Properties

Label 4032.2.v.a.1583.1
Level $4032$
Weight $2$
Character 4032.1583
Analytic conductor $32.196$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,2,Mod(1583,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.1583"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1583.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 4032.1583
Dual form 4032.2.v.a.3599.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{5} -1.00000 q^{7} +(-1.41421 + 1.41421i) q^{11} +(2.00000 + 2.00000i) q^{13} +7.07107i q^{23} -1.00000i q^{25} +(1.41421 - 1.41421i) q^{29} -8.00000i q^{31} +(1.41421 + 1.41421i) q^{35} +(5.00000 - 5.00000i) q^{37} -2.82843 q^{41} +(3.00000 + 3.00000i) q^{43} -5.65685 q^{47} +1.00000 q^{49} +4.00000 q^{55} +(2.82843 - 2.82843i) q^{59} +(-2.00000 - 2.00000i) q^{61} -5.65685i q^{65} +(5.00000 - 5.00000i) q^{67} -9.89949i q^{71} +14.0000i q^{73} +(1.41421 - 1.41421i) q^{77} -16.0000i q^{79} +(2.82843 + 2.82843i) q^{83} -11.3137 q^{89} +(-2.00000 - 2.00000i) q^{91} -6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 8 q^{13} + 20 q^{37} + 12 q^{43} + 4 q^{49} + 16 q^{55} - 8 q^{61} + 20 q^{67} - 8 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.41421 1.41421i −0.632456 0.632456i 0.316228 0.948683i \(-0.397584\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.41421 + 1.41421i −0.426401 + 0.426401i −0.887401 0.460999i \(-0.847491\pi\)
0.460999 + 0.887401i \(0.347491\pi\)
\(12\) 0 0
\(13\) 2.00000 + 2.00000i 0.554700 + 0.554700i 0.927794 0.373094i \(-0.121703\pi\)
−0.373094 + 0.927794i \(0.621703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.07107i 1.47442i 0.675664 + 0.737210i \(0.263857\pi\)
−0.675664 + 0.737210i \(0.736143\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.41421 1.41421i 0.262613 0.262613i −0.563502 0.826115i \(-0.690546\pi\)
0.826115 + 0.563502i \(0.190546\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.41421 + 1.41421i 0.239046 + 0.239046i
\(36\) 0 0
\(37\) 5.00000 5.00000i 0.821995 0.821995i −0.164399 0.986394i \(-0.552568\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.82843 −0.441726 −0.220863 0.975305i \(-0.570887\pi\)
−0.220863 + 0.975305i \(0.570887\pi\)
\(42\) 0 0
\(43\) 3.00000 + 3.00000i 0.457496 + 0.457496i 0.897833 0.440337i \(-0.145141\pi\)
−0.440337 + 0.897833i \(0.645141\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.65685 −0.825137 −0.412568 0.910927i \(-0.635368\pi\)
−0.412568 + 0.910927i \(0.635368\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.82843 2.82843i 0.368230 0.368230i −0.498601 0.866831i \(-0.666153\pi\)
0.866831 + 0.498601i \(0.166153\pi\)
\(60\) 0 0
\(61\) −2.00000 2.00000i −0.256074 0.256074i 0.567381 0.823455i \(-0.307957\pi\)
−0.823455 + 0.567381i \(0.807957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.65685i 0.701646i
\(66\) 0 0
\(67\) 5.00000 5.00000i 0.610847 0.610847i −0.332320 0.943167i \(-0.607831\pi\)
0.943167 + 0.332320i \(0.107831\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.89949i 1.17485i −0.809277 0.587427i \(-0.800141\pi\)
0.809277 0.587427i \(-0.199859\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.41421 1.41421i 0.161165 0.161165i
\(78\) 0 0
\(79\) 16.0000i 1.80014i −0.435745 0.900070i \(-0.643515\pi\)
0.435745 0.900070i \(-0.356485\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.82843 + 2.82843i 0.310460 + 0.310460i 0.845088 0.534628i \(-0.179548\pi\)
−0.534628 + 0.845088i \(0.679548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.3137 −1.19925 −0.599625 0.800281i \(-0.704684\pi\)
−0.599625 + 0.800281i \(0.704684\pi\)
\(90\) 0 0
