Properties

Label 4032.3.d.n.449.1
Level $4032$
Weight $3$
Character 4032.449
Analytic conductor $109.864$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,3,Mod(449,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(109.864042590\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44x^{10} + 719x^{8} + 5356x^{6} + 17809x^{4} + 20000x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 2016)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(1.48336i\) of defining polynomial
Character \(\chi\) \(=\) 4032.449
Dual form 4032.3.d.n.449.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.07031i q^{5} -2.64575 q^{7} +2.06952i q^{11} +4.46871 q^{13} +9.11630i q^{17} -5.96748 q^{19} +19.7029i q^{23} -57.2705 q^{25} -6.15244i q^{29} +53.8344 q^{31} +23.9978i q^{35} +36.4171 q^{37} +64.4821i q^{41} +73.4565 q^{43} -22.5045i q^{47} +7.00000 q^{49} +14.5690i q^{53} +18.7712 q^{55} -71.8103i q^{59} +38.8208 q^{61} -40.5325i q^{65} +92.4697 q^{67} +29.8169i q^{71} -62.3248 q^{73} -5.47543i q^{77} +120.133 q^{79} +110.484i q^{83} +82.6877 q^{85} -125.519i q^{89} -11.8231 q^{91} +54.1269i q^{95} -89.6087 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{13} - 64 q^{19} - 124 q^{25} + 160 q^{31} - 56 q^{37} + 64 q^{43} + 84 q^{49} - 160 q^{55} - 104 q^{61} + 64 q^{67} - 64 q^{73} + 32 q^{79} + 184 q^{85} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 9.07031i − 1.81406i −0.421064 0.907031i \(-0.638343\pi\)
0.421064 0.907031i \(-0.361657\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.06952i 0.188138i 0.995566 + 0.0940690i \(0.0299874\pi\)
−0.995566 + 0.0940690i \(0.970013\pi\)
\(12\) 0 0
\(13\) 4.46871 0.343747 0.171873 0.985119i \(-0.445018\pi\)
0.171873 + 0.985119i \(0.445018\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.11630i 0.536253i 0.963384 + 0.268127i \(0.0864045\pi\)
−0.963384 + 0.268127i \(0.913595\pi\)
\(18\) 0 0
\(19\) −5.96748 −0.314078 −0.157039 0.987592i \(-0.550195\pi\)
−0.157039 + 0.987592i \(0.550195\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 19.7029i 0.856649i 0.903625 + 0.428325i \(0.140896\pi\)
−0.903625 + 0.428325i \(0.859104\pi\)
\(24\) 0 0
\(25\) −57.2705 −2.29082
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.15244i − 0.212153i −0.994358 0.106077i \(-0.966171\pi\)
0.994358 0.106077i \(-0.0338289\pi\)
\(30\) 0 0
\(31\) 53.8344 1.73659 0.868296 0.496046i \(-0.165215\pi\)
0.868296 + 0.496046i \(0.165215\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 23.9978i 0.685651i
\(36\) 0 0
\(37\) 36.4171 0.984245 0.492122 0.870526i \(-0.336221\pi\)
0.492122 + 0.870526i \(0.336221\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 64.4821i 1.57273i 0.617759 + 0.786367i \(0.288041\pi\)
−0.617759 + 0.786367i \(0.711959\pi\)
\(42\) 0 0
\(43\) 73.4565 1.70829 0.854146 0.520033i \(-0.174081\pi\)
0.854146 + 0.520033i \(0.174081\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 22.5045i − 0.478820i −0.970919 0.239410i \(-0.923046\pi\)
0.970919 0.239410i \(-0.0769540\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 14.5690i 0.274887i 0.990510 + 0.137444i \(0.0438886\pi\)
−0.990510 + 0.137444i \(0.956111\pi\)
\(54\) 0 0
\(55\) 18.7712 0.341294
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 71.8103i − 1.21712i −0.793507 0.608562i \(-0.791747\pi\)
0.793507 0.608562i \(-0.208253\pi\)
\(60\) 0 0
\(61\) 38.8208 0.636406 0.318203 0.948023i \(-0.396921\pi\)
0.318203 + 0.948023i \(0.396921\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 40.5325i − 0.623578i
\(66\) 0 0
\(67\) 92.4697 1.38014 0.690072 0.723741i \(-0.257579\pi\)
0.690072 + 0.723741i \(0.257579\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 29.8169i 0.419956i 0.977706 + 0.209978i \(0.0673392\pi\)
−0.977706 + 0.209978i \(0.932661\pi\)
\(72\) 0 0
\(73\) −62.3248 −0.853764 −0.426882 0.904307i \(-0.640388\pi\)
−0.426882 + 0.904307i \(0.640388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 5.47543i − 0.0711095i
\(78\) 0 0
\(79\) 120.133 1.52067 0.760335 0.649531i \(-0.225035\pi\)
