \(-0.831692\pi\)
−0.863435 + 0.504460i \(0.831692\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 307.138i 0.916829i
\(336\) 0 0
\(337\) 176.364 0.523334 0.261667 0.965158i \(-0.415728\pi\)
0.261667 + 0.965158i \(0.415728\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 75.5042i 0.221420i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 518.445i 1.49408i 0.664780 + 0.747039i \(0.268525\pi\)
−0.664780 + 0.747039i \(0.731475\pi\)
\(348\) 0 0
\(349\) −2.55868 −0.00733145 −0.00366573 0.999993i \(-0.501167\pi\)
−0.00366573 + 0.999993i \(0.501167\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 44.1821i − 0.125162i −0.998040 0.0625809i \(-0.980067\pi\)
0.998040 0.0625809i \(-0.0199332\pi\)
\(354\) 0 0
\(355\) 759.356 2.13903
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.3091i 0.0677134i 0.999427 + 0.0338567i \(0.0107790\pi\)
−0.999427 + 0.0338567i \(0.989221\pi\)
\(360\) 0 0
\(361\) −41.0514 −0.113716
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 680.663i 1.86483i
\(366\) 0 0
\(367\) 271.257 0.739121 0.369560 0.929207i \(-0.379508\pi\)
0.369560 + 0.929207i \(0.379508\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 80.0890i − 0.215873i
\(372\) 0 0
\(373\) −479.051 −1.28432 −0.642159 0.766571i \(-0.721961\pi\)
−0.642159 + 0.766571i \(0.721961\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.9976i 0.0663067i
\(378\) 0 0
\(379\) −286.046 −0.754740 −0.377370 0.926063i \(-0.623171\pi\)
−0.377370 + 0.926063i \(0.623171\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 453.990i 1.18535i 0.805440 + 0.592677i \(0.201929\pi\)
−0.805440 + 0.592677i \(0.798071\pi\)
\(384\) 0 0
\(385\) −29.0651 −0.0754938
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 556.266i 1.42999i 0.699129 + 0.714995i \(0.253571\pi\)
−0.699129 + 0.714995i \(0.746429\pi\)
\(390\) 0 0
\(391\) −328.733 −0.840749
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 25.7758i 0.0652553i
\(396\) 0 0
\(397\) 65.9114 0.166024 0.0830118 0.996549i \(-0.473546\pi\)
0.0830118 + 0.996549i \(0.473546\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 706.777i − 1.76253i −0.472618 0.881267i \(-0.656691\pi\)
0.472618 0.881267i \(-0.343309\pi\)
\(402\) 0 0
\(403\) −24.3875 −0.0605149
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.99665i 0.00736277i
\(408\) 0 0
\(409\) 541.836 1.32478 0.662391 0.749159i \(-0.269542\pi\)
0.662391 + 0.749159i \(0.269542\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 190.831i 0.462061i
\(414\) 0 0
\(415\) −239.835 −0.577915
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 529.656i 1.26410i 0.774930 + 0.632048i \(0.217785\pi\)
−0.774930 + 0.632048i \(0.782215\pi\)
\(420\) 0 0
\(421\) −251.002 −0.596205 −0.298103 0.954534i \(-0.596354\pi\)
−0.298103 + 0.954534i \(0.596354\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 577.636i − 1.35914i
\(426\) 0 0
\(427\) 84.9338 0.198908
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 631.431i 1.46504i 0.680747 + 0.732519i \(0.261655\pi\)
−0.680747 + 0.732519i \(0.738345\pi\)
\(432\) 0 0
\(433\) −645.417 −1.49057 −0.745285 0.666746i \(-0.767687\pi\)
−0.745285 + 0.666746i \(0.767687\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 218.037i 0.498939i
\(438\) 0 0
\(439\) −66.3355 −0.151106 −0.0755529 0.997142i \(-0.524072\pi\)
−0.0755529 + 0.997142i \(0.524072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 52.3648i 0.118205i 0.998252 + 0.0591025i \(0.0188239\pi\)