\(91\) −2.00000 2.00000i −0.209657 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7279 12.7279i −1.26648 1.26648i −0.947896 0.318579i \(-0.896794\pi\)
−0.318579 0.947896i \(-0.603206\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82843 + 2.82843i −0.273434 + 0.273434i −0.830481 0.557047i \(-0.811934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(108\) 0 0
\(109\) −1.00000 1.00000i −0.0957826 0.0957826i 0.657592 0.753374i \(-0.271575\pi\)
−0.753374 + 0.657592i \(0.771575\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.24264i 0.399114i 0.979886 + 0.199557i \(0.0639503\pi\)
−0.979886 + 0.199557i \(0.936050\pi\)
\(114\) 0 0
\(115\) 10.0000 10.0000i 0.932505 0.932505i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.48528 + 8.48528i −0.758947 + 0.758947i
\(126\) 0 0
\(127\) 10.0000i 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.82843 2.82843i −0.247121 0.247121i 0.572667 0.819788i \(-0.305909\pi\)
−0.819788 + 0.572667i \(0.805909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.5563 −1.32907 −0.664534 0.747258i \(-0.731370\pi\)
−0.664534 + 0.747258i \(0.731370\pi\)
\(138\) 0 0
\(139\) 6.00000 + 6.00000i 0.508913 + 0.508913i 0.914193 0.405279i \(-0.132826\pi\)
−0.405279 + 0.914193i \(0.632826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.65685 −0.473050
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.07107 7.07107i −0.579284 0.579284i 0.355422 0.934706i \(-0.384337\pi\)
−0.934706 + 0.355422i \(0.884337\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.3137 + 11.3137i −0.908739 + 0.908739i
\(156\) 0 0
\(157\) −8.00000 8.00000i −0.638470 0.638470i 0.311708 0.950178i \(-0.399099\pi\)
−0.950178 + 0.311708i \(0.899099\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.07107i 0.557278i
\(162\) 0 0
\(163\) 15.0000 15.0000i 1.17489 1.17489i 0.193862 0.981029i \(-0.437899\pi\)
0.981029 0.193862i \(-0.0621013\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.7990i 1.53209i −0.642786 0.766046i \(-0.722221\pi\)
0.642786 0.766046i \(-0.277779\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.89949 9.89949i 0.752645 0.752645i −0.222327 0.974972i \(-0.571365\pi\)
0.974972 + 0.222327i \(0.0713654\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.48528 8.48528i −0.634220 0.634220i 0.314904 0.949124i \(-0.398028\pi\)
−0.949124 + 0.314904i \(0.898028\pi\)
\(180\) 0 0
\(181\) 14.0000 14.0000i 1.04061 1.04061i 0.0414721 0.999140i \(-0.486795\pi\)
0.999140 0.0414721i \(-0.0132048\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −14.1421 −1.03975
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.24264 0.306987 0.153493 0.988150i \(-0.450948\pi\)
0.153493 + 0.988150i \(0.450948\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.89949 + 9.89949i 0.705310 + 0.705310i 0.965545 0.260235i \(-0.0838002\pi\)
−0.260235 + 0.965545i \(0.583800\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.41421 + 1.41421i −0.0992583 + 0.0992583i
\(204\) 0 0
\(205\) 4.00000 + 4.00000i 0.279372 + 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −9.00000 + 9.00000i −0.619586 + 0.619586i −0.945425 0.325840i \(-0.894353\pi\)
0.325840 + 0.945425i \(0.394353\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.48528i 0.578691i
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.48528 8.48528i −0.563188 0.563188i 0.367024 0.930212i \(-0.380377\pi\)
−0.930212 + 0.367024i \(0.880377\pi\)
\(228\) 0 0
\(229\) 18.0000 18.0000i 1.18947 1.18947i 0.212260 0.977213i \(-0.431918\pi\)
0.977213 0.212260i \(-0.0680825\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.2132 −1.38972 −0.694862 0.719144i \(-0.744534\pi\)
