Properties

Label 403.2.bl
Level $403$
Weight $2$
Character orbit 403.bl
Rep. character $\chi_{403}(16,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $288$
Newform subspaces $2$
Sturm bound $74$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.bl (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 403 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 2 \)
Sturm bound: \(74\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(403, [\chi])\).

Total New Old
Modular forms 320 320 0
Cusp forms 288 288 0
Eisenstein series 32 32 0

Trace form

\( 288 q - 3 q^{2} - 5 q^{3} + 33 q^{4} - 32 q^{5} - 10 q^{6} - 5 q^{7} - 2 q^{8} + 31 q^{9} - 9 q^{10} - 6 q^{11} + 14 q^{12} - 5 q^{13} - 48 q^{14} - 12 q^{15} + 45 q^{16} - 3 q^{17} + 6 q^{18} - q^{19}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(403, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
403.2.bl.a 403.bl 403.al $8$ $3.218$ \(\Q(\zeta_{15})\) None 403.2.bl.a \(-4\) \(-5\) \(-24\) \(-3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-2+\zeta_{15}+\zeta_{15}^{2}-2\zeta_{15}^{3}+2\zeta_{15}^{4}+\cdots)q^{2}+\cdots\)
403.2.bl.b 403.bl 403.al $280$ $3.218$ None 403.2.bl.b \(1\) \(0\) \(-8\) \(-2\) $\mathrm{SU}(2)[C_{15}]$