Properties

Label 403.2.a.e.1.7
Level $403$
Weight $2$
Character 403.1
Self dual yes
Analytic conductor $3.218$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [403,2,Mod(1,403)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("403.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(403, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 11x^{6} + 10x^{5} + 37x^{4} - 33x^{3} - 36x^{2} + 33x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.06827\) of defining polynomial
Character \(\chi\) \(=\) 403.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06827 q^{2} +2.49221 q^{3} +2.27774 q^{4} +1.40222 q^{5} +5.15456 q^{6} -5.08294 q^{7} +0.574435 q^{8} +3.21112 q^{9} +2.90017 q^{10} -1.23412 q^{11} +5.67660 q^{12} +1.00000 q^{13} -10.5129 q^{14} +3.49463 q^{15} -3.36739 q^{16} -3.10657 q^{17} +6.64146 q^{18} +4.61601 q^{19} +3.19389 q^{20} -12.6678 q^{21} -2.55250 q^{22} +4.95939 q^{23} +1.43161 q^{24} -3.03378 q^{25} +2.06827 q^{26} +0.526154 q^{27} -11.5776 q^{28} +3.91084 q^{29} +7.22784 q^{30} -1.00000 q^{31} -8.11353 q^{32} -3.07570 q^{33} -6.42521 q^{34} -7.12741 q^{35} +7.31409 q^{36} +5.29904 q^{37} +9.54714 q^{38} +2.49221 q^{39} +0.805485 q^{40} -2.16477 q^{41} -26.2003 q^{42} -5.10691 q^{43} -2.81101 q^{44} +4.50270 q^{45} +10.2574 q^{46} +0.580919 q^{47} -8.39224 q^{48} +18.8363 q^{49} -6.27466 q^{50} -7.74222 q^{51} +2.27774 q^{52} +8.35405 q^{53} +1.08823 q^{54} -1.73051 q^{55} -2.91982 q^{56} +11.5041 q^{57} +8.08866 q^{58} -2.72857 q^{59} +7.95985 q^{60} +11.3881 q^{61} -2.06827 q^{62} -16.3219 q^{63} -10.0462 q^{64} +1.40222 q^{65} -6.36137 q^{66} +10.4734 q^{67} -7.07594 q^{68} +12.3599 q^{69} -14.7414 q^{70} -13.2367 q^{71} +1.84458 q^{72} -2.41248 q^{73} +10.9598 q^{74} -7.56081 q^{75} +10.5140 q^{76} +6.27297 q^{77} +5.15456 q^{78} +8.85793 q^{79} -4.72182 q^{80} -8.32207 q^{81} -4.47733 q^{82} -13.2167 q^{83} -28.8538 q^{84} -4.35609 q^{85} -10.5625 q^{86} +9.74663 q^{87} -0.708924 q^{88} -9.57294 q^{89} +9.31280 q^{90} -5.08294 q^{91} +11.2962 q^{92} -2.49221 q^{93} +1.20150 q^{94} +6.47266 q^{95} -20.2206 q^{96} -3.93065 q^{97} +38.9585 q^{98} -3.96292 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 7 q^{3} + 7 q^{4} + 11 q^{5} - 2 q^{7} + 9 q^{9} - 2 q^{10} - 2 q^{11} + 19 q^{12} + 8 q^{13} + 3 q^{14} + 6 q^{15} - 7 q^{16} + 7 q^{17} - 12 q^{18} - 5 q^{19} + 6 q^{20} + 8 q^{21} - 4 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06827 1.46249 0.731244 0.682116i \(-0.238940\pi\)
0.731244 + 0.682116i \(0.238940\pi\)
\(3\) 2.49221 1.43888 0.719440 0.694555i \(-0.244399\pi\)
0.719440 + 0.694555i \(0.244399\pi\)
\(4\) 2.27774 1.13887
\(5\) 1.40222 0.627092 0.313546 0.949573i \(-0.398483\pi\)
0.313546 + 0.949573i \(0.398483\pi\)
\(6\) 5.15456 2.10434
\(7\) −5.08294 −1.92117 −0.960585 0.277985i \(-0.910333\pi\)
−0.960585 + 0.277985i \(0.910333\pi\)
\(8\) 0.574435 0.203093
\(9\) 3.21112 1.07037
\(10\) 2.90017 0.917115
\(11\) −1.23412 −0.372102 −0.186051 0.982540i \(-0.559569\pi\)
−0.186051 + 0.982540i \(0.559569\pi\)
\(12\) 5.67660 1.63869
\(13\) 1.00000 0.277350
\(14\) −10.5129 −2.80969
\(15\) 3.49463 0.902310
\(16\) −3.36739 −0.841847
\(17\) −3.10657 −0.753453 −0.376726 0.926325i \(-0.622950\pi\)
−0.376726 + 0.926325i \(0.622950\pi\)
\(18\) 6.64146 1.56541
\(19\) 4.61601 1.05898 0.529492 0.848315i \(-0.322383\pi\)
0.529492 + 0.848315i \(0.322383\pi\)
\(20\) 3.19389 0.714176
\(21\) −12.6678 −2.76433
\(22\) −2.55250 −0.544195
\(23\) 4.95939 1.03410 0.517052 0.855954i \(-0.327029\pi\)
0.517052 + 0.855954i \(0.327029\pi\)
\(24\) 1.43161 0.292227
\(25\) −3.03378 −0.606755
\(26\) 2.06827 0.405621
\(27\) 0.526154 0.101258
\(28\) −11.5776 −2.18796
\(29\) 3.91084 0.726224 0.363112 0.931745i \(-0.381714\pi\)
0.363112 + 0.931745i \(0.381714\pi\)
\(30\) 7.22784 1.31962
\(31\) −1.00000 −0.179605
\(32\) −8.11353 −1.43428
\(33\) −3.07570 −0.535410
\(34\) −6.42521 −1.10192
\(35\) −7.12741 −1.20475
\(36\) 7.31409 1.21901
\(37\) 5.29904 0.871156 0.435578 0.900151i \(-0.356544\pi\)
0.435578 + 0.900151i \(0.356544\pi\)
\(38\) 9.54714 1.54875
\(39\) 2.49221 0.399073
\(40\) 0.805485 0.127358
\(41\) −2.16477 −0.338081 −0.169040 0.985609i \(-0.554067\pi\)
−0.169040 + 0.985609i \(0.554067\pi\)
\(42\) −26.2003 −4.04280
\(43\) −5.10691 −0.778796 −0.389398 0.921070i \(-0.627317\pi\)
−0.389398 + 0.921070i \(0.627317\pi\)
\(44\) −2.81101 −0.423775
\(45\) 4.50270 0.671223
\(46\) 10.2574 1.51236
\(47\) 0.580919 0.0847357 0.0423678 0.999102i \(-0.486510\pi\)
0.0423678 + 0.999102i \(0.486510\pi\)
\(48\) −8.39224 −1.21132
\(49\) 18.8363 2.69090
\(50\) −6.27466 −0.887371
\(51\) −7.74222 −1.08413
\(52\) 2.27774 0.315865
\(53\) 8.35405 1.14752 0.573758 0.819025i \(-0.305485\pi\)
0.573758 + 0.819025i \(0.305485\pi\)
\(54\) 1.08823 0.148089
\(55\) −1.73051 −0.233342
\(56\) −2.91982 −0.390177
\(57\) 11.5041 1.52375
\(58\) 8.08866 1.06209
\(59\) −2.72857 −0.355230 −0.177615 0.984100i \(-0.556838\pi\)
−0.177615 + 0.984100i \(0.556838\pi\)
\(60\) 7.95985 1.02761
\(61\) 11.3881 1.45810 0.729050 0.684461i \(-0.239962\pi\)
0.729050 + 0.684461i \(0.239962\pi\)
\(62\) −2.06827 −0.262670