−0.694862 + 0.719144i \(0.744534\pi\)
\(234\) 0 0
\(235\) 8.00000 + 8.00000i 0.521862 + 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41421 0.0914779 0.0457389 0.998953i \(-0.485436\pi\)
0.0457389 + 0.998953i \(0.485436\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.41421 1.41421i −0.0903508 0.0903508i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 0 0
\(253\) −10.0000 10.0000i −0.628695 0.628695i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3137i 0.705730i −0.935674 0.352865i \(-0.885208\pi\)
0.935674 0.352865i \(-0.114792\pi\)
\(258\) 0 0
\(259\) −5.00000 + 5.00000i −0.310685 + 0.310685i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.24264i 0.261612i −0.991408 0.130806i \(-0.958243\pi\)
0.991408 0.130806i \(-0.0417566\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.2132 + 21.2132i −1.29339 + 1.29339i −0.360716 + 0.932676i \(0.617468\pi\)
−0.932676 + 0.360716i \(0.882532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421 + 1.41421i 0.0852803 + 0.0852803i
\(276\) 0 0
\(277\) −7.00000 + 7.00000i −0.420589 + 0.420589i −0.885407 0.464817i \(-0.846120\pi\)
0.464817 + 0.885407i \(0.346120\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.89949 0.590554 0.295277 0.955412i \(-0.404588\pi\)
0.295277 + 0.955412i \(0.404588\pi\)
\(282\) 0 0
\(283\) 6.00000 + 6.00000i 0.356663 + 0.356663i 0.862581 0.505918i \(-0.168846\pi\)
−0.505918 + 0.862581i \(0.668846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.82843 0.166957
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 21.2132 + 21.2132i 1.23929 + 1.23929i 0.960292 + 0.278996i \(0.0900018\pi\)
0.278996 + 0.960292i \(0.409998\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.1421 + 14.1421i −0.817861 + 0.817861i
\(300\) 0 0
\(301\) −3.00000 3.00000i −0.172917 0.172917i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.65685i 0.323911i
\(306\) 0 0
\(307\) 12.0000 12.0000i 0.684876 0.684876i −0.276219 0.961095i \(-0.589081\pi\)
0.961095 + 0.276219i \(0.0890814\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.9411i 1.92462i −0.271947 0.962312i \(-0.587667\pi\)
0.271947 0.962312i \(-0.412333\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i −0.783210 0.621757i \(-0.786419\pi\)
0.783210 0.621757i \(-0.213581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 4.00000i 0.223957i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 2.00000i 0.110940 0.110940i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.65685 0.311872
\(330\) 0 0
\(331\) 1.00000 + 1.00000i 0.0549650 + 0.0549650i 0.734055 0.679090i \(-0.237625\pi\)
−0.679090 + 0.734055i \(0.737625\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.1421 −0.772667
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.3137 + 11.3137i 0.612672 + 0.612672i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.1421 14.1421i 0.759190 0.759190i −0.216985 0.976175i \(-0.569622\pi\)
0.976175 + 0.216985i \(0.0696224\pi\)
\(348\) 0 0
\(349\) −16.0000 16.0000i −0.856460 0.856460i 0.134459 0.990919i \(-0.457070\pi\)
−0.990919 + 0.134459i \(0.957070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.1127i 1.65596i −0.560756 0.827981i \(-0.689490\pi\)
0.560756 0.827981i \(-0.310510\pi\)
\(354\) 0 0
\(355\) −14.0000 + 14.0000i −0.743043 + 0.743043i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.07107i 0.373197i 0.982436 + 0.186598i \(0.0597463\pi\)
−0.982436 + 0.186598i \(0.940254\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.7990 19.7990i 1.03633 1.03633i
\(366\) 0 0
\(367\) 20.0000i 1.04399i −0.852948 0.521996i \(-0.825188\pi\)