−0.998252 + 0.0591025i \(0.981176\pi\)
\(444\) 0 0
\(445\) −332.352 −0.746857
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 460.715i 1.02609i 0.858361 + 0.513045i \(0.171483\pi\)
−0.858361 + 0.513045i \(0.828517\pi\)
\(450\) 0 0
\(451\) −67.2092 −0.149023
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 9.38790i − 0.0206327i
\(456\) 0 0
\(457\) −609.343 −1.33335 −0.666677 0.745346i \(-0.732284\pi\)
−0.666677 + 0.745346i \(0.732284\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 244.657i 0.530709i 0.964151 + 0.265354i \(0.0854890\pi\)
−0.964151 + 0.265354i \(0.914511\pi\)
\(462\) 0 0
\(463\) 241.775 0.522191 0.261096 0.965313i \(-0.415916\pi\)
0.261096 + 0.965313i \(0.415916\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 449.911i 0.963408i 0.876334 + 0.481704i \(0.159982\pi\)
−0.876334 + 0.481704i \(0.840018\pi\)
\(468\) 0 0
\(469\) 119.271 0.254309
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 3.75794i − 0.00794491i
\(474\) 0 0
\(475\) −383.125 −0.806579
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 159.741i 0.333489i 0.986000 + 0.166744i \(0.0533255\pi\)
−0.986000 + 0.166744i \(0.946675\pi\)
\(480\) 0 0
\(481\) −0.967903 −0.00201227
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 82.6669i 0.170447i
\(486\) 0 0
\(487\) 320.830 0.658788 0.329394 0.944193i \(-0.393156\pi\)
0.329394 + 0.944193i \(0.393156\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 786.947i 1.60274i 0.598167 + 0.801372i \(0.295896\pi\)
−0.598167 + 0.801372i \(0.704104\pi\)
\(492\) 0 0
\(493\) 1294.44 2.62563
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 294.881i − 0.593321i
\(498\) 0 0
\(499\) −560.988 −1.12422 −0.562112 0.827061i \(-0.690011\pi\)
−0.562112 + 0.827061i \(0.690011\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 63.4623i − 0.126168i −0.998008 0.0630838i \(-0.979906\pi\)
0.998008 0.0630838i \(-0.0200936\pi\)
\(504\) 0 0
\(505\) −80.0333 −0.158482
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 114.008i 0.223985i 0.993709 + 0.111992i \(0.0357233\pi\)
−0.993709 + 0.111992i \(0.964277\pi\)
\(510\) 0 0
\(511\) 264.322 0.517264
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 1047.45i − 2.03389i
\(516\) 0 0
\(517\) −148.180 −0.286616
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 179.557i 0.344640i 0.985041 + 0.172320i \(0.0551262\pi\)
−0.985041 + 0.172320i \(0.944874\pi\)
\(522\) 0 0
\(523\) 378.737 0.724163 0.362082 0.932146i \(-0.382066\pi\)
0.362082 + 0.932146i \(0.382066\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1262.84i 2.39629i
\(528\) 0 0
\(529\) 380.414 0.719119
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 21.7083i − 0.0407285i
\(534\) 0 0
\(535\) 370.060 0.691701
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.2869i 0.0209404i
\(540\) 0 0
\(541\) −466.858 −0.862954 −0.431477 0.902124i \(-0.642007\pi\)
−0.431477 + 0.902124i \(0.642007\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 1172.08i − 2.15061i
\(546\) 0 0
\(547\) 1068.48 1.95335 0.976675 0.214721i \(-0.0688843\pi\)
0.976675 + 0.214721i \(0.0688843\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 858.554i − 1.55817i
\(552\) 0 0
\(553\) 10.0095 0.0181004
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 374.378i − 0.672132i −0.941838 0.336066i \(-0.890903\pi\)
0.941838 0.336066i \(-0.109097\pi\)
\(558\) 0 0