\(63\) −16.3219 −2.05637
\(64\) −10.0462 −1.25577
\(65\) 1.40222 0.173924
\(66\) −6.36137 −0.783030
\(67\) 10.4734 1.27953 0.639764 0.768572i \(-0.279032\pi\)
0.639764 + 0.768572i \(0.279032\pi\)
\(68\) −7.07594 −0.858084
\(69\) 12.3599 1.48795
\(70\) −14.7414 −1.76193
\(71\) −13.2367 −1.57091 −0.785453 0.618922i \(-0.787570\pi\)
−0.785453 + 0.618922i \(0.787570\pi\)
\(72\) 1.84458 0.217386
\(73\) −2.41248 −0.282359 −0.141180 0.989984i \(-0.545089\pi\)
−0.141180 + 0.989984i \(0.545089\pi\)
\(74\) 10.9598 1.27405
\(75\) −7.56081 −0.873047
\(76\) 10.5140 1.20604
\(77\) 6.27297 0.714872
\(78\) 5.15456 0.583640
\(79\) 8.85793 0.996594 0.498297 0.867006i \(-0.333959\pi\)
0.498297 + 0.867006i \(0.333959\pi\)
\(80\) −4.72182 −0.527916
\(81\) −8.32207 −0.924674
\(82\) −4.47733 −0.494439
\(83\) −13.2167 −1.45072 −0.725359 0.688371i \(-0.758326\pi\)
−0.725359 + 0.688371i \(0.758326\pi\)
\(84\) −28.8538 −3.14821
\(85\) −4.35609 −0.472485
\(86\) −10.5625 −1.13898
\(87\) 9.74663 1.04495
\(88\) −0.708924 −0.0755715
\(89\) −9.57294 −1.01473 −0.507365 0.861731i \(-0.669380\pi\)
−0.507365 + 0.861731i \(0.669380\pi\)
\(90\) 9.31280 0.981655
\(91\) −5.08294 −0.532837
\(92\) 11.2962 1.17771
\(93\) −2.49221 −0.258430
\(94\) 1.20150 0.123925
\(95\) 6.47266 0.664081
\(96\) −20.2206 −2.06376
\(97\) −3.93065 −0.399097 −0.199549 0.979888i \(-0.563948\pi\)
−0.199549 + 0.979888i \(0.563948\pi\)
\(98\) 38.9585 3.93540
\(99\) −3.96292 −0.398288
\(100\) −6.91014 −0.691014
\(101\) 6.42153 0.638966 0.319483 0.947592i \(-0.396491\pi\)
0.319483 + 0.947592i \(0.396491\pi\)
\(102\) −16.0130 −1.58552
\(103\) 10.0334 0.988616 0.494308 0.869287i \(-0.335422\pi\)
0.494308 + 0.869287i \(0.335422\pi\)
\(104\) 0.574435 0.0563280
\(105\) −17.7630 −1.73349
\(106\) 17.2784 1.67823
\(107\) 4.36141 0.421633 0.210816 0.977526i \(-0.432388\pi\)
0.210816 + 0.977526i \(0.432388\pi\)
\(108\) 1.19844 0.115320
\(109\) −18.1734 −1.74069 −0.870346 0.492441i \(-0.836105\pi\)
−0.870346 + 0.492441i \(0.836105\pi\)
\(110\) −3.57917 −0.341260
\(111\) 13.2063 1.25349
\(112\) 17.1162 1.61733
\(113\) 17.8202 1.67638 0.838191 0.545377i \(-0.183613\pi\)
0.838191 + 0.545377i \(0.183613\pi\)
\(114\) 23.7935 2.22847
\(115\) 6.95416 0.648479
\(116\) 8.90786 0.827074
\(117\) 3.21112 0.296868
\(118\) −5.64342 −0.519519
\(119\) 15.7905 1.44751
\(120\) 2.00744 0.183253
\(121\) −9.47694 −0.861540
\(122\) 23.5537 2.13245
\(123\) −5.39507 −0.486457
\(124\) −2.27774 −0.204547
\(125\) −11.2651 −1.00758
\(126\) −33.7581 −3.00741
\(127\) −8.98356 −0.797162 −0.398581 0.917133i \(-0.630497\pi\)
−0.398581 + 0.917133i \(0.630497\pi\)
\(128\) −4.55117 −0.402270
\(129\) −12.7275 −1.12059
\(130\) 2.90017 0.254362
\(131\) −15.1691 −1.32533 −0.662663 0.748917i \(-0.730574\pi\)
−0.662663 + 0.748917i \(0.730574\pi\)
\(132\) −7.00563 −0.609762
\(133\) −23.4629 −2.03449
\(134\) 21.6618 1.87129
\(135\) 0.737785 0.0634984
\(136\) −1.78452 −0.153021
\(137\) 11.8785 1.01485 0.507423 0.861697i \(-0.330598\pi\)
0.507423 + 0.861697i \(0.330598\pi\)
\(138\) 25.5635 2.17611
\(139\) −17.3262 −1.46959 −0.734794 0.678291i \(-0.762721\pi\)
−0.734794 + 0.678291i \(0.762721\pi\)
\(140\) −16.2344 −1.37205
\(141\) 1.44777 0.121924
\(142\) −27.3770 −2.29743
\(143\) −1.23412 −0.103203
\(144\) −10.8131 −0.901090
\(145\) 5.48386 0.455410
\(146\) −4.98965 −0.412947
\(147\) 46.9440 3.87188
\(148\) 12.0698 0.992133
\(149\) 1.96247 0.160772 0.0803860 0.996764i \(-0.474385\pi\)
0.0803860 + 0.996764i \(0.474385\pi\)
\(150\) −15.6378 −1.27682
\(151\) −12.9291 −1.05216 −0.526079 0.850436i \(-0.676338\pi\)
−0.526079 + 0.850436i \(0.676338\pi\)
\(152\) 2.65160 0.215073
\(153\) −9.97555 −0.806476
\(154\) 12.9742 1.04549
\(155\) −1.40222 −0.112629
\(156\) 5.67660 0.454492
\(157\) 13.8724 1.10714 0.553571 0.832802i \(-0.313265\pi\)
0.553571 + 0.832802i \(0.313265\pi\)
\(158\) 18.3206 1.45751
\(159\) 20.8201 1.65114
\(160\) −11.3770 −0.899429
\(161\) −25.2083 −1.98669
\(162\) −17.2123 −1.35232
\(163\) 4.46728 0.349904 0.174952 0.984577i \(-0.444023\pi\)
0.174952 + 0.984577i \(0.444023\pi\)
\(164\) −4.93078 −0.385029
\(165\) −4.31281 −0.335752
\(166\) −27.3356 −2.12166
\(167\) −1.28629 −0.0995358 −0.0497679 0.998761i \(-0.515848\pi\)
−0.0497679 + 0.998761i \(0.515848\pi\)
\(168\) −7.27681 −0.561418
\(169\) 1.00000 0.0769231
\(170\) −9.00957 −0.691003
\(171\) 14.8225 1.13351
\(172\) −11.6322 −0.886946
\(173\) 13.5961 1.03370 0.516848 0.856077i \(-0.327105\pi\)
0.516848 + 0.856077i \(0.327105\pi\)
\(174\) 20.1587 1.52822
\(175\) 15.4205 1.16568
\(176\) 4.15577 0.313253
\(177\) −6.80018 −0.511133
\(178\) −19.7994 −1.48403
\(179\) −21.5303 −1.60925 −0.804626 0.593782i \(-0.797634\pi\)
−0.804626 + 0.593782i \(0.797634\pi\)
\(180\) 10.2560 0.764435
\(181\) 10.5515 0.784287 0.392144 0.919904i \(-0.371734\pi\)
0.392144 + 0.919904i \(0.371734\pi\)
\(182\) −10.5129 −0.779267
\(183\) 28.3816 2.09803
\(184\) 2.84885 0.210020
\(185\) 7.43042 0.546296
\(186\) −5.15456 −0.377951
\(187\) 3.83389 0.280361
\(188\) 1.32318 0.0965028
\(189\) −2.67441 −0.194535
\(190\) 13.3872 0.971210
\(191\) 23.8427 1.72520 0.862600 0.505886i \(-0.168834\pi\)