0.852948 0.521996i \(-0.174812\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.0000 11.0000i 0.569558 0.569558i −0.362446 0.932005i \(-0.618058\pi\)
0.932005 + 0.362446i \(0.118058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.65685 0.291343
\(378\) 0 0
\(379\) 11.0000 + 11.0000i 0.565032 + 0.565032i 0.930733 0.365701i \(-0.119171\pi\)
−0.365701 + 0.930733i \(0.619171\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.1421 −0.722629 −0.361315 0.932444i \(-0.617672\pi\)
−0.361315 + 0.932444i \(0.617672\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9706 + 16.9706i 0.860442 + 0.860442i 0.991389 0.130948i \(-0.0418020\pi\)
−0.130948 + 0.991389i \(0.541802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.6274 + 22.6274i −1.13851 + 1.13851i
\(396\) 0 0
\(397\) 4.00000 + 4.00000i 0.200754 + 0.200754i 0.800323 0.599569i \(-0.204661\pi\)
−0.599569 + 0.800323i \(0.704661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i 0.999376 + 0.0353112i \(0.0112422\pi\)
−0.999376 + 0.0353112i \(0.988758\pi\)
\(402\) 0 0
\(403\) 16.0000 16.0000i 0.797017 0.797017i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 14.1421i 0.701000i
\(408\) 0 0
\(409\) 26.0000i 1.28562i −0.766027 0.642809i \(-0.777769\pi\)
0.766027 0.642809i \(-0.222231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.82843 + 2.82843i −0.139178 + 0.139178i
\(414\) 0 0
\(415\) 8.00000i 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.9706 + 16.9706i 0.829066 + 0.829066i 0.987388 0.158321i \(-0.0506082\pi\)
−0.158321 + 0.987388i \(0.550608\pi\)
\(420\) 0 0
\(421\) 21.0000 21.0000i 1.02348 1.02348i 0.0237597 0.999718i \(-0.492436\pi\)
0.999718 0.0237597i \(-0.00756365\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.00000 + 2.00000i 0.0967868 + 0.0967868i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 41.0122 1.97549 0.987744 0.156083i \(-0.0498868\pi\)
0.987744 + 0.156083i \(0.0498868\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.3848 + 18.3848i −0.873487 + 0.873487i −0.992851 0.119364i \(-0.961915\pi\)
0.119364 + 0.992851i \(0.461915\pi\)
\(444\) 0 0
\(445\) 16.0000 + 16.0000i 0.758473 + 0.758473i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i −0.994976 0.100111i \(-0.968080\pi\)
0.994976 0.100111i \(-0.0319199\pi\)
\(450\) 0 0
\(451\) 4.00000 4.00000i 0.188353 0.188353i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.65685i 0.265197i
\(456\) 0 0
\(457\) 12.0000i 0.561336i 0.959805 + 0.280668i \(0.0905560\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.5563 + 15.5563i −0.724531 + 0.724531i −0.969525 0.244993i \(-0.921214\pi\)
0.244993 + 0.969525i \(0.421214\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.4558 25.4558i −1.17796 1.17796i −0.980264 0.197692i \(-0.936655\pi\)
−0.197692 0.980264i \(-0.563345\pi\)
\(468\) 0 0
\(469\) −5.00000 + 5.00000i −0.230879 + 0.230879i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.48528 −0.390154
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.3137 −0.516937 −0.258468 0.966020i \(-0.583218\pi\)
−0.258468 + 0.966020i \(0.583218\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.48528 + 8.48528i 0.385297 + 0.385297i
\(486\) 0 0
\(487\) −26.0000 −1.17817 −0.589086 0.808070i \(-0.700512\pi\)
−0.589086 + 0.808070i \(0.700512\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.7279 + 12.7279i −0.574403 + 0.574403i −0.933356 0.358953i \(-0.883134\pi\)
0.358953 + 0.933356i \(0.383134\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.89949i 0.444053i
\(498\) 0 0
\(499\) 9.00000 9.00000i 0.402895 0.402895i −0.476357 0.879252i \(-0.658043\pi\)