0.760335 + 0.649531i \(0.225035\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 110.484i 1.33114i 0.746336 + 0.665569i \(0.231811\pi\)
−0.746336 + 0.665569i \(0.768189\pi\)
\(84\) 0 0
\(85\) 82.6877 0.972796
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 125.519i − 1.41032i −0.709047 0.705161i \(-0.750875\pi\)
0.709047 0.705161i \(-0.249125\pi\)
\(90\) 0 0
\(91\) −11.8231 −0.129924
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 54.1269i 0.569757i
\(96\) 0 0
\(97\) −89.6087 −0.923801 −0.461900 0.886932i \(-0.652832\pi\)
−0.461900 + 0.886932i \(0.652832\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 85.3777i 0.845324i 0.906287 + 0.422662i \(0.138904\pi\)
−0.906287 + 0.422662i \(0.861096\pi\)
\(102\) 0 0
\(103\) 17.2854 0.167819 0.0839097 0.996473i \(-0.473259\pi\)
0.0839097 + 0.996473i \(0.473259\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 68.5297i 0.640464i 0.947339 + 0.320232i \(0.103761\pi\)
−0.947339 + 0.320232i \(0.896239\pi\)
\(108\) 0 0
\(109\) −47.5882 −0.436589 −0.218295 0.975883i \(-0.570049\pi\)
−0.218295 + 0.975883i \(0.570049\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 147.922i − 1.30904i −0.756044 0.654521i \(-0.772870\pi\)
0.756044 0.654521i \(-0.227130\pi\)
\(114\) 0 0
\(115\) 178.712 1.55401
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 24.1195i − 0.202685i
\(120\) 0 0
\(121\) 116.717 0.964604
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 292.704i 2.34163i
\(126\) 0 0
\(127\) −65.1644 −0.513105 −0.256553 0.966530i \(-0.582587\pi\)
−0.256553 + 0.966530i \(0.582587\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 141.639i 1.08121i 0.841276 + 0.540606i \(0.181805\pi\)
−0.841276 + 0.540606i \(0.818195\pi\)
\(132\) 0 0
\(133\) 15.7885 0.118710
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 51.7140i − 0.377475i −0.982028 0.188737i \(-0.939561\pi\)
0.982028 0.188737i \(-0.0604395\pi\)
\(138\) 0 0
\(139\) −117.576 −0.845867 −0.422934 0.906161i \(-0.639000\pi\)
−0.422934 + 0.906161i \(0.639000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.24806i 0.0646718i
\(144\) 0 0
\(145\) −55.8045 −0.384859
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 122.781i 0.824033i 0.911176 + 0.412017i \(0.135175\pi\)
−0.911176 + 0.412017i \(0.864825\pi\)
\(150\) 0 0
\(151\) 96.1236 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 488.294i − 3.15029i
\(156\) 0 0
\(157\) −27.4380 −0.174765 −0.0873823 0.996175i \(-0.527850\pi\)
−0.0873823 + 0.996175i \(0.527850\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 52.1291i − 0.323783i
\(162\) 0 0
\(163\) −36.0228 −0.220999 −0.110499 0.993876i \(-0.535245\pi\)
−0.110499 + 0.993876i \(0.535245\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 239.594i − 1.43469i −0.696717 0.717346i \(-0.745357\pi\)
0.696717 0.717346i \(-0.254643\pi\)
\(168\) 0 0
\(169\) −149.031 −0.881838
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 38.2933i − 0.221349i −0.993857 0.110674i \(-0.964699\pi\)
0.993857 0.110674i \(-0.0353010\pi\)
\(174\) 0 0
\(175\) 151.524 0.865849
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 289.394i − 1.61673i −0.588682 0.808364i \(-0.700353\pi\)
0.588682 0.808364i \(-0.299647\pi\)
\(180\) 0 0
\(181\) 124.035 0.685276 0.342638 0.939468i \(-0.388680\pi\)
0.342638 + 0.939468i \(0.388680\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 330.314i − 1.78548i
\(186\) 0 0
\(187\) −18.8663 −0.100890
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 177.779i − 0.930781i −0.885105 0.465391i \(-0.845914\pi\)
0.885105 0.465391i \(-0.154086\pi\)
\(192\) 0 0
\(193\) −69.0026 −0.357526 −0.178763 0.983892i \(-0.557210\pi\)
−0.178763 + 0.983892i \(0.557210\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 46.2047i 0.234542i 0.993100 + 0.117271i \(0.0374146\pi\)
−0.993100 + 0.117271i \(0.962585\pi\)
\(198\) 0 0
\(199\) −290.833 −1.46147 −0.730735 0.682661i \(-0.760823\pi\)
−0.730735 + 0.682661i \(0.760823\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.2778i 0.0801863i
\(204\) 0 0
\(205\) 584.873 2.85304