0.862600 + 0.505886i \(0.168834\pi\)
\(192\) −25.0373 −1.80691
\(193\) −9.50125 −0.683915 −0.341957 0.939715i \(-0.611090\pi\)
−0.341957 + 0.939715i \(0.611090\pi\)
\(194\) −8.12965 −0.583675
\(195\) 3.49463 0.250256
\(196\) 42.9041 3.06458
\(197\) −4.01663 −0.286173 −0.143086 0.989710i \(-0.545703\pi\)
−0.143086 + 0.989710i \(0.545703\pi\)
\(198\) −8.19638 −0.582491
\(199\) −8.66785 −0.614448 −0.307224 0.951637i \(-0.599400\pi\)
−0.307224 + 0.951637i \(0.599400\pi\)
\(200\) −1.74271 −0.123228
\(201\) 26.1019 1.84109
\(202\) 13.2814 0.934479
\(203\) −19.8786 −1.39520
\(204\) −17.6347 −1.23468
\(205\) −3.03549 −0.212008
\(206\) 20.7517 1.44584
\(207\) 15.9252 1.10688
\(208\) −3.36739 −0.233486
\(209\) −5.69672 −0.394050
\(210\) −36.7387 −2.53521
\(211\) −11.0894 −0.763428 −0.381714 0.924281i \(-0.624666\pi\)
−0.381714 + 0.924281i \(0.624666\pi\)
\(212\) 19.0283 1.30687
\(213\) −32.9886 −2.26034
\(214\) 9.02056 0.616633
\(215\) −7.16101 −0.488377
\(216\) 0.302242 0.0205649
\(217\) 5.08294 0.345052
\(218\) −37.5874 −2.54574
\(219\) −6.01241 −0.406281
\(220\) −3.94166 −0.265746
\(221\) −3.10657 −0.208970
\(222\) 27.3142 1.83321
\(223\) 15.0820 1.00996 0.504982 0.863130i \(-0.331499\pi\)
0.504982 + 0.863130i \(0.331499\pi\)
\(224\) 41.2406 2.75550
\(225\) −9.74182 −0.649454
\(226\) 36.8569 2.45169
\(227\) 10.1692 0.674955 0.337478 0.941334i \(-0.390426\pi\)
0.337478 + 0.941334i \(0.390426\pi\)
\(228\) 26.2032 1.73535
\(229\) −17.4637 −1.15403 −0.577016 0.816733i \(-0.695783\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(230\) 14.3831 0.948392
\(231\) 15.6336 1.02861
\(232\) 2.24652 0.147491
\(233\) 17.7783 1.16470 0.582348 0.812939i \(-0.302134\pi\)
0.582348 + 0.812939i \(0.302134\pi\)
\(234\) 6.64146 0.434166
\(235\) 0.814576 0.0531371
\(236\) −6.21497 −0.404560
\(237\) 22.0758 1.43398
\(238\) 32.6590 2.11697
\(239\) 22.3470 1.44551 0.722754 0.691106i \(-0.242876\pi\)
0.722754 + 0.691106i \(0.242876\pi\)
\(240\) −11.7678 −0.759607
\(241\) 28.1284 1.81191 0.905956 0.423372i \(-0.139154\pi\)
0.905956 + 0.423372i \(0.139154\pi\)
\(242\) −19.6009 −1.25999
\(243\) −22.3188 −1.43175
\(244\) 25.9391 1.66058
\(245\) 26.4126 1.68744
\(246\) −11.1585 −0.711437
\(247\) 4.61601 0.293709
\(248\) −0.574435 −0.0364767
\(249\) −32.9388 −2.08741
\(250\) −23.2993 −1.47358
\(251\) −8.68486 −0.548184 −0.274092 0.961704i \(-0.588377\pi\)
−0.274092 + 0.961704i \(0.588377\pi\)
\(252\) −37.1771 −2.34193
\(253\) −6.12050 −0.384792
\(254\) −18.5804 −1.16584
\(255\) −10.8563 −0.679848
\(256\) 10.6793 0.667459
\(257\) 19.3837 1.20912 0.604560 0.796560i \(-0.293349\pi\)
0.604560 + 0.796560i \(0.293349\pi\)
\(258\) −26.3239 −1.63885
\(259\) −26.9347 −1.67364
\(260\) 3.19389 0.198077
\(261\) 12.5582 0.777331
\(262\) −31.3737 −1.93827
\(263\) −23.4756 −1.44757 −0.723785 0.690026i \(-0.757599\pi\)
−0.723785 + 0.690026i \(0.757599\pi\)
\(264\) −1.76679 −0.108738
\(265\) 11.7142 0.719599
\(266\) −48.5276 −2.97542
\(267\) −23.8578 −1.46007
\(268\) 23.8556 1.45721
\(269\) 13.8442 0.844094 0.422047 0.906574i \(-0.361312\pi\)
0.422047 + 0.906574i \(0.361312\pi\)
\(270\) 1.52594 0.0928656
\(271\) −4.53604 −0.275545 −0.137772 0.990464i \(-0.543994\pi\)
−0.137772 + 0.990464i \(0.543994\pi\)
\(272\) 10.4610 0.634292
\(273\) −12.6678 −0.766688
\(274\) 24.5679 1.48420
\(275\) 3.74405 0.225775
\(276\) 28.1525 1.69458
\(277\) −22.4922 −1.35142 −0.675711 0.737166i \(-0.736163\pi\)
−0.675711 + 0.737166i \(0.736163\pi\)
\(278\) −35.8352 −2.14925
\(279\) −3.21112 −0.192245
\(280\) −4.09423 −0.244677
\(281\) 2.89001 0.172404 0.0862019 0.996278i \(-0.472527\pi\)
0.0862019 + 0.996278i \(0.472527\pi\)
\(282\) 2.99438 0.178313
\(283\) 14.5126 0.862686 0.431343 0.902188i \(-0.358040\pi\)
0.431343 + 0.902188i \(0.358040\pi\)
\(284\) −30.1497 −1.78905
\(285\) 16.1312 0.955532
\(286\) −2.55250 −0.150932
\(287\) 11.0034 0.649511
\(288\) −26.0535 −1.53522
\(289\) −7.34925 −0.432309
\(290\) 11.3421 0.666031
\(291\) −9.79602 −0.574253
\(292\) −5.49499 −0.321570
\(293\) −2.22962 −0.130256 −0.0651279 0.997877i \(-0.520746\pi\)
−0.0651279 + 0.997877i \(0.520746\pi\)
\(294\) 97.0928 5.66257
\(295\) −3.82606 −0.222762
\(296\) 3.04395 0.176926
\(297\) −0.649339 −0.0376785
\(298\) 4.05892 0.235127
\(299\) 4.95939 0.286809
\(300\) −17.2215 −0.994286
\(301\) 25.9581 1.49620
\(302\) −26.7409 −1.53877
\(303\) 16.0038 0.919394
\(304\) −15.5439 −0.891503
\(305\) 15.9687 0.914363
\(306\) −20.6321 −1.17946
\(307\) −9.02308 −0.514974 −0.257487 0.966282i \(-0.582895\pi\)
−0.257487 + 0.966282i \(0.582895\pi\)
\(308\) 14.2882 0.814145
\(309\) 25.0052 1.42250
\(310\) −2.90017 −0.164719
\(311\) 16.4063 0.930314 0.465157 0.885228i \(-0.345998\pi\)
0.465157 + 0.885228i \(0.345998\pi\)
\(312\) 1.43161 0.0810492
\(313\) −16.5955 −0.938033 −0.469016 0.883190i \(-0.655391\pi\)
−0.469016 + 0.883190i \(0.655391\pi\)
\(314\) 28.6919 1.61918
\(315\) −22.8870 −1.28953
\(316\) 20.1760 1.13499
\(317\) 10.7896 0.606006 0.303003 0.952990i \(-0.402011\pi\)
0.303003 + 0.952990i \(0.402011\pi\)
\(318\) 43.0615 2.41477
\(319\) −4.82646 −0.270230
\(320\) −14.0870 −0.787487