0.879252 + 0.476357i \(0.158043\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.7990i 0.882793i −0.897312 0.441397i \(-0.854483\pi\)
0.897312 0.441397i \(-0.145517\pi\)
\(504\) 0 0
\(505\) 36.0000i 1.60198i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.2132 21.2132i 0.940259 0.940259i −0.0580547 0.998313i \(-0.518490\pi\)
0.998313 + 0.0580547i \(0.0184898\pi\)
\(510\) 0 0
\(511\) 14.0000i 0.619324i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.3137 + 11.3137i 0.498542 + 0.498542i
\(516\) 0 0
\(517\) 8.00000 8.00000i 0.351840 0.351840i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.2843 −1.23916 −0.619578 0.784935i \(-0.712696\pi\)
−0.619578 + 0.784935i \(0.712696\pi\)
\(522\) 0 0
\(523\) 12.0000 + 12.0000i 0.524723 + 0.524723i 0.918994 0.394271i \(-0.129003\pi\)
−0.394271 + 0.918994i \(0.629003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −27.0000 −1.17391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.65685 5.65685i −0.245026 0.245026i
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.41421 + 1.41421i −0.0609145 + 0.0609145i
\(540\) 0 0
\(541\) −21.0000 21.0000i −0.902861 0.902861i 0.0928222 0.995683i \(-0.470411\pi\)
−0.995683 + 0.0928222i \(0.970411\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.82843i 0.121157i
\(546\) 0 0
\(547\) −27.0000 + 27.0000i −1.15444 + 1.15444i −0.168783 + 0.985653i \(0.553984\pi\)
−0.985653 + 0.168783i \(0.946016\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.7279 12.7279i 0.539299 0.539299i −0.384024 0.923323i \(-0.625462\pi\)
0.923323 + 0.384024i \(0.125462\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.48528 + 8.48528i 0.357612 + 0.357612i 0.862932 0.505320i \(-0.168626\pi\)
−0.505320 + 0.862932i \(0.668626\pi\)
\(564\) 0 0
\(565\) 6.00000 6.00000i 0.252422 0.252422i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.07107 −0.296435 −0.148217 0.988955i \(-0.547354\pi\)
−0.148217 + 0.988955i \(0.547354\pi\)
\(570\) 0 0
\(571\) 15.0000 + 15.0000i 0.627730 + 0.627730i 0.947497 0.319766i \(-0.103604\pi\)
−0.319766 + 0.947497i \(0.603604\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.07107 0.294884
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.82843 2.82843i −0.117343 0.117343i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.3137 11.3137i 0.466967 0.466967i −0.433964 0.900930i \(-0.642885\pi\)
0.900930 + 0.433964i \(0.142885\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.7990i 0.813047i 0.913640 + 0.406524i \(0.133259\pi\)
−0.913640 + 0.406524i \(0.866741\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.1838i 1.56015i 0.625688 + 0.780073i \(0.284818\pi\)
−0.625688 + 0.780073i \(0.715182\pi\)
\(600\) 0 0
\(601\) 2.00000i 0.0815817i 0.999168 + 0.0407909i \(0.0129877\pi\)
−0.999168 + 0.0407909i \(0.987012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.89949 9.89949i 0.402472 0.402472i
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.3137 11.3137i −0.457704 0.457704i
\(612\) 0 0
\(613\) −3.00000 + 3.00000i −0.121169 + 0.121169i −0.765091 0.643922i \(-0.777306\pi\)
0.643922 + 0.765091i \(0.277306\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0416 0.967880 0.483940 0.875101i \(-0.339205\pi\)
0.483940 + 0.875101i \(0.339205\pi\)
\(618\) 0 0
\(619\) −24.0000 24.0000i −0.964641 0.964641i 0.0347544 0.999396i \(-0.488935\pi\)
−0.999396 + 0.0347544i \(0.988935\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.3137 0.453274
\(624\) 0 0
\(625\) 19.0000 0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.1421 + 14.1421i −0.561214 + 0.561214i
\(636\) 0 0