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 12.3498i − 0.0590900i
\(210\) 0 0
\(211\) 288.667 1.36809 0.684045 0.729440i \(-0.260219\pi\)
0.684045 + 0.729440i \(0.260219\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 666.274i − 3.09895i
\(216\) 0 0
\(217\) −142.432 −0.656370
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 40.7381i 0.184335i
\(222\) 0 0
\(223\) 244.448 1.09618 0.548089 0.836420i \(-0.315355\pi\)
0.548089 + 0.836420i \(0.315355\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 165.454i − 0.728871i −0.931229 0.364436i \(-0.881262\pi\)
0.931229 0.364436i \(-0.118738\pi\)
\(228\) 0 0
\(229\) 25.3894 0.110871 0.0554354 0.998462i \(-0.482345\pi\)
0.0554354 + 0.998462i \(0.482345\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 151.158i 0.648747i 0.945929 + 0.324374i \(0.105154\pi\)
−0.945929 + 0.324374i \(0.894846\pi\)
\(234\) 0 0
\(235\) −204.123 −0.868609
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 392.194i 1.64098i 0.571662 + 0.820489i \(0.306299\pi\)
−0.571662 + 0.820489i \(0.693701\pi\)
\(240\) 0 0
\(241\) −424.271 −1.76046 −0.880231 0.474545i \(-0.842612\pi\)
−0.880231 + 0.474545i \(0.842612\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 63.4922i − 0.259152i
\(246\) 0 0
\(247\) −26.6669 −0.107963
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 304.413i − 1.21280i −0.795160 0.606400i \(-0.792613\pi\)
0.795160 0.606400i \(-0.207387\pi\)
\(252\) 0 0
\(253\) −40.7756 −0.161168
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 34.8540i 0.135619i 0.997698 + 0.0678093i \(0.0216009\pi\)
−0.997698 + 0.0678093i \(0.978399\pi\)
\(258\) 0 0
\(259\) −96.3505 −0.372010
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 158.888i − 0.604137i −0.953286 0.302068i \(-0.902323\pi\)
0.953286 0.302068i \(-0.0976771\pi\)
\(264\) 0 0
\(265\) 132.146 0.498663
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 478.000i − 1.77695i −0.458924 0.888476i \(-0.651765\pi\)
0.458924 0.888476i \(-0.348235\pi\)
\(270\) 0 0
\(271\) 190.210 0.701881 0.350941 0.936398i \(-0.385862\pi\)
0.350941 + 0.936398i \(0.385862\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 118.522i − 0.430990i
\(276\) 0 0
\(277\) 377.904 1.36427 0.682137 0.731225i \(-0.261051\pi\)
0.682137 + 0.731225i \(0.261051\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 509.204i 1.81211i 0.423156 + 0.906057i \(0.360922\pi\)
−0.423156 + 0.906057i \(0.639078\pi\)
\(282\) 0 0
\(283\) −135.581 −0.479083 −0.239542 0.970886i \(-0.576997\pi\)
−0.239542 + 0.970886i \(0.576997\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 170.604i − 0.594438i
\(288\) 0 0
\(289\) 205.893 0.712433
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 242.746i − 0.828486i −0.910166 0.414243i \(-0.864046\pi\)
0.910166 0.414243i \(-0.135954\pi\)
\(294\) 0 0
\(295\) −651.342 −2.20794
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 88.0466i 0.294470i
\(300\) 0 0
\(301\) −194.348 −0.645674
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 352.116i − 1.15448i
\(306\) 0 0
\(307\) 104.962 0.341897 0.170949 0.985280i \(-0.445317\pi\)
0.170949 + 0.985280i \(0.445317\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 354.169i 1.13881i 0.822058 + 0.569403i \(0.192826\pi\)
−0.822058 + 0.569403i \(0.807174\pi\)
\(312\) 0 0
\(313\) −592.147 −1.89184 −0.945922 0.324394i \(-0.894839\pi\)
−0.945922 + 0.324394i \(0.894839\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 330.539i 1.04271i 0.853340 + 0.521354i \(0.174573\pi\)
−0.853340 + 0.521354i \(0.825427\pi\)
\(318\) 0 0
\(319\) 12.7326 0.0399140
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 54.4013i − 0.168425i
\(324\) 0 0
\(325\) −255.925 −0.787462
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 59.5414i 0.180977i
\(330\) 0 0
\(331\) −313.072 −0.945838 −0.472919 0.881106i \(-0.656800\pi\)
−0.472919 + 0.881106i \(0.656800\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 838.729i − 2.50367i
\(336\) 0 0
\(337\) −7.27439 −0.0215857 −0.0107929 0.999942i \(-0.503436\pi\)