\(321\) 10.8695 0.606679
\(322\) −52.1375 −2.90551
\(323\) −14.3399 −0.797895
\(324\) −18.9555 −1.05308
\(325\) −3.03378 −0.168284
\(326\) 9.23954 0.511731
\(327\) −45.2918 −2.50464
\(328\) −1.24352 −0.0686620
\(329\) −2.95277 −0.162792
\(330\) −8.92005 −0.491032
\(331\) −30.0641 −1.65247 −0.826237 0.563323i \(-0.809523\pi\)
−0.826237 + 0.563323i \(0.809523\pi\)
\(332\) −30.1041 −1.65218
\(333\) 17.0158 0.932462
\(334\) −2.66039 −0.145570
\(335\) 14.6860 0.802382
\(336\) 42.6573 2.32715
\(337\) 12.6264 0.687803 0.343901 0.939006i \(-0.388251\pi\)
0.343901 + 0.939006i \(0.388251\pi\)
\(338\) 2.06827 0.112499
\(339\) 44.4117 2.41211
\(340\) −9.92203 −0.538098
\(341\) 1.23412 0.0668315
\(342\) 30.6570 1.65774
\(343\) −60.1631 −3.24850
\(344\) −2.93359 −0.158168
\(345\) 17.3312 0.933083
\(346\) 28.1205 1.51177
\(347\) 21.0200 1.12841 0.564205 0.825634i \(-0.309183\pi\)
0.564205 + 0.825634i \(0.309183\pi\)
\(348\) 22.2003 1.19006
\(349\) 36.0315 1.92872 0.964360 0.264595i \(-0.0852381\pi\)
0.964360 + 0.264595i \(0.0852381\pi\)
\(350\) 31.8937 1.70479
\(351\) 0.526154 0.0280840
\(352\) 10.0131 0.533700
\(353\) 4.15309 0.221047 0.110523 0.993874i \(-0.464747\pi\)
0.110523 + 0.993874i \(0.464747\pi\)
\(354\) −14.0646 −0.747525
\(355\) −18.5608 −0.985103
\(356\) −21.8047 −1.15564
\(357\) 39.3532 2.08279
\(358\) −44.5305 −2.35351
\(359\) 14.4341 0.761803 0.380902 0.924616i \(-0.375614\pi\)
0.380902 + 0.924616i \(0.375614\pi\)
\(360\) 2.58651 0.136321
\(361\) 2.30751 0.121448
\(362\) 21.8234 1.14701
\(363\) −23.6185 −1.23965
\(364\) −11.5776 −0.606831
\(365\) −3.38283 −0.177065
\(366\) 58.7008 3.06834
\(367\) −25.5117 −1.33170 −0.665851 0.746085i \(-0.731931\pi\)
−0.665851 + 0.746085i \(0.731931\pi\)
\(368\) −16.7002 −0.870558
\(369\) −6.95134 −0.361872
\(370\) 15.3681 0.798950
\(371\) −42.4631 −2.20458
\(372\) −5.67660 −0.294318
\(373\) −32.3294 −1.67395 −0.836977 0.547237i \(-0.815679\pi\)
−0.836977 + 0.547237i \(0.815679\pi\)
\(374\) 7.92951 0.410025
\(375\) −28.0751 −1.44979
\(376\) 0.333700 0.0172093
\(377\) 3.91084 0.201418
\(378\) −5.53140 −0.284505
\(379\) 33.0364 1.69696 0.848482 0.529224i \(-0.177517\pi\)
0.848482 + 0.529224i \(0.177517\pi\)
\(380\) 14.7430 0.756301
\(381\) −22.3889 −1.14702
\(382\) 49.3132 2.52308
\(383\) 2.91525 0.148962 0.0744811 0.997222i \(-0.476270\pi\)
0.0744811 + 0.997222i \(0.476270\pi\)
\(384\) −11.3425 −0.578819
\(385\) 8.79610 0.448291
\(386\) −19.6511 −1.00022
\(387\) −16.3989 −0.833602
\(388\) −8.95300 −0.454520
\(389\) −37.0538 −1.87870 −0.939350 0.342959i \(-0.888571\pi\)
−0.939350 + 0.342959i \(0.888571\pi\)
\(390\) 7.22784 0.365996
\(391\) −15.4067 −0.779149
\(392\) 10.8202 0.546504
\(393\) −37.8045 −1.90698
\(394\) −8.30747 −0.418524
\(395\) 12.4208 0.624957
\(396\) −9.02648 −0.453598
\(397\) −17.7693 −0.891815 −0.445908 0.895079i \(-0.647119\pi\)
−0.445908 + 0.895079i \(0.647119\pi\)
\(398\) −17.9274 −0.898622
\(399\) −58.4745 −2.92738
\(400\) 10.2159 0.510795
\(401\) 0.00964957 0.000481877 0 0.000240938 1.00000i \(-0.499923\pi\)
0.000240938 1.00000i \(0.499923\pi\)
\(402\) 53.9857 2.69256
\(403\) −1.00000 −0.0498135
\(404\) 14.6265 0.727698
\(405\) −11.6694 −0.579856
\(406\) −41.1142 −2.04046
\(407\) −6.53966 −0.324159
\(408\) −4.44740 −0.220179
\(409\) −14.2434 −0.704292 −0.352146 0.935945i \(-0.614548\pi\)
−0.352146 + 0.935945i \(0.614548\pi\)
\(410\) −6.27821 −0.310059
\(411\) 29.6036 1.46024
\(412\) 22.8533 1.12590
\(413\) 13.8692 0.682457
\(414\) 32.9376 1.61879
\(415\) −18.5327 −0.909735
\(416\) −8.11353 −0.397799
\(417\) −43.1805 −2.11456
\(418\) −11.7823 −0.576294
\(419\) −24.9388 −1.21834 −0.609170 0.793040i \(-0.708497\pi\)
−0.609170 + 0.793040i \(0.708497\pi\)
\(420\) −40.4595 −1.97422
\(421\) −24.6283 −1.20031 −0.600156 0.799883i \(-0.704895\pi\)
−0.600156 + 0.799883i \(0.704895\pi\)
\(422\) −22.9359 −1.11650
\(423\) 1.86540 0.0906988
\(424\) 4.79886 0.233053
\(425\) 9.42462 0.457161
\(426\) −68.2293 −3.30572
\(427\) −57.8851 −2.80126
\(428\) 9.93413 0.480185
\(429\) −3.07570 −0.148496
\(430\) −14.8109 −0.714245
\(431\) −25.2766 −1.21753 −0.608765 0.793350i \(-0.708335\pi\)
−0.608765 + 0.793350i \(0.708335\pi\)
\(432\) −1.77177 −0.0852441
\(433\) −1.41387 −0.0679462 −0.0339731 0.999423i \(-0.510816\pi\)
−0.0339731 + 0.999423i \(0.510816\pi\)
\(434\) 10.5129 0.504635
\(435\) 13.6669 0.655280
\(436\) −41.3941 −1.98242
\(437\) 22.8926 1.09510
\(438\) −12.4353 −0.594180
\(439\) 17.0469 0.813603 0.406801 0.913517i \(-0.366644\pi\)
0.406801 + 0.913517i \(0.366644\pi\)
\(440\) −0.994068 −0.0473903
\(441\) 60.4856 2.88026
\(442\) −6.42521 −0.305616
\(443\) −19.8664 −0.943881 −0.471941 0.881630i \(-0.656446\pi\)
−0.471941 + 0.881630i \(0.656446\pi\)
\(444\) 30.0805 1.42756
\(445\) −13.4234 −0.636330
\(446\) 31.1936 1.47706
\(447\) 4.89090 0.231332
\(448\) 51.0642 2.41256
\(449\) 1.43495 0.0677194 0.0338597 0.999427i \(-0.489220\pi\)
0.0338597 + 0.999427i \(0.489220\pi\)
\(450\) −20.1487 −0.949819
\(451\) 2.67160 0.125801
\(452\) 40.5897 1.90918
\(453\) −32.2221 −1.51393
\(454\) 21.0327 0.987114
\(455\) −7.12741 −0.334138
\(456\) 6.60834 0.309464