\(637\) 2.00000 + 2.00000i 0.0792429 + 0.0792429i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.3848i 0.726155i −0.931759 0.363078i \(-0.881726\pi\)
0.931759 0.363078i \(-0.118274\pi\)
\(642\) 0 0
\(643\) −6.00000 + 6.00000i −0.236617 + 0.236617i −0.815448 0.578831i \(-0.803509\pi\)
0.578831 + 0.815448i \(0.303509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.7990i 0.778379i −0.921158 0.389189i \(-0.872755\pi\)
0.921158 0.389189i \(-0.127245\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.6985 29.6985i 1.16219 1.16219i 0.178197 0.983995i \(-0.442974\pi\)
0.983995 0.178197i \(-0.0570263\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.4558 + 25.4558i 0.991619 + 0.991619i 0.999965 0.00834627i \(-0.00265673\pi\)
−0.00834627 + 0.999965i \(0.502657\pi\)
\(660\) 0 0
\(661\) 34.0000 34.0000i 1.32245 1.32245i 0.410657 0.911790i \(-0.365299\pi\)
0.911790 0.410657i \(-0.134701\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 + 10.0000i 0.387202 + 0.387202i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.65685 0.218380
\(672\) 0 0
\(673\) −20.0000 −0.770943 −0.385472 0.922720i \(-0.625961\pi\)
−0.385472 + 0.922720i \(0.625961\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.2132 + 21.2132i 0.815290 + 0.815290i 0.985421 0.170132i \(-0.0544193\pi\)
−0.170132 + 0.985421i \(0.554419\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.2132 21.2132i 0.811701 0.811701i −0.173188 0.984889i \(-0.555407\pi\)
0.984889 + 0.173188i \(0.0554069\pi\)
\(684\) 0 0
\(685\) 22.0000 + 22.0000i 0.840577 + 0.840577i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −26.0000 + 26.0000i −0.989087 + 0.989087i −0.999941 0.0108545i \(-0.996545\pi\)
0.0108545 + 0.999941i \(0.496545\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.9706i 0.643730i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.48528 + 8.48528i −0.320485 + 0.320485i −0.848953 0.528468i \(-0.822767\pi\)
0.528468 + 0.848953i \(0.322767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.7279 + 12.7279i 0.478683 + 0.478683i
\(708\) 0 0
\(709\) −27.0000 + 27.0000i −1.01401 + 1.01401i −0.0141058 + 0.999901i \(0.504490\pi\)
−0.999901 + 0.0141058i \(0.995510\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 56.5685 2.11851
\(714\) 0 0
\(715\) 8.00000 + 8.00000i 0.299183 + 0.299183i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.82843 −0.105483 −0.0527413 0.998608i \(-0.516796\pi\)
−0.0527413 + 0.998608i \(0.516796\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.41421 1.41421i −0.0525226 0.0525226i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −28.0000 28.0000i −1.03420 1.03420i −0.999394 0.0348096i \(-0.988918\pi\)
−0.0348096 0.999394i \(-0.511082\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1421i 0.520932i
\(738\) 0 0
\(739\) 17.0000 17.0000i 0.625355 0.625355i −0.321541 0.946896i \(-0.604201\pi\)
0.946896 + 0.321541i \(0.104201\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.89949i 0.363177i 0.983375 + 0.181589i \(0.0581239\pi\)
−0.983375 + 0.181589i \(0.941876\pi\)
\(744\) 0 0
\(745\) 20.0000i 0.732743i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.82843 2.82843i 0.103348 0.103348i
\(750\) 0 0
\(751\) 32.0000i 1.16770i −0.811863 0.583848i \(-0.801546\pi\)
0.811863 0.583848i \(-0.198454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.1421 + 14.1421i 0.514685 + 0.514685i
\(756\) 0 0
\(757\) −17.0000 + 17.0000i −0.617876 + 0.617876i −0.944986 0.327111i \(-0.893925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.82843 0.102530 0.0512652 0.998685i \(-0.483675\pi\)
0.0512652 + 0.998685i \(0.483675\pi\)
\(762\) 0 0