−0.0107929 + 0.999942i \(0.503436\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 111.411i 0.326719i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 283.015i − 0.815606i −0.913070 0.407803i \(-0.866295\pi\)
0.913070 0.407803i \(-0.133705\pi\)
\(348\) 0 0
\(349\) 485.157 1.39014 0.695068 0.718944i \(-0.255374\pi\)
0.695068 + 0.718944i \(0.255374\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6.63666i − 0.0188007i −0.999956 0.00940037i \(-0.997008\pi\)
0.999956 0.00940037i \(-0.00299228\pi\)
\(354\) 0 0
\(355\) 270.448 0.761826
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 532.243i − 1.48257i −0.671190 0.741286i \(-0.734216\pi\)
0.671190 0.741286i \(-0.265784\pi\)
\(360\) 0 0
\(361\) −325.389 −0.901355
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 565.305i 1.54878i
\(366\) 0 0
\(367\) 444.300 1.21063 0.605314 0.795987i \(-0.293048\pi\)
0.605314 + 0.795987i \(0.293048\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 38.5460i − 0.103898i
\(372\) 0 0
\(373\) 34.6623 0.0929285 0.0464642 0.998920i \(-0.485205\pi\)
0.0464642 + 0.998920i \(0.485205\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 27.4934i − 0.0729269i
\(378\) 0 0
\(379\) 709.694 1.87254 0.936271 0.351278i \(-0.114253\pi\)
0.936271 + 0.351278i \(0.114253\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 282.603i − 0.737866i −0.929456 0.368933i \(-0.879723\pi\)
0.929456 0.368933i \(-0.120277\pi\)
\(384\) 0 0
\(385\) −49.6638 −0.128997
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 445.896i − 1.14626i −0.819464 0.573131i \(-0.805728\pi\)
0.819464 0.573131i \(-0.194272\pi\)
\(390\) 0 0
\(391\) −179.618 −0.459381
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1089.64i − 2.75859i
\(396\) 0 0
\(397\) −452.318 −1.13934 −0.569670 0.821874i \(-0.692929\pi\)
−0.569670 + 0.821874i \(0.692929\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 592.296i 1.47705i 0.674227 + 0.738524i \(0.264477\pi\)
−0.674227 + 0.738524i \(0.735523\pi\)
\(402\) 0 0
\(403\) 240.570 0.596948
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 75.3657i 0.185174i
\(408\) 0 0
\(409\) 339.846 0.830920 0.415460 0.909612i \(-0.363621\pi\)
0.415460 + 0.909612i \(0.363621\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 189.992i 0.460029i
\(414\) 0 0
\(415\) 1002.13 2.41477
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 684.871i 1.63454i 0.576257 + 0.817269i \(0.304513\pi\)
−0.576257 + 0.817269i \(0.695487\pi\)
\(420\) 0 0
\(421\) 164.455 0.390630 0.195315 0.980741i \(-0.437427\pi\)
0.195315 + 0.980741i \(0.437427\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 522.095i − 1.22846i
\(426\) 0 0
\(427\) −102.710 −0.240539
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 159.164i 0.369291i 0.982805 + 0.184645i \(0.0591136\pi\)
−0.982805 + 0.184645i \(0.940886\pi\)
\(432\) 0 0
\(433\) 725.043 1.67447 0.837233 0.546847i \(-0.184172\pi\)
0.837233 + 0.546847i \(0.184172\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 117.577i − 0.269055i
\(438\) 0 0
\(439\) −47.8404 −0.108976 −0.0544880 0.998514i \(-0.517353\pi\)
−0.0544880 + 0.998514i \(0.517353\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 518.646i − 1.17076i −0.810759 0.585379i \(-0.800946\pi\)
0.810759 0.585379i \(-0.199054\pi\)
\(444\) 0 0
\(445\) −1138.49 −2.55841
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 213.869i − 0.476323i −0.971226 0.238161i \(-0.923455\pi\)
0.971226 0.238161i \(-0.0765447\pi\)
\(450\) 0 0
\(451\) −133.447 −0.295891
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 107.239i 0.235690i
\(456\) 0 0
\(457\) 763.952 1.67167 0.835833 0.548983i \(-0.184985\pi\)
0.835833 + 0.548983i \(0.184985\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 169.162i 0.366945i 0.983025 + 0.183473i \(0.0587339\pi\)
−0.983025 + 0.183473i \(0.941266\pi\)
\(462\) 0 0
\(463\) 183.784 0.396941 0.198471 0.980107i \(-0.436403\pi\)
0.198471 + 0.980107i \(0.436403\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 388.570i 0.832056i 0.909352 + 0.416028i \(0.136578\pi\)