\(457\) −11.6862 −0.546658 −0.273329 0.961921i \(-0.588125\pi\)
−0.273329 + 0.961921i \(0.588125\pi\)
\(458\) −36.1196 −1.68776
\(459\) −1.63453 −0.0762935
\(460\) 15.8398 0.738532
\(461\) 2.54808 0.118676 0.0593379 0.998238i \(-0.481101\pi\)
0.0593379 + 0.998238i \(0.481101\pi\)
\(462\) 32.3345 1.50433
\(463\) 0.705973 0.0328093 0.0164047 0.999865i \(-0.494778\pi\)
0.0164047 + 0.999865i \(0.494778\pi\)
\(464\) −13.1693 −0.611370
\(465\) −3.49463 −0.162060
\(466\) 36.7703 1.70335
\(467\) 29.4937 1.36481 0.682404 0.730976i \(-0.260935\pi\)
0.682404 + 0.730976i \(0.260935\pi\)
\(468\) 7.31409 0.338094
\(469\) −53.2356 −2.45819
\(470\) 1.68476 0.0777123
\(471\) 34.5731 1.59304
\(472\) −1.56739 −0.0721449
\(473\) 6.30255 0.289792
\(474\) 45.6587 2.09718
\(475\) −14.0039 −0.642544
\(476\) 35.9666 1.64853
\(477\) 26.8258 1.22827
\(478\) 46.2196 2.11404
\(479\) 8.27756 0.378211 0.189106 0.981957i \(-0.439441\pi\)
0.189106 + 0.981957i \(0.439441\pi\)
\(480\) −28.3538 −1.29417
\(481\) 5.29904 0.241615
\(482\) 58.1772 2.64990
\(483\) −62.8244 −2.85861
\(484\) −21.5860 −0.981181
\(485\) −5.51165 −0.250271
\(486\) −46.1613 −2.09392
\(487\) −4.17136 −0.189022 −0.0945112 0.995524i \(-0.530129\pi\)
−0.0945112 + 0.995524i \(0.530129\pi\)
\(488\) 6.54174 0.296131
\(489\) 11.1334 0.503470
\(490\) 54.6284 2.46786
\(491\) −20.2384 −0.913344 −0.456672 0.889635i \(-0.650959\pi\)
−0.456672 + 0.889635i \(0.650959\pi\)
\(492\) −12.2886 −0.554011
\(493\) −12.1493 −0.547176
\(494\) 9.54714 0.429546
\(495\) −5.55689 −0.249763
\(496\) 3.36739 0.151200
\(497\) 67.2813 3.01798
\(498\) −68.1262 −3.05281
\(499\) 18.9530 0.848451 0.424226 0.905557i \(-0.360546\pi\)
0.424226 + 0.905557i \(0.360546\pi\)
\(500\) −25.6590 −1.14751
\(501\) −3.20570 −0.143220
\(502\) −17.9626 −0.801712
\(503\) 8.31233 0.370628 0.185314 0.982679i \(-0.440670\pi\)
0.185314 + 0.982679i \(0.440670\pi\)
\(504\) −9.37589 −0.417635
\(505\) 9.00440 0.400691
\(506\) −12.6588 −0.562754
\(507\) 2.49221 0.110683
\(508\) −20.4622 −0.907863
\(509\) 6.31125 0.279741 0.139871 0.990170i \(-0.455331\pi\)
0.139871 + 0.990170i \(0.455331\pi\)
\(510\) −22.4538 −0.994269
\(511\) 12.2625 0.542460
\(512\) 31.1901 1.37842
\(513\) 2.42873 0.107231
\(514\) 40.0906 1.76832
\(515\) 14.0690 0.619953
\(516\) −28.9899 −1.27621
\(517\) −0.716925 −0.0315303
\(518\) −55.7082 −2.44768
\(519\) 33.8845 1.48736
\(520\) 0.805485 0.0353229
\(521\) 28.2621 1.23818 0.619092 0.785319i \(-0.287501\pi\)
0.619092 + 0.785319i \(0.287501\pi\)
\(522\) 25.9737 1.13684
\(523\) 17.9657 0.785586 0.392793 0.919627i \(-0.371509\pi\)
0.392793 + 0.919627i \(0.371509\pi\)
\(524\) −34.5511 −1.50937
\(525\) 38.4312 1.67727
\(526\) −48.5539 −2.11705
\(527\) 3.10657 0.135324
\(528\) 10.3571 0.450733
\(529\) 1.59556 0.0693720
\(530\) 24.2282 1.05240
\(531\) −8.76177 −0.380229
\(532\) −53.4423 −2.31702
\(533\) −2.16477 −0.0937667
\(534\) −49.3444 −2.13534
\(535\) 6.11566 0.264403
\(536\) 6.01628 0.259864
\(537\) −53.6581 −2.31552
\(538\) 28.6335 1.23448
\(539\) −23.2463 −1.00129
\(540\) 1.68048 0.0723164
\(541\) −3.38963 −0.145731 −0.0728657 0.997342i \(-0.523214\pi\)
−0.0728657 + 0.997342i \(0.523214\pi\)
\(542\) −9.38175 −0.402980
\(543\) 26.2966 1.12849
\(544\) 25.2052 1.08067
\(545\) −25.4831 −1.09157
\(546\) −26.2003 −1.12127
\(547\) 7.25141 0.310048 0.155024 0.987911i \(-0.450455\pi\)
0.155024 + 0.987911i \(0.450455\pi\)
\(548\) 27.0560 1.15578
\(549\) 36.5686 1.56071
\(550\) 7.74371 0.330193
\(551\) 18.0524 0.769060
\(552\) 7.09993 0.302193
\(553\) −45.0243 −1.91463
\(554\) −46.5198 −1.97644
\(555\) 18.5182 0.786053
\(556\) −39.4645 −1.67367
\(557\) 36.4362 1.54385 0.771926 0.635713i \(-0.219294\pi\)
0.771926 + 0.635713i \(0.219294\pi\)
\(558\) −6.64146 −0.281155
\(559\) −5.10691 −0.215999
\(560\) 24.0007 1.01422
\(561\) 9.55485 0.403406
\(562\) 5.97733 0.252138
\(563\) −37.0802 −1.56274 −0.781371 0.624066i \(-0.785479\pi\)
−0.781371 + 0.624066i \(0.785479\pi\)
\(564\) 3.29764 0.138856
\(565\) 24.9878 1.05125
\(566\) 30.0160 1.26167
\(567\) 42.3006 1.77646
\(568\) −7.60361 −0.319041
\(569\) 18.5586 0.778016 0.389008 0.921234i \(-0.372818\pi\)
0.389008 + 0.921234i \(0.372818\pi\)
\(570\) 33.3638 1.39745
\(571\) −26.3452 −1.10251 −0.551256 0.834336i \(-0.685851\pi\)
−0.551256 + 0.834336i \(0.685851\pi\)
\(572\) −2.81101 −0.117534
\(573\) 59.4212 2.48235
\(574\) 22.7580 0.949901
\(575\) −15.0457 −0.627448
\(576\) −32.2595 −1.34415
\(577\) 18.5901 0.773917 0.386958 0.922097i \(-0.373526\pi\)
0.386958 + 0.922097i \(0.373526\pi\)
\(578\) −15.2002 −0.632246
\(579\) −23.6791 −0.984071
\(580\) 12.4908 0.518652
\(581\) 67.1796 2.78708
\(582\) −20.2608 −0.839838
\(583\) −10.3099 −0.426993
\(584\) −1.38581 −0.0573453
\(585\) 4.50270 0.186164
\(586\) −4.61145 −0.190497
\(587\) 6.48087 0.267494 0.133747 0.991016i \(-0.457299\pi\)
0.133747 + 0.991016i \(0.457299\pi\)
\(588\) 106.926 4.40956
\(589\) −4.61601 −0.190199
\(590\) −7.91333 −0.325786
\(591\) −10.0103 −0.411768
\(592\) −17.8439 −0.733380
\(593\) −14.0976 −0.578919 −0.289459 0.957190i \(-0.593476\pi\)
−0.289459 + 0.957190i \(0.593476\pi\)