\(559\) 1.21380 0.00217137
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 74.2058i − 0.131804i −0.997826 0.0659021i \(-0.979007\pi\)
0.997826 0.0659021i \(-0.0209925\pi\)
\(564\) 0 0
\(565\) 441.738 0.781837
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 674.188i − 1.18486i −0.805620 0.592432i \(-0.798168\pi\)
0.805620 0.592432i \(-0.201832\pi\)
\(570\) 0 0
\(571\) 193.792 0.339390 0.169695 0.985497i \(-0.445722\pi\)
0.169695 + 0.985497i \(0.445722\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 261.090i − 0.454069i
\(576\) 0 0
\(577\) 458.303 0.794286 0.397143 0.917757i \(-0.370002\pi\)
0.397143 + 0.917757i \(0.370002\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 93.1351i 0.160301i
\(582\) 0 0
\(583\) 48.8089 0.0837202
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 980.515i 1.67038i 0.549959 + 0.835192i \(0.314643\pi\)
−0.549959 + 0.835192i \(0.685357\pi\)
\(588\) 0 0
\(589\) 837.599 1.42207
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.9429i 0.0656710i 0.999461 + 0.0328355i \(0.0104537\pi\)
−0.999461 + 0.0328355i \(0.989546\pi\)
\(594\) 0 0
\(595\) −486.128 −0.817023
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 937.594i 1.56527i 0.622483 + 0.782633i \(0.286124\pi\)
−0.622483 + 0.782633i \(0.713876\pi\)
\(600\) 0 0
\(601\) −898.370 −1.49479 −0.747396 0.664379i \(-0.768696\pi\)
−0.747396 + 0.664379i \(0.768696\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 806.678i 1.33335i
\(606\) 0 0
\(607\) −957.285 −1.57708 −0.788538 0.614986i \(-0.789162\pi\)
−0.788538 + 0.614986i \(0.789162\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 47.8616i − 0.0783333i
\(612\) 0 0
\(613\) 602.677 0.983160 0.491580 0.870832i \(-0.336419\pi\)
0.491580 + 0.870832i \(0.336419\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 248.867i − 0.403350i −0.979453 0.201675i \(-0.935362\pi\)
0.979453 0.201675i \(-0.0646384\pi\)
\(618\) 0 0
\(619\) −63.7190 −0.102939 −0.0514693 0.998675i \(-0.516390\pi\)
−0.0514693 + 0.998675i \(0.516390\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 129.062i 0.207162i
\(624\) 0 0
\(625\) −701.700 −1.12272
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 50.1204i 0.0796827i
\(630\) 0 0
\(631\) 191.480 0.303455 0.151728 0.988422i \(-0.451516\pi\)
0.151728 + 0.988422i \(0.451516\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1261.28i 1.98626i
\(636\) 0 0
\(637\) −3.64560 −0.00572308
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 276.684i 0.431644i 0.976433 + 0.215822i \(0.0692431\pi\)
−0.976433 + 0.215822i \(0.930757\pi\)
\(642\) 0 0
\(643\) −154.293 −0.239958 −0.119979 0.992776i \(-0.538283\pi\)
−0.119979 + 0.992776i \(0.538283\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 198.767i − 0.307214i −0.988132 0.153607i \(-0.950911\pi\)
0.988132 0.153607i \(-0.0490890\pi\)
\(648\) 0 0
\(649\) −116.299 −0.179197
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 703.030i − 1.07662i −0.842748 0.538308i \(-0.819064\pi\)
0.842748 0.538308i \(-0.180936\pi\)
\(654\) 0 0
\(655\) −211.629 −0.323098
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 964.242i − 1.46319i −0.681740 0.731595i \(-0.738776\pi\)
0.681740 0.731595i \(-0.261224\pi\)
\(660\) 0 0
\(661\) 777.062 1.17559 0.587793 0.809011i \(-0.299997\pi\)
0.587793 + 0.809011i \(0.299997\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 322.431i 0.484859i
\(666\) 0 0