−0.909352 + 0.416028i \(0.863422\pi\)
\(468\) 0 0
\(469\) −244.652 −0.521646
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 152.020i 0.321394i
\(474\) 0 0
\(475\) 341.761 0.719496
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 281.584i − 0.587857i −0.955827 0.293929i \(-0.905037\pi\)
0.955827 0.293929i \(-0.0949628\pi\)
\(480\) 0 0
\(481\) 162.737 0.338331
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 812.779i 1.67583i
\(486\) 0 0
\(487\) 159.831 0.328196 0.164098 0.986444i \(-0.447529\pi\)
0.164098 + 0.986444i \(0.447529\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 0.0430644i 0 8.77075e-5i −1.00000 4.38537e-5i \(-0.999986\pi\)
1.00000 4.38537e-5i \(-1.39591e-5\pi\)
\(492\) 0 0
\(493\) 56.0875 0.113768
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 78.8880i − 0.158728i
\(498\) 0 0
\(499\) 300.513 0.602231 0.301115 0.953588i \(-0.402641\pi\)
0.301115 + 0.953588i \(0.402641\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 624.071i 1.24070i 0.784326 + 0.620349i \(0.213009\pi\)
−0.784326 + 0.620349i \(0.786991\pi\)
\(504\) 0 0
\(505\) 774.403 1.53347
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 833.447i − 1.63742i −0.574207 0.818710i \(-0.694690\pi\)
0.574207 0.818710i \(-0.305310\pi\)
\(510\) 0 0
\(511\) 164.896 0.322693
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 156.784i − 0.304435i
\(516\) 0 0
\(517\) 46.5735 0.0900842
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 869.182i − 1.66830i −0.551541 0.834148i \(-0.685960\pi\)
0.551541 0.834148i \(-0.314040\pi\)
\(522\) 0 0
\(523\) 985.764 1.88483 0.942413 0.334453i \(-0.108551\pi\)
0.942413 + 0.334453i \(0.108551\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 490.770i 0.931253i
\(528\) 0 0
\(529\) 140.795 0.266152
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 288.152i 0.540622i
\(534\) 0 0
\(535\) 621.586 1.16184
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.4866i 0.0268768i
\(540\) 0 0
\(541\) 489.643 0.905069 0.452535 0.891747i \(-0.350520\pi\)
0.452535 + 0.891747i \(0.350520\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 431.640i 0.792000i
\(546\) 0 0
\(547\) 96.1073 0.175699 0.0878495 0.996134i \(-0.472001\pi\)
0.0878495 + 0.996134i \(0.472001\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 36.7146i 0.0666326i
\(552\) 0 0
\(553\) −317.842 −0.574759
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 180.363i 0.323811i 0.986806 + 0.161905i \(0.0517640\pi\)
−0.986806 + 0.161905i \(0.948236\pi\)
\(558\) 0 0
\(559\) 328.256 0.587219
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 764.492i 1.35789i 0.734189 + 0.678945i \(0.237563\pi\)
−0.734189 + 0.678945i \(0.762437\pi\)
\(564\) 0 0
\(565\) −1341.70 −2.37468
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 421.556i 0.740872i 0.928858 + 0.370436i \(0.120792\pi\)
−0.928858 + 0.370436i \(0.879208\pi\)
\(570\) 0 0
\(571\) −550.600 −0.964273 −0.482136 0.876096i \(-0.660139\pi\)
−0.482136 + 0.876096i \(0.660139\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 1128.40i − 1.96243i
\(576\) 0 0
\(577\) −532.473 −0.922829 −0.461415 0.887185i \(-0.652658\pi\)
−0.461415 + 0.887185i \(0.652658\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 292.314i − 0.503123i
\(582\) 0 0
\(583\) −30.1509 −0.0517167
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 242.765i − 0.413569i −0.978386 0.206785i \(-0.933700\pi\)
0.978386 0.206785i \(-0.0663000\pi\)
\(588\) 0 0
\(589\) −321.255 −0.545425
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 89.0422i 0.150155i 0.997178 + 0.0750777i \(0.0239205\pi\)
−0.997178 + 0.0750777i \(0.976080\pi\)
\(594\) 0 0
\(595\) −218.771 −0.367682
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 628.172i 1.04870i 0.851503 + 0.524350i \(0.175692\pi\)
−0.851503 + 0.524350i \(0.824308\pi\)
\(600\) 0 0
\(601\) −24.3467 −0.0405102 −0.0202551 0.999795i \(-0.506448\pi\)
−0.0202551 + 0.999795i \(0.506448\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 1058.66i − 1.74985i