\(594\) −1.34301 −0.0551043
\(595\) 22.1418 0.907724
\(596\) 4.47000 0.183098
\(597\) −21.6021 −0.884116
\(598\) 10.2574 0.419454
\(599\) 7.19207 0.293860 0.146930 0.989147i \(-0.453061\pi\)
0.146930 + 0.989147i \(0.453061\pi\)
\(600\) −4.34320 −0.177310
\(601\) 15.6706 0.639218 0.319609 0.947550i \(-0.396448\pi\)
0.319609 + 0.947550i \(0.396448\pi\)
\(602\) 53.6883 2.18817
\(603\) 33.6313 1.36957
\(604\) −29.4492 −1.19827
\(605\) −13.2888 −0.540265
\(606\) 33.1002 1.34460
\(607\) −9.22389 −0.374386 −0.187193 0.982323i \(-0.559939\pi\)
−0.187193 + 0.982323i \(0.559939\pi\)
\(608\) −37.4521 −1.51888
\(609\) −49.5416 −2.00753
\(610\) 33.0275 1.33724
\(611\) 0.580919 0.0235014
\(612\) −22.7217 −0.918470
\(613\) −16.1636 −0.652840 −0.326420 0.945225i \(-0.605842\pi\)
−0.326420 + 0.945225i \(0.605842\pi\)
\(614\) −18.6622 −0.753144
\(615\) −7.56508 −0.305054
\(616\) 3.60342 0.145186
\(617\) 35.7302 1.43844 0.719221 0.694781i \(-0.244499\pi\)
0.719221 + 0.694781i \(0.244499\pi\)
\(618\) 51.7176 2.08039
\(619\) −27.9621 −1.12389 −0.561945 0.827175i \(-0.689947\pi\)
−0.561945 + 0.827175i \(0.689947\pi\)
\(620\) −3.19389 −0.128270
\(621\) 2.60941 0.104712
\(622\) 33.9326 1.36057
\(623\) 48.6587 1.94947
\(624\) −8.39224 −0.335959
\(625\) −0.627330 −0.0250932
\(626\) −34.3239 −1.37186
\(627\) −14.1974 −0.566991
\(628\) 31.5978 1.26089
\(629\) −16.4618 −0.656375
\(630\) −47.3364 −1.88593
\(631\) −6.54015 −0.260359 −0.130180 0.991490i \(-0.541555\pi\)
−0.130180 + 0.991490i \(0.541555\pi\)
\(632\) 5.08830 0.202402
\(633\) −27.6372 −1.09848
\(634\) 22.3159 0.886276
\(635\) −12.5969 −0.499894
\(636\) 47.4226 1.88043
\(637\) 18.8363 0.746321
\(638\) −9.98241 −0.395207
\(639\) −42.5046 −1.68145
\(640\) −6.38175 −0.252261
\(641\) −13.0835 −0.516767 −0.258383 0.966042i \(-0.583190\pi\)
−0.258383 + 0.966042i \(0.583190\pi\)
\(642\) 22.4811 0.887260
\(643\) 35.0881 1.38374 0.691869 0.722023i \(-0.256788\pi\)
0.691869 + 0.722023i \(0.256788\pi\)
\(644\) −57.4179 −2.26258
\(645\) −17.8468 −0.702715
\(646\) −29.6588 −1.16691
\(647\) 11.1234 0.437307 0.218653 0.975803i \(-0.429834\pi\)
0.218653 + 0.975803i \(0.429834\pi\)
\(648\) −4.78049 −0.187795
\(649\) 3.36739 0.132182
\(650\) −6.27466 −0.246113
\(651\) 12.6678 0.496489
\(652\) 10.1753 0.398495
\(653\) 42.4232 1.66015 0.830075 0.557652i \(-0.188298\pi\)
0.830075 + 0.557652i \(0.188298\pi\)
\(654\) −93.6757 −3.66301
\(655\) −21.2704 −0.831102
\(656\) 7.28963 0.284612
\(657\) −7.74675 −0.302230
\(658\) −6.10713 −0.238081
\(659\) −42.6807 −1.66261 −0.831303 0.555820i \(-0.812404\pi\)
−0.831303 + 0.555820i \(0.812404\pi\)
\(660\) −9.82344 −0.382377
\(661\) 23.2735 0.905234 0.452617 0.891705i \(-0.350490\pi\)
0.452617 + 0.891705i \(0.350490\pi\)
\(662\) −62.1807 −2.41672
\(663\) −7.74222 −0.300683
\(664\) −7.59212 −0.294631
\(665\) −32.9002 −1.27581
\(666\) 35.1933 1.36371
\(667\) 19.3954 0.750992
\(668\) −2.92982 −0.113358
\(669\) 37.5875 1.45322
\(670\) 30.3746 1.17347
\(671\) −14.0543 −0.542562
\(672\) 102.780 3.96484
\(673\) 26.1090 1.00643 0.503213 0.864162i \(-0.332151\pi\)
0.503213 + 0.864162i \(0.332151\pi\)
\(674\) 26.1148 1.00590
\(675\) −1.59623 −0.0614391
\(676\) 2.27774 0.0876053
\(677\) 22.9892 0.883549 0.441774 0.897126i \(-0.354349\pi\)
0.441774 + 0.897126i \(0.354349\pi\)
\(678\) 91.8553 3.52768
\(679\) 19.9793 0.766734
\(680\) −2.50229 −0.0959586
\(681\) 25.3439 0.971179
\(682\) 2.55250 0.0977402
\(683\) −14.5488 −0.556693 −0.278346 0.960481i \(-0.589786\pi\)
−0.278346 + 0.960481i \(0.589786\pi\)
\(684\) 33.7619 1.29092
\(685\) 16.6562 0.636402
\(686\) −124.434 −4.75089
\(687\) −43.5232 −1.66051
\(688\) 17.1969 0.655627
\(689\) 8.35405 0.318264
\(690\) 35.8457 1.36462
\(691\) −5.62509 −0.213989 −0.106994 0.994260i \(-0.534123\pi\)
−0.106994 + 0.994260i \(0.534123\pi\)
\(692\) 30.9684 1.17724
\(693\) 20.1433 0.765180
\(694\) 43.4749 1.65029
\(695\) −24.2951 −0.921567
\(696\) 5.59881 0.212222
\(697\) 6.72501 0.254728
\(698\) 74.5227 2.82073
\(699\) 44.3073 1.67586
\(700\) 35.1238 1.32756
\(701\) −36.3247 −1.37196 −0.685982 0.727619i \(-0.740627\pi\)
−0.685982 + 0.727619i \(0.740627\pi\)
\(702\) 1.08823 0.0410726
\(703\) 24.4604 0.922541
\(704\) 12.3982 0.467276
\(705\) 2.03010 0.0764579
\(706\) 8.58972 0.323278
\(707\) −32.6402 −1.22756
\(708\) −15.4890 −0.582113
\(709\) −9.63978 −0.362030 −0.181015 0.983480i \(-0.557938\pi\)
−0.181015 + 0.983480i \(0.557938\pi\)
\(710\) −38.3886 −1.44070
\(711\) 28.4439 1.06673
\(712\) −5.49904 −0.206085
\(713\) −4.95939 −0.185731
\(714\) 81.3931 3.04606
\(715\) −1.73051 −0.0647175
\(716\) −49.0404 −1.83273
\(717\) 55.6935 2.07991
\(718\) 29.8536 1.11413
\(719\) 29.9288 1.11616 0.558078 0.829789i \(-0.311539\pi\)
0.558078 + 0.829789i \(0.311539\pi\)
\(720\) −15.1623 −0.565067
\(721\) −50.9989 −1.89930
\(722\) 4.77255 0.177616
\(723\) 70.1020 2.60712
\(724\) 24.0336 0.893200
\(725\) −11.8646 −0.440640
\(726\) −48.8495 −1.81297
\(727\) −11.8942 −0.441133 −0.220567 0.975372i \(-0.570791\pi\)
−0.220567 + 0.975372i \(0.570791\pi\)
\(728\) −2.91982 −0.108216
\(729\) −30.6570 −1.13545
\(730\) −6.99660 −0.258956
\(731\) 15.8649 0.586786