\(667\) 585.082 0.877184
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 51.7614i 0.0771407i
\(672\) 0 0
\(673\) −249.025 −0.370022 −0.185011 0.982736i \(-0.559232\pi\)
−0.185011 + 0.982736i \(0.559232\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 500.574i 0.739401i 0.929151 + 0.369700i \(0.120540\pi\)
−0.929151 + 0.369700i \(0.879460\pi\)
\(678\) 0 0
\(679\) 32.1020 0.0472784
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 549.601i − 0.804687i −0.915489 0.402344i \(-0.868196\pi\)
0.915489 0.402344i \(-0.131804\pi\)
\(684\) 0 0
\(685\) −583.588 −0.851954
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.7650i 0.0228811i
\(690\) 0 0
\(691\) −206.279 −0.298522 −0.149261 0.988798i \(-0.547690\pi\)
−0.149261 + 0.988798i \(0.547690\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.6523i 0.0253990i
\(696\) 0 0
\(697\) −1124.11 −1.61278
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 246.956i 0.352291i 0.984364 + 0.176146i \(0.0563630\pi\)
−0.984364 + 0.176146i \(0.943637\pi\)
\(702\) 0 0
\(703\) 33.2430 0.0472874
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.0793i 0.0439594i
\(708\) 0 0
\(709\) 1086.05 1.53180 0.765901 0.642958i \(-0.222293\pi\)
0.765901 + 0.642958i \(0.222293\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 570.802i 0.800564i
\(714\) 0 0
\(715\) 5.72129 0.00800181
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 563.186i − 0.783291i −0.920116 0.391645i \(-0.871906\pi\)
0.920116 0.391645i \(-0.128094\pi\)
\(720\) 0 0
\(721\) −406.757 −0.564157
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1028.08i 1.41805i
\(726\) 0 0
\(727\) 619.737 0.852458 0.426229 0.904615i \(-0.359842\pi\)
0.426229 + 0.904615i \(0.359842\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 62.8534i − 0.0859828i
\(732\) 0 0
\(733\) 807.509 1.10165 0.550825 0.834621i \(-0.314313\pi\)
0.550825 + 0.834621i \(0.314313\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 72.6875i 0.0986261i
\(738\) 0 0
\(739\) −653.350 −0.884101 −0.442050 0.896990i \(-0.645749\pi\)
−0.442050 + 0.896990i \(0.645749\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 388.142i 0.522399i 0.965285 + 0.261199i \(0.0841180\pi\)
−0.965285 + 0.261199i \(0.915882\pi\)
\(744\) 0 0
\(745\) 776.296 1.04201
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 143.705i − 0.191863i
\(750\) 0 0
\(751\) 1366.13 1.81909 0.909543 0.415610i \(-0.136432\pi\)
0.909543 + 0.415610i \(0.136432\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 76.7759i 0.101690i
\(756\) 0 0
\(757\) −556.658 −0.735348 −0.367674 0.929955i \(-0.619846\pi\)
−0.367674 + 0.929955i \(0.619846\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 393.624i 0.517246i 0.965978 + 0.258623i \(0.0832687\pi\)
−0.965978 + 0.258623i \(0.916731\pi\)
\(762\) 0 0
\(763\) −455.154 −0.596533
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 37.5639i − 0.0489752i
\(768\) 0 0
\(769\) −1150.26 −1.49578 −0.747892 0.663821i \(-0.768934\pi\)
−0.747892 + 0.663821i \(0.768934\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 961.972i − 1.24447i −0.782832 0.622233i \(-0.786226\pi\)
0.782832 0.622233i \(-0.213774\pi\)
\(774\) 0 0
\(775\) −1002.99 −1.29418
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 745.580i 0.957099i
\(780\) 0 0
\(781\) 179.710 0.230102
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 284.479i − 0.362393i
\(786\) 0 0