\(606\) 0 0
\(607\) −547.391 −0.901798 −0.450899 0.892575i \(-0.648897\pi\)
−0.450899 + 0.892575i \(0.648897\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 100.566i − 0.164593i
\(612\) 0 0
\(613\) −521.556 −0.850825 −0.425413 0.905000i \(-0.639871\pi\)
−0.425413 + 0.905000i \(0.639871\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 986.523i 1.59890i 0.600730 + 0.799452i \(0.294877\pi\)
−0.600730 + 0.799452i \(0.705123\pi\)
\(618\) 0 0
\(619\) 768.839 1.24207 0.621033 0.783784i \(-0.286713\pi\)
0.621033 + 0.783784i \(0.286713\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 332.091i 0.533052i
\(624\) 0 0
\(625\) 1223.15 1.95704
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 331.989i 0.527804i
\(630\) 0 0
\(631\) 764.067 1.21088 0.605441 0.795890i \(-0.292997\pi\)
0.605441 + 0.795890i \(0.292997\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 591.061i 0.930805i
\(636\) 0 0
\(637\) 31.2809 0.0491067
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 577.215i 0.900492i 0.892905 + 0.450246i \(0.148664\pi\)
−0.892905 + 0.450246i \(0.851336\pi\)
\(642\) 0 0
\(643\) 346.343 0.538636 0.269318 0.963051i \(-0.413202\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 513.567i − 0.793767i −0.917869 0.396883i \(-0.870092\pi\)
0.917869 0.396883i \(-0.129908\pi\)
\(648\) 0 0
\(649\) 148.613 0.228987
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 946.639i − 1.44968i −0.688919 0.724838i \(-0.741915\pi\)
0.688919 0.724838i \(-0.258085\pi\)
\(654\) 0 0
\(655\) 1284.71 1.96139
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 150.097i 0.227766i 0.993494 + 0.113883i \(0.0363288\pi\)
−0.993494 + 0.113883i \(0.963671\pi\)
\(660\) 0 0
\(661\) −409.569 −0.619621 −0.309810 0.950798i \(-0.600266\pi\)
−0.309810 + 0.950798i \(0.600266\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 143.206i − 0.215348i
\(666\) 0 0
\(667\) 121.221 0.181741
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 80.3402i 0.119732i
\(672\) 0 0
\(673\) −275.875 −0.409918 −0.204959 0.978771i \(-0.565706\pi\)
−0.204959 + 0.978771i \(0.565706\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1301.13i − 1.92191i −0.276705 0.960955i \(-0.589243\pi\)
0.276705 0.960955i \(-0.410757\pi\)
\(678\) 0 0
\(679\) 237.082 0.349164
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 767.412i − 1.12359i −0.827276 0.561795i \(-0.810111\pi\)
0.827276 0.561795i \(-0.189889\pi\)
\(684\) 0 0
\(685\) −469.062 −0.684763
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 65.1047i 0.0944916i
\(690\) 0 0
\(691\) 1146.24 1.65881 0.829405 0.558648i \(-0.188680\pi\)
0.829405 + 0.558648i \(0.188680\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1066.45i 1.53446i
\(696\) 0 0
\(697\) −587.838 −0.843384
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 945.712i − 1.34909i −0.738234 0.674545i \(-0.764340\pi\)
0.738234 0.674545i \(-0.235660\pi\)
\(702\) 0 0
\(703\) −217.318 −0.309130
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 225.888i − 0.319502i
\(708\) 0 0
\(709\) 916.701 1.29295 0.646475 0.762935i \(-0.276243\pi\)
0.646475 + 0.762935i \(0.276243\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1060.69i 1.48765i
\(714\) 0 0
\(715\) 83.8828 0.117319
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 675.009i − 0.938816i −0.882981 0.469408i \(-0.844467\pi\)
0.882981 0.469408i \(-0.155533\pi\)
\(720\) 0 0
\(721\) −45.7329 −0.0634298
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 352.353i 0.486005i
\(726\) 0 0
\(727\) 105.334 0.144888 0.0724442 0.997372i \(-0.476920\pi\)
0.0724442 + 0.997372i \(0.476920\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 669.652i 0.916077i
\(732\) 0 0
\(733\) 1223.69 1.66943 0.834714 0.550683i \(-0.185633\pi\)
0.834714 + 0.550683i \(0.185633\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 191.368i 0.259657i
\(738\) 0 0
\(739\) −682.076 −0.922972 −0.461486 0.887148i \(-0.652683\pi\)
−0.461486 + 0.887148i \(0.652683\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1099.02i − 1.47916i −0.673069 0.739579i \(-0.735024\pi\)