\(763\) 1.00000 + 1.00000i 0.0362024 + 0.0362024i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.3137 0.408514
\(768\) 0 0
\(769\) −54.0000 −1.94729 −0.973645 0.228069i \(-0.926759\pi\)
−0.973645 + 0.228069i \(0.926759\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.89949 9.89949i −0.356060 0.356060i 0.506298 0.862358i \(-0.331013\pi\)
−0.862358 + 0.506298i \(0.831013\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 14.0000 + 14.0000i 0.500959 + 0.500959i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.6274i 0.807607i
\(786\) 0 0
\(787\) 2.00000 2.00000i 0.0712923 0.0712923i −0.670562 0.741854i \(-0.733947\pi\)
0.741854 + 0.670562i \(0.233947\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.24264i 0.150851i
\(792\) 0 0
\(793\) 8.00000i 0.284088i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.7279 + 12.7279i −0.450846 + 0.450846i −0.895635 0.444789i \(-0.853279\pi\)
0.444789 + 0.895635i \(0.353279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.7990 19.7990i −0.698691 0.698691i
\(804\) 0 0
\(805\) −10.0000 + 10.0000i −0.352454 + 0.352454i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.3553 1.24303 0.621514 0.783403i \(-0.286518\pi\)
0.621514 + 0.783403i \(0.286518\pi\)
\(810\) 0 0
\(811\) 12.0000 + 12.0000i 0.421377 + 0.421377i 0.885678 0.464301i \(-0.153694\pi\)
−0.464301 + 0.885678i \(0.653694\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.4264 −1.48613
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.6274 22.6274i −0.789702 0.789702i 0.191743 0.981445i \(-0.438586\pi\)
−0.981445 + 0.191743i \(0.938586\pi\)
\(822\) 0 0
\(823\) 2.00000 0.0697156 0.0348578 0.999392i \(-0.488902\pi\)
0.0348578 + 0.999392i \(0.488902\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.4558 25.4558i 0.885186 0.885186i −0.108870 0.994056i \(-0.534723\pi\)
0.994056 + 0.108870i \(0.0347231\pi\)
\(828\) 0 0
\(829\) −12.0000 12.0000i −0.416777 0.416777i 0.467314 0.884091i \(-0.345222\pi\)
−0.884091 + 0.467314i \(0.845222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −28.0000 + 28.0000i −0.968980 + 0.968980i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.82843i 0.0976481i −0.998807 0.0488241i \(-0.984453\pi\)
0.998807 0.0488241i \(-0.0155474\pi\)
\(840\) 0 0
\(841\) 25.0000i 0.862069i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.07107 + 7.07107i −0.243252 + 0.243252i
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 35.3553 + 35.3553i 1.21197 + 1.21197i
\(852\) 0 0
\(853\) −16.0000 + 16.0000i −0.547830 + 0.547830i −0.925813 0.377983i \(-0.876618\pi\)
0.377983 + 0.925813i \(0.376618\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.82843 −0.0966172 −0.0483086 0.998832i \(-0.515383\pi\)
−0.0483086 + 0.998832i \(0.515383\pi\)
\(858\) 0 0
\(859\) 32.0000 + 32.0000i 1.09183 + 1.09183i 0.995334 + 0.0964922i \(0.0307623\pi\)
0.0964922 + 0.995334i \(0.469238\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.0416 0.818387 0.409193 0.912448i \(-0.365810\pi\)
0.409193 + 0.912448i \(0.365810\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.6274 + 22.6274i 0.767583 + 0.767583i
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.48528 8.48528i 0.286855 0.286855i
\(876\) 0 0
\(877\) 21.0000 + 21.0000i 0.709120 + 0.709120i 0.966350 0.257230i \(-0.0828100\pi\)
−0.257230 + 0.966350i \(0.582810\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.1421i 0.476461i −0.971209 0.238230i \(-0.923433\pi\)
0.971209 0.238230i \(-0.0765673\pi\)
\(882\) 0 0
\(883\) −15.0000 + 15.0000i −0.504790 + 0.504790i −0.912923 0.408133i \(-0.866180\pi\)
