Defining parameters
Level: | \( N \) | = | \( 403 = 13 \cdot 31 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 403.bl (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 403 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Newforms: | \( 2 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(403, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 320 | 0 |
Cusp forms | 288 | 288 | 0 |
Eisenstein series | 32 | 32 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(403, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
403.2.bl.a | \(8\) | \(3.218\) | \(\Q(\zeta_{15})\) | None | \(-4\) | \(-5\) | \(-24\) | \(-3\) | \(q+(-2+\zeta_{15}+\zeta_{15}^{2}-2\zeta_{15}^{3}+2\zeta_{15}^{4}+\cdots)q^{2}+\cdots\) |
403.2.bl.b | \(280\) | \(3.218\) | None | \(1\) | \(0\) | \(-8\) | \(-2\) |