\(787\) 512.863 0.651669 0.325834 0.945427i \(-0.394355\pi\)
0.325834 + 0.945427i \(0.394355\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 171.540i − 0.216865i
\(792\) 0 0
\(793\) −16.7187 −0.0210829
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 322.873i − 0.405111i −0.979271 0.202555i \(-0.935075\pi\)
0.979271 0.202555i \(-0.0649246\pi\)
\(798\) 0 0
\(799\) −2478.39 −3.10187
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 161.086i 0.200606i
\(804\) 0 0
\(805\) −219.729 −0.272955
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 243.580i − 0.301088i −0.988603 0.150544i \(-0.951898\pi\)
0.988603 0.150544i \(-0.0481024\pi\)
\(810\) 0 0
\(811\) 834.792 1.02934 0.514668 0.857389i \(-0.327915\pi\)
0.514668 + 0.857389i \(0.327915\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 966.018i 1.18530i
\(816\) 0 0
\(817\) −41.6884 −0.0510262
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 465.749i − 0.567295i −0.958929 0.283647i \(-0.908456\pi\)
0.958929 0.283647i \(-0.0915445\pi\)
\(822\) 0 0
\(823\) 1471.89 1.78844 0.894221 0.447626i \(-0.147730\pi\)
0.894221 + 0.447626i \(0.147730\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 770.034i − 0.931118i −0.885017 0.465559i \(-0.845853\pi\)
0.885017 0.465559i \(-0.154147\pi\)
\(828\) 0 0
\(829\) 1130.62 1.36383 0.681915 0.731431i \(-0.261147\pi\)
0.681915 + 0.731431i \(0.261147\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 188.778i 0.226625i
\(834\) 0 0
\(835\) −1136.54 −1.36113
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1258.96i − 1.50054i −0.661129 0.750272i \(-0.729922\pi\)
0.661129 0.750272i \(-0.270078\pi\)
\(840\) 0 0
\(841\) −1462.85 −1.73942
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1149.58i − 1.36044i
\(846\) 0 0
\(847\) 313.257 0.369843
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22.6543i 0.0266208i
\(852\) 0 0
\(853\) −595.267 −0.697851 −0.348925 0.937150i \(-0.613453\pi\)
−0.348925 + 0.937150i \(0.613453\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1319.66i − 1.53986i −0.638130 0.769929i \(-0.720292\pi\)
0.638130 0.769929i \(-0.279708\pi\)
\(858\) 0 0
\(859\) 1519.85 1.76932 0.884662 0.466233i \(-0.154389\pi\)
0.884662 + 0.466233i \(0.154389\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 921.628i − 1.06793i −0.845505 0.533967i \(-0.820701\pi\)
0.845505 0.533967i \(-0.179299\pi\)
\(864\) 0 0
\(865\) −68.3403 −0.0790061
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.10014i 0.00701972i
\(870\) 0 0
\(871\) −23.4777 −0.0269549
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 64.5495i 0.0737709i
\(876\) 0 0
\(877\) −300.963 −0.343173 −0.171587 0.985169i \(-0.554889\pi\)
−0.171587 + 0.985169i \(0.554889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 950.730i 1.07915i 0.841938 + 0.539574i \(0.181415\pi\)
−0.841938 + 0.539574i \(0.818585\pi\)
\(882\) 0 0
\(883\) 1486.55 1.68352 0.841761 0.539850i \(-0.181519\pi\)
0.841761 + 0.539850i \(0.181519\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1500.35i − 1.69149i −0.533590 0.845743i \(-0.679157\pi\)
0.533590 0.845743i \(-0.320843\pi\)
\(888\) 0 0
\(889\) 489.792 0.550947
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1643.83i 1.84079i
\(894\) 0 0
\(895\) −677.411 −0.756884
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 2247.62i − 2.50014i
\(900\) 0 0
\(901\) 816.353 0.906052
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1480.10i − 1.63547i