0.408133 + 0.912923i \(0.366180\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.82843i 0.0949693i −0.998872 0.0474846i \(-0.984879\pi\)
0.998872 0.0474846i \(-0.0151205\pi\)
\(888\) 0 0
\(889\) 10.0000i 0.335389i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 24.0000i 0.802232i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.3137 11.3137i −0.377333 0.377333i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −39.5980 −1.31628
\(906\) 0 0
\(907\) −29.0000 29.0000i −0.962929 0.962929i 0.0364078 0.999337i \(-0.488408\pi\)
−0.999337 + 0.0364078i \(0.988408\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.3259 1.73363 0.866817 0.498626i \(-0.166162\pi\)
0.866817 + 0.498626i \(0.166162\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.82843 + 2.82843i 0.0934029 + 0.0934029i
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 19.7990 19.7990i 0.651692 0.651692i
\(924\) 0 0
\(925\) −5.00000 5.00000i −0.164399 0.164399i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36.7696i 1.20637i 0.797601 + 0.603185i \(0.206102\pi\)
−0.797601 + 0.603185i \(0.793898\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000i 0.457360i 0.973502 + 0.228680i \(0.0734410\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.7279 + 12.7279i −0.414918 + 0.414918i −0.883448 0.468529i \(-0.844784\pi\)
0.468529 + 0.883448i \(0.344784\pi\)
\(942\) 0 0
\(943\) 20.0000i 0.651290i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.7990 19.7990i −0.643381 0.643381i 0.308004 0.951385i \(-0.400339\pi\)
−0.951385 + 0.308004i \(0.900339\pi\)
\(948\) 0 0
\(949\) −28.0000 + 28.0000i −0.908918 + 0.908918i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.41421 0.0458109 0.0229054 0.999738i \(-0.492708\pi\)
0.0229054 + 0.999738i \(0.492708\pi\)
\(954\) 0 0
\(955\) −6.00000 6.00000i −0.194155 0.194155i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.5563 0.502341
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.7990 + 19.7990i 0.637352 + 0.637352i
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.7696 36.7696i 1.17999 1.17999i 0.200245 0.979746i \(-0.435826\pi\)
0.979746 0.200245i \(-0.0641739\pi\)
\(972\) 0 0
\(973\) −6.00000 6.00000i −0.192351 0.192351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.0122i 1.31210i 0.754719 + 0.656048i \(0.227773\pi\)
−0.754719 + 0.656048i \(0.772227\pi\)
\(978\) 0 0
\(979\) 16.0000 16.0000i 0.511362 0.511362i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33.9411i 1.08255i 0.840844 + 0.541277i \(0.182059\pi\)
−0.840844 + 0.541277i \(0.817941\pi\)
\(984\) 0 0
\(985\) 28.0000i 0.892154i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.2132 + 21.2132i −0.674541 + 0.674541i
\(990\) 0 0
\(991\) 26.0000i 0.825917i 0.910750 + 0.412959i \(0.135505\pi\)
−0.910750 + 0.412959i \(0.864495\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.65685 + 5.65685i 0.179334 + 0.179334i
\(996\) 0 0
\(997\) −2.00000 + 2.00000i −0.0633406 + 0.0633406i −0.738068 0.674727i \(-0.764261\pi\)
0.674727 + 0.738068i \(0.264261\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.2.v.a.1583.1 4
3.2 odd 2 inner 4032.2.v.a.1583.2 4
4.3 odd 2 1008.2.v.b.323.2 yes 4
12.11 even 2 1008.2.v.b.323.1 4
16.5 even 4 1008.2.v.b.827.1 yes 4
16.11 odd 4 inner 4032.2.v.a.3599.2 4
48.5 odd 4 1008.2.v.b.827.2 yes 4
48.11 even 4 inner 4032.2.v.a.3599.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.v.b.323.1 4 12.11 even 2
1008.2.v.b.323.2 yes 4 4.3 odd 2
1008.2.v.b.827.1 yes 4 16.5 even 4
1008.2.v.b.827.2 yes 4 48.5 odd 4
4032.2.v.a.1583.1 4 1.1 even 1 trivial
4032.2.v.a.1583.2 4 3.2 odd 2 inner
4032.2.v.a.3599.1 4 48.11 even 4 inner
4032.2.v.a.3599.2 4 16.11 odd 4 inner