0.673069 0.739579i \(-0.264976\pi\)
\(744\) 0 0
\(745\) 1113.66 1.49485
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 181.313i − 0.242073i
\(750\) 0 0
\(751\) −835.969 −1.11314 −0.556571 0.830800i \(-0.687883\pi\)
−0.556571 + 0.830800i \(0.687883\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 871.871i − 1.15480i
\(756\) 0 0
\(757\) 849.591 1.12231 0.561156 0.827710i \(-0.310357\pi\)
0.561156 + 0.827710i \(0.310357\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 476.540i − 0.626203i −0.949720 0.313101i \(-0.898632\pi\)
0.949720 0.313101i \(-0.101368\pi\)
\(762\) 0 0
\(763\) 125.907 0.165015
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 320.899i − 0.418382i
\(768\) 0 0
\(769\) 269.649 0.350649 0.175324 0.984511i \(-0.443903\pi\)
0.175324 + 0.984511i \(0.443903\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 642.838i − 0.831614i −0.909453 0.415807i \(-0.863499\pi\)
0.909453 0.415807i \(-0.136501\pi\)
\(774\) 0 0
\(775\) −3083.12 −3.97822
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 384.796i − 0.493961i
\(780\) 0 0
\(781\) −61.7065 −0.0790096
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 248.872i 0.317034i
\(786\) 0 0
\(787\) −1328.18 −1.68765 −0.843825 0.536618i \(-0.819702\pi\)
−0.843825 + 0.536618i \(0.819702\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 391.364i 0.494771i
\(792\) 0 0
\(793\) 173.479 0.218762
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 511.671i 0.641996i 0.947080 + 0.320998i \(0.104018\pi\)
−0.947080 + 0.320998i \(0.895982\pi\)
\(798\) 0 0
\(799\) 205.158 0.256769
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 128.982i − 0.160625i
\(804\) 0 0
\(805\) −472.827 −0.587362
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 869.545i 1.07484i 0.843315 + 0.537420i \(0.180601\pi\)
−0.843315 + 0.537420i \(0.819399\pi\)
\(810\) 0 0
\(811\) 184.029 0.226916 0.113458 0.993543i \(-0.463807\pi\)
0.113458 + 0.993543i \(0.463807\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 326.738i 0.400906i
\(816\) 0 0
\(817\) −438.350 −0.536537
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 892.526i − 1.08712i −0.839370 0.543560i \(-0.817076\pi\)
0.839370 0.543560i \(-0.182924\pi\)
\(822\) 0 0
\(823\) 1079.35 1.31148 0.655739 0.754988i \(-0.272357\pi\)
0.655739 + 0.754988i \(0.272357\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1446.26i 1.74880i 0.485203 + 0.874402i \(0.338746\pi\)
−0.485203 + 0.874402i \(0.661254\pi\)
\(828\) 0 0
\(829\) −891.157 −1.07498 −0.537489 0.843270i \(-0.680627\pi\)
−0.537489 + 0.843270i \(0.680627\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 63.8141i 0.0766076i
\(834\) 0 0
\(835\) −2173.19 −2.60262
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 364.328i 0.434241i 0.976145 + 0.217120i \(0.0696664\pi\)
−0.976145 + 0.217120i \(0.930334\pi\)
\(840\) 0 0
\(841\) 803.148 0.954991
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1351.75i 1.59971i
\(846\) 0 0
\(847\) −308.804 −0.364586
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 717.523i 0.843152i
\(852\) 0 0
\(853\) −1612.54 −1.89043 −0.945214 0.326450i \(-0.894148\pi\)
−0.945214 + 0.326450i \(0.894148\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 221.077i 0.257966i 0.991647 + 0.128983i \(0.0411713\pi\)
−0.991647 + 0.128983i \(0.958829\pi\)
\(858\) 0 0
\(859\) 297.734 0.346605 0.173302 0.984869i \(-0.444556\pi\)
0.173302 + 0.984869i \(0.444556\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.1731i 0.0419155i 0.999780 + 0.0209578i \(0.00667155\pi\)
−0.999780 + 0.0209578i \(0.993328\pi\)
\(864\) 0 0
\(865\) −347.332 −0.401540
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 248.617i 0.286096i
\(870\) 0 0
\(871\) 413.220 0.474420
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 774.421i − 0.885053i
\(876\) 0 0
\(877\) 612.061 0.697904 0.348952 0.937141i \(-0.386538\pi\)
0.348952 + 0.937141i \(0.386538\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 463.592i 0.526211i 0.964767 + 0.263105i \(0.0847467\pi\)