\(732\) 64.6459 2.38938
\(733\) −4.28020 −0.158093 −0.0790464 0.996871i \(-0.525188\pi\)
−0.0790464 + 0.996871i \(0.525188\pi\)
\(734\) −52.7652 −1.94760
\(735\) 65.8259 2.42802
\(736\) −40.2382 −1.48320
\(737\) −12.9254 −0.476115
\(738\) −14.3772 −0.529234
\(739\) −16.6732 −0.613332 −0.306666 0.951817i \(-0.599213\pi\)
−0.306666 + 0.951817i \(0.599213\pi\)
\(740\) 16.9246 0.622159
\(741\) 11.5041 0.422612
\(742\) −87.8252 −3.22416
\(743\) −17.8586 −0.655169 −0.327584 0.944822i \(-0.606235\pi\)
−0.327584 + 0.944822i \(0.606235\pi\)
\(744\) −1.43161 −0.0524855
\(745\) 2.75182 0.100819
\(746\) −66.8660 −2.44814
\(747\) −42.4403 −1.55281
\(748\) 8.73258 0.319295
\(749\) −22.1688 −0.810029
\(750\) −58.0668 −2.12030
\(751\) −20.0319 −0.730973 −0.365486 0.930817i \(-0.619097\pi\)
−0.365486 + 0.930817i \(0.619097\pi\)
\(752\) −1.95618 −0.0713345
\(753\) −21.6445 −0.788770
\(754\) 8.08866 0.294572
\(755\) −18.1295 −0.659800
\(756\) −6.09161 −0.221550
\(757\) −12.0897 −0.439406 −0.219703 0.975567i \(-0.570509\pi\)
−0.219703 + 0.975567i \(0.570509\pi\)
\(758\) 68.3281 2.48179
\(759\) −15.2536 −0.553670
\(760\) 3.71812 0.134871
\(761\) 1.15442 0.0418476 0.0209238 0.999781i \(-0.493339\pi\)
0.0209238 + 0.999781i \(0.493339\pi\)
\(762\) −46.3063 −1.67750
\(763\) 92.3741 3.34417
\(764\) 54.3075 1.96478
\(765\) −13.9879 −0.505735
\(766\) 6.02951 0.217855
\(767\) −2.72857 −0.0985230
\(768\) 26.6152 0.960393
\(769\) 18.1243 0.653580 0.326790 0.945097i \(-0.394033\pi\)
0.326790 + 0.945097i \(0.394033\pi\)
\(770\) 18.1927 0.655619
\(771\) 48.3082 1.73978
\(772\) −21.6414 −0.778889
\(773\) 33.2167 1.19472 0.597361 0.801972i \(-0.296216\pi\)
0.597361 + 0.801972i \(0.296216\pi\)
\(774\) −33.9173 −1.21913
\(775\) 3.03378 0.108976
\(776\) −2.25791 −0.0810541
\(777\) −67.1270 −2.40817
\(778\) −76.6372 −2.74758
\(779\) −9.99260 −0.358022
\(780\) 7.95985 0.285008
\(781\) 16.3357 0.584537
\(782\) −31.8651 −1.13950
\(783\) 2.05770 0.0735364
\(784\) −63.4291 −2.26532
\(785\) 19.4522 0.694280
\(786\) −78.1899 −2.78894
\(787\) −22.8485 −0.814461 −0.407230 0.913326i \(-0.633505\pi\)
−0.407230 + 0.913326i \(0.633505\pi\)
\(788\) −9.14882 −0.325913
\(789\) −58.5062 −2.08288
\(790\) 25.6895 0.913991
\(791\) −90.5789 −3.22062
\(792\) −2.27644 −0.0808897
\(793\) 11.3881 0.404404
\(794\) −36.7517 −1.30427
\(795\) 29.1943 1.03542
\(796\) −19.7431 −0.699775
\(797\) −25.9204 −0.918147 −0.459073 0.888398i \(-0.651818\pi\)
−0.459073 + 0.888398i \(0.651818\pi\)
\(798\) −120.941 −4.28126
\(799\) −1.80466 −0.0638443
\(800\) 24.6146 0.870259
\(801\) −30.7399 −1.08614
\(802\) 0.0199579 0.000704738 0
\(803\) 2.97730 0.105066
\(804\) 59.4532 2.09675
\(805\) −35.3476 −1.24584
\(806\) −2.06827 −0.0728517
\(807\) 34.5026 1.21455
\(808\) 3.68875 0.129770
\(809\) 46.0300 1.61833 0.809165 0.587582i \(-0.199920\pi\)
0.809165 + 0.587582i \(0.199920\pi\)
\(810\) −24.1354 −0.848032
\(811\) 26.2086 0.920308 0.460154 0.887839i \(-0.347794\pi\)
0.460154 + 0.887839i \(0.347794\pi\)
\(812\) −45.2781 −1.58895
\(813\) −11.3048 −0.396475
\(814\) −13.5258 −0.474079
\(815\) 6.26412 0.219422
\(816\) 26.0711 0.912670
\(817\) −23.5735 −0.824733
\(818\) −29.4592 −1.03002
\(819\) −16.3219 −0.570334
\(820\) −6.91405 −0.241449
\(821\) −47.0599 −1.64240 −0.821201 0.570638i \(-0.806696\pi\)
−0.821201 + 0.570638i \(0.806696\pi\)
\(822\) 61.2283 2.13558
\(823\) −15.0667 −0.525192 −0.262596 0.964906i \(-0.584579\pi\)
−0.262596 + 0.964906i \(0.584579\pi\)
\(824\) 5.76351 0.200781
\(825\) 9.33097 0.324863
\(826\) 28.6852 0.998085
\(827\) 16.2797 0.566100 0.283050 0.959105i \(-0.408654\pi\)
0.283050 + 0.959105i \(0.408654\pi\)
\(828\) 36.2734 1.26059
\(829\) 56.2123 1.95233 0.976166 0.217024i \(-0.0696351\pi\)
0.976166 + 0.217024i \(0.0696351\pi\)
\(830\) −38.3306 −1.33048
\(831\) −56.0552 −1.94453
\(832\) −10.0462 −0.348289
\(833\) −58.5162 −2.02746
\(834\) −89.3089 −3.09251
\(835\) −1.80366 −0.0624181
\(836\) −12.9756 −0.448772
\(837\) −0.526154 −0.0181866
\(838\) −51.5802 −1.78181
\(839\) 43.2895 1.49452 0.747260 0.664532i \(-0.231369\pi\)
0.747260 + 0.664532i \(0.231369\pi\)
\(840\) −10.2037 −0.352061
\(841\) −13.7054 −0.472598
\(842\) −50.9380 −1.75544
\(843\) 7.20252 0.248068
\(844\) −25.2588 −0.869444
\(845\) 1.40222 0.0482379
\(846\) 3.85815 0.132646
\(847\) 48.1707 1.65517
\(848\) −28.1313 −0.966034
\(849\) 36.1685 1.24130
\(850\) 19.4927 0.668593
\(851\) 26.2800 0.900867
\(852\) −75.1394 −2.57423
\(853\) 20.8408 0.713574 0.356787 0.934186i \(-0.383872\pi\)
0.356787 + 0.934186i \(0.383872\pi\)
\(854\) −119.722 −4.09680
\(855\) 20.7845 0.710815
\(856\) 2.50534 0.0856309
\(857\) 5.18774 0.177210 0.0886049 0.996067i \(-0.471759\pi\)
0.0886049 + 0.996067i \(0.471759\pi\)
\(858\) −6.36137 −0.217174
\(859\) 46.0284 1.57047 0.785234 0.619199i \(-0.212542\pi\)
0.785234 + 0.619199i \(0.212542\pi\)
\(860\) −16.3109 −0.556197
\(861\) 27.4228 0.934567
\(862\) −52.2788 −1.78062
\(863\) −13.8486 −0.471413 −0.235706 0.971824i \(-0.575740\pi\)
−0.235706 + 0.971824i \(0.575740\pi\)
\(864\) −4.26897 −0.145233
\(865\) 19.0648 0.648222
\(866\) −2.92426 −0.0993704