\(906\) 0 0
\(907\) −1353.09 −1.49183 −0.745914 0.666043i \(-0.767987\pi\)
−0.745914 + 0.666043i \(0.767987\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 405.043i 0.444613i 0.974977 + 0.222307i \(0.0713586\pi\)
−0.974977 + 0.222307i \(0.928641\pi\)
\(912\) 0 0
\(913\) −56.7596 −0.0621682
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 82.1820i 0.0896205i
\(918\) 0 0
\(919\) 1523.01 1.65724 0.828621 0.559810i \(-0.189126\pi\)
0.828621 + 0.559810i \(0.189126\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 58.0455i 0.0628879i
\(924\) 0 0
\(925\) −39.8072 −0.0430348
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1044.12i − 1.12391i −0.827166 0.561957i \(-0.810049\pi\)
0.827166 0.561957i \(-0.189951\pi\)
\(930\) 0 0
\(931\) 125.210 0.134490
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 296.263i − 0.316858i
\(936\) 0 0
\(937\) 1563.83 1.66897 0.834487 0.551027i \(-0.185764\pi\)
0.834487 + 0.551027i \(0.185764\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 75.2579i 0.0799765i 0.999200 + 0.0399882i \(0.0127320\pi\)
−0.999200 + 0.0399882i \(0.987268\pi\)
\(942\) 0 0
\(943\) −508.093 −0.538805
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1441.19i − 1.52185i −0.648842 0.760923i \(-0.724747\pi\)
0.648842 0.760923i \(-0.275253\pi\)
\(948\) 0 0
\(949\) −52.0302 −0.0548263
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 156.478i 0.164195i 0.996624 + 0.0820974i \(0.0261618\pi\)
−0.996624 + 0.0820974i \(0.973838\pi\)
\(954\) 0 0
\(955\) −1615.95 −1.69210
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 226.625i 0.236314i
\(960\) 0 0
\(961\) 1231.77 1.28175
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1594.41i 1.65223i
\(966\) 0 0
\(967\) −704.516 −0.728558 −0.364279 0.931290i \(-0.618685\pi\)
−0.364279 + 0.931290i \(0.618685\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 984.744i 1.01415i 0.861901 + 0.507077i \(0.169274\pi\)
−0.861901 + 0.507077i \(0.830726\pi\)
\(972\) 0 0
\(973\) 6.85490 0.00704512
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1235.23i 1.26431i 0.774841 + 0.632156i \(0.217830\pi\)
−0.774841 + 0.632156i \(0.782170\pi\)
\(978\) 0 0
\(979\) −78.6546 −0.0803418
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 873.904i 0.889017i 0.895775 + 0.444509i \(0.146622\pi\)
−0.895775 + 0.444509i \(0.853378\pi\)
\(984\) 0 0
\(985\) 1893.23 1.92206
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 28.4096i − 0.0287255i
\(990\) 0 0
\(991\) 421.680 0.425509 0.212755 0.977106i \(-0.431756\pi\)
0.212755 + 0.977106i \(0.431756\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1155.83i − 1.16163i
\(996\) 0 0
\(997\) −1500.34 −1.50486 −0.752428 0.658674i \(-0.771117\pi\)
−0.752428 + 0.658674i \(0.771117\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.3.d.n.449.10 12
3.2 odd 2 inner 4032.3.d.n.449.3 12
4.3 odd 2 4032.3.d.o.449.10 12
8.3 odd 2 2016.3.d.e.449.3 12
8.5 even 2 2016.3.d.f.449.3 yes 12
12.11 even 2 4032.3.d.o.449.3 12
24.5 odd 2 2016.3.d.f.449.10 yes 12
24.11 even 2 2016.3.d.e.449.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.3.d.e.449.3 12 8.3 odd 2
2016.3.d.e.449.10 yes 12 24.11 even 2
2016.3.d.f.449.3 yes 12 8.5 even 2
2016.3.d.f.449.10 yes 12 24.5 odd 2
4032.3.d.n.449.3 12 3.2 odd 2 inner
4032.3.d.n.449.10 12 1.1 even 1 trivial
4032.3.d.o.449.3 12 12.11 even 2
4032.3.d.o.449.10 12 4.3 odd 2