−0.964767 + 0.263105i \(0.915253\pi\)
\(882\) 0 0
\(883\) −1618.82 −1.83332 −0.916658 0.399672i \(-0.869124\pi\)
−0.916658 + 0.399672i \(0.869124\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1084.96i 1.22317i 0.791177 + 0.611587i \(0.209469\pi\)
−0.791177 + 0.611587i \(0.790531\pi\)
\(888\) 0 0
\(889\) 172.409 0.193936
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 134.295i 0.150387i
\(894\) 0 0
\(895\) −2624.90 −2.93285
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 331.213i − 0.368423i
\(900\) 0 0
\(901\) −132.816 −0.147409
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1125.04i − 1.24313i
\(906\) 0 0
\(907\) 697.474 0.768990 0.384495 0.923127i \(-0.374376\pi\)
0.384495 + 0.923127i \(0.374376\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1682.48i − 1.84684i −0.383786 0.923422i \(-0.625380\pi\)
0.383786 0.923422i \(-0.374620\pi\)
\(912\) 0 0
\(913\) −228.649 −0.250437
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 374.741i − 0.408660i
\(918\) 0 0
\(919\) 1617.18 1.75972 0.879861 0.475231i \(-0.157636\pi\)
0.879861 + 0.475231i \(0.157636\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 133.243i 0.144358i
\(924\) 0 0
\(925\) −2085.62 −2.25473
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 692.871i 0.745825i 0.927867 + 0.372912i \(0.121641\pi\)
−0.927867 + 0.372912i \(0.878359\pi\)
\(930\) 0 0
\(931\) −41.7724 −0.0448683
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 171.124i 0.183020i
\(936\) 0 0
\(937\) −1134.83 −1.21113 −0.605565 0.795796i \(-0.707053\pi\)
−0.605565 + 0.795796i \(0.707053\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 492.664i − 0.523553i −0.965128 0.261777i \(-0.915692\pi\)
0.965128 0.261777i \(-0.0843084\pi\)
\(942\) 0 0
\(943\) −1270.49 −1.34728
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 584.464i − 0.617174i −0.951196 0.308587i \(-0.900144\pi\)
0.951196 0.308587i \(-0.0998562\pi\)
\(948\) 0 0
\(949\) −278.511 −0.293479
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 476.167i − 0.499651i −0.968291 0.249826i \(-0.919627\pi\)
0.968291 0.249826i \(-0.0803733\pi\)
\(954\) 0 0
\(955\) −1612.51 −1.68850
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 136.822i 0.142672i
\(960\) 0 0
\(961\) 1937.14 2.01575
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 625.875i 0.648575i
\(966\) 0 0
\(967\) −1579.38 −1.63328 −0.816638 0.577151i \(-0.804165\pi\)
−0.816638 + 0.577151i \(0.804165\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 962.629i − 0.991379i −0.868500 0.495690i \(-0.834915\pi\)
0.868500 0.495690i \(-0.165085\pi\)
\(972\) 0 0
\(973\) 311.076 0.319708
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 94.4955i − 0.0967200i −0.998830 0.0483600i \(-0.984601\pi\)
0.998830 0.0483600i \(-0.0153995\pi\)
\(978\) 0 0
\(979\) 259.763 0.265335
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 983.668i 1.00068i 0.865829 + 0.500340i \(0.166792\pi\)
−0.865829 + 0.500340i \(0.833208\pi\)
\(984\) 0 0
\(985\) 419.091 0.425473
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1447.31i 1.46341i
\(990\) 0 0
\(991\) −636.396 −0.642175 −0.321088 0.947049i \(-0.604048\pi\)
−0.321088 + 0.947049i \(0.604048\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2637.94i 2.65120i
\(996\) 0 0
\(997\) 1147.65 1.15110 0.575550 0.817767i \(-0.304788\pi\)
0.575550 + 0.817767i \(0.304788\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.3.d.n.449.1 12
3.2 odd 2 inner 4032.3.d.n.449.12 12
4.3 odd 2 4032.3.d.o.449.1 12
8.3 odd 2 2016.3.d.e.449.12 yes 12
8.5 even 2 2016.3.d.f.449.12 yes 12
12.11 even 2 4032.3.d.o.449.12 12
24.5 odd 2 2016.3.d.f.449.1 yes 12
24.11 even 2 2016.3.d.e.449.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.3.d.e.449.1 12 24.11 even 2
2016.3.d.e.449.12 yes 12 8.3 odd 2
2016.3.d.f.449.1 yes 12 24.5 odd 2
2016.3.d.f.449.12 yes 12 8.5 even 2
4032.3.d.n.449.1 12 1.1 even 1 trivial
4032.3.d.n.449.12 12 3.2 odd 2 inner
4032.3.d.o.449.1 12 4.3 odd 2
4032.3.d.o.449.12 12 12.11 even 2