\(867\) −18.3159 −0.622040
\(868\) 11.5776 0.392969
\(869\) −10.9318 −0.370835
\(870\) 28.2669 0.958338
\(871\) 10.4734 0.354877
\(872\) −10.4394 −0.353523
\(873\) −12.6218 −0.427183
\(874\) 47.3480 1.60157
\(875\) 57.2600 1.93574
\(876\) −13.6947 −0.462700
\(877\) 12.8560 0.434115 0.217057 0.976159i \(-0.430354\pi\)
0.217057 + 0.976159i \(0.430354\pi\)
\(878\) 35.2575 1.18988
\(879\) −5.55668 −0.187422
\(880\) 5.82731 0.196439
\(881\) −49.0894 −1.65386 −0.826932 0.562302i \(-0.809916\pi\)
−0.826932 + 0.562302i \(0.809916\pi\)
\(882\) 125.100 4.21235
\(883\) −3.28403 −0.110516 −0.0552582 0.998472i \(-0.517598\pi\)
−0.0552582 + 0.998472i \(0.517598\pi\)
\(884\) −7.07594 −0.237990
\(885\) −9.53536 −0.320528
\(886\) −41.0891 −1.38041
\(887\) −26.4720 −0.888841 −0.444421 0.895818i \(-0.646590\pi\)
−0.444421 + 0.895818i \(0.646590\pi\)
\(888\) 7.58618 0.254575
\(889\) 45.6629 1.53148
\(890\) −27.7632 −0.930624
\(891\) 10.2705 0.344073
\(892\) 34.3528 1.15022
\(893\) 2.68152 0.0897338
\(894\) 10.1157 0.338319
\(895\) −30.1903 −1.00915
\(896\) 23.1333 0.772830
\(897\) 12.3599 0.412683
\(898\) 2.96786 0.0990388
\(899\) −3.91084 −0.130434
\(900\) −22.1893 −0.739643
\(901\) −25.9524 −0.864600
\(902\) 5.52558 0.183982
\(903\) 64.6931 2.15285
\(904\) 10.2365 0.340462
\(905\) 14.7955 0.491821
\(906\) −66.6440 −2.21410
\(907\) 45.0636 1.49631 0.748156 0.663523i \(-0.230939\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(908\) 23.1628 0.768685
\(909\) 20.6203 0.683932
\(910\) −14.7414 −0.488673
\(911\) 33.8799 1.12249 0.561246 0.827649i \(-0.310322\pi\)
0.561246 + 0.827649i \(0.310322\pi\)
\(912\) −38.7386 −1.28276
\(913\) 16.3110 0.539815
\(914\) −24.1702 −0.799480
\(915\) 39.7973 1.31566
\(916\) −39.7777 −1.31429
\(917\) 77.1034 2.54618
\(918\) −3.38065 −0.111578
\(919\) 16.0295 0.528764 0.264382 0.964418i \(-0.414832\pi\)
0.264382 + 0.964418i \(0.414832\pi\)
\(920\) 3.99472 0.131702
\(921\) −22.4874 −0.740986
\(922\) 5.27011 0.173562
\(923\) −13.2367 −0.435691
\(924\) 35.6092 1.17146
\(925\) −16.0761 −0.528579
\(926\) 1.46014 0.0479832
\(927\) 32.2183 1.05819
\(928\) −31.7307 −1.04161
\(929\) −12.4309 −0.407845 −0.203923 0.978987i \(-0.565369\pi\)
−0.203923 + 0.978987i \(0.565369\pi\)
\(930\) −7.22784 −0.237010
\(931\) 86.9484 2.84962
\(932\) 40.4943 1.32644
\(933\) 40.8879 1.33861
\(934\) 61.0010 1.99601
\(935\) 5.37596 0.175813
\(936\) 1.84458 0.0602920
\(937\) −40.8117 −1.33326 −0.666630 0.745388i \(-0.732264\pi\)
−0.666630 + 0.745388i \(0.732264\pi\)
\(938\) −110.106 −3.59507
\(939\) −41.3595 −1.34972
\(940\) 1.85539 0.0605162
\(941\) 13.2576 0.432185 0.216093 0.976373i \(-0.430669\pi\)
0.216093 + 0.976373i \(0.430669\pi\)
\(942\) 71.5064 2.32980
\(943\) −10.7360 −0.349611
\(944\) 9.18816 0.299049
\(945\) −3.75012 −0.121991
\(946\) 13.0354 0.423816
\(947\) 12.1485 0.394773 0.197386 0.980326i \(-0.436755\pi\)
0.197386 + 0.980326i \(0.436755\pi\)
\(948\) 50.2829 1.63311
\(949\) −2.41248 −0.0783123
\(950\) −28.9639 −0.939712
\(951\) 26.8900 0.871970
\(952\) 9.07061 0.293980
\(953\) −54.0305 −1.75022 −0.875110 0.483923i \(-0.839211\pi\)
−0.875110 + 0.483923i \(0.839211\pi\)
\(954\) 55.4831 1.79633
\(955\) 33.4328 1.08186
\(956\) 50.9006 1.64624
\(957\) −12.0285 −0.388828
\(958\) 17.1202 0.553129
\(959\) −60.3775 −1.94969
\(960\) −35.1078 −1.13310
\(961\) 1.00000 0.0322581
\(962\) 10.9598 0.353359
\(963\) 14.0050 0.451305
\(964\) 64.0692 2.06353
\(965\) −13.3229 −0.428878
\(966\) −129.938 −4.18068
\(967\) −44.1289 −1.41909 −0.709545 0.704660i \(-0.751100\pi\)
−0.709545 + 0.704660i \(0.751100\pi\)
\(968\) −5.44389 −0.174973
\(969\) −35.7381 −1.14807
\(970\) −11.3996 −0.366018
\(971\) −23.5896 −0.757025 −0.378513 0.925596i \(-0.623564\pi\)
−0.378513 + 0.925596i \(0.623564\pi\)
\(972\) −50.8364 −1.63058
\(973\) 88.0679 2.82333
\(974\) −8.62750 −0.276443
\(975\) −7.56081 −0.242140
\(976\) −38.3482 −1.22750
\(977\) 30.5227 0.976507 0.488254 0.872702i \(-0.337634\pi\)
0.488254 + 0.872702i \(0.337634\pi\)
\(978\) 23.0269 0.736319
\(979\) 11.8142 0.377583
\(980\) 60.1610 1.92177
\(981\) −58.3568 −1.86319
\(982\) −41.8584 −1.33575
\(983\) −8.75338 −0.279189 −0.139595 0.990209i \(-0.544580\pi\)
−0.139595 + 0.990209i \(0.544580\pi\)
\(984\) −3.09912 −0.0987963
\(985\) −5.63220 −0.179457
\(986\) −25.1280 −0.800238
\(987\) −7.35894 −0.234238
\(988\) 10.5140 0.334496
\(989\) −25.3271 −0.805356
\(990\) −11.4931 −0.365276
\(991\) −50.0987 −1.59144 −0.795718 0.605667i \(-0.792906\pi\)
−0.795718 + 0.605667i \(0.792906\pi\)
\(992\) 8.11353 0.257605
\(993\) −74.9262 −2.37771
\(994\) 139.156 4.41375
\(995\) −12.1542 −0.385315
\(996\) −75.0258 −2.37728
\(997\) 23.6112 0.747775 0.373888 0.927474i \(-0.378025\pi\)
0.373888 + 0.927474i \(0.378025\pi\)
\(998\) 39.1998 1.24085
\(999\) 2.78811 0.0882120
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 403.2.a.e.1.7 8
3.2 odd 2 3627.2.a.p.1.2 8
4.3 odd 2 6448.2.a.bd.1.3 8
13.12 even 2 5239.2.a.i.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
403.2.a.e.1.7 8 1.1 even 1 trivial
3627.2.a.p.1.2 8 3.2 odd 2
5239.2.a.i.1.2 8 13.12 even 2
6448.2.a.bd.1.3 8 4.3 odd 2