Properties

Label 400.2.l.d.101.1
Level $400$
Weight $2$
Character 400.101
Analytic conductor $3.194$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(101,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 101.1
Root \(-1.65831 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 400.101
Dual form 400.2.l.d.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(-2.15831 + 2.15831i) q^{3} -2.00000i q^{4} -4.31662i q^{6} -2.31662i q^{7} +(2.00000 + 2.00000i) q^{8} -6.31662i q^{9} +(3.15831 + 3.15831i) q^{11} +(4.31662 + 4.31662i) q^{12} +(4.31662 - 4.31662i) q^{13} +(2.31662 + 2.31662i) q^{14} -4.00000 q^{16} -1.31662 q^{17} +(6.31662 + 6.31662i) q^{18} +(-0.158312 + 0.158312i) q^{19} +(5.00000 + 5.00000i) q^{21} -6.31662 q^{22} -0.316625i q^{23} -8.63325 q^{24} +8.63325i q^{26} +(7.15831 + 7.15831i) q^{27} -4.63325 q^{28} +(2.00000 - 2.00000i) q^{29} -2.31662 q^{31} +(4.00000 - 4.00000i) q^{32} -13.6332 q^{33} +(1.31662 - 1.31662i) q^{34} -12.6332 q^{36} +(-0.683375 - 0.683375i) q^{37} -0.316625i q^{38} +18.6332i q^{39} +5.00000i q^{41} -10.0000 q^{42} +(7.63325 + 7.63325i) q^{43} +(6.31662 - 6.31662i) q^{44} +(0.316625 + 0.316625i) q^{46} +8.00000 q^{47} +(8.63325 - 8.63325i) q^{48} +1.63325 q^{49} +(2.84169 - 2.84169i) q^{51} +(-8.63325 - 8.63325i) q^{52} +(3.31662 + 3.31662i) q^{53} -14.3166 q^{54} +(4.63325 - 4.63325i) q^{56} -0.683375i q^{57} +4.00000i q^{58} +(-1.31662 - 1.31662i) q^{59} +(9.63325 - 9.63325i) q^{61} +(2.31662 - 2.31662i) q^{62} -14.6332 q^{63} +8.00000i q^{64} +(13.6332 - 13.6332i) q^{66} +(-9.15831 + 9.15831i) q^{67} +2.63325i q^{68} +(0.683375 + 0.683375i) q^{69} -8.63325i q^{71} +(12.6332 - 12.6332i) q^{72} -6.68338i q^{73} +1.36675 q^{74} +(0.316625 + 0.316625i) q^{76} +(7.31662 - 7.31662i) q^{77} +(-18.6332 - 18.6332i) q^{78} +4.31662 q^{79} -11.9499 q^{81} +(-5.00000 - 5.00000i) q^{82} +(7.15831 - 7.15831i) q^{83} +(10.0000 - 10.0000i) q^{84} -15.2665 q^{86} +8.63325i q^{87} +12.6332i q^{88} +3.94987i q^{89} +(-10.0000 - 10.0000i) q^{91} -0.633250 q^{92} +(5.00000 - 5.00000i) q^{93} +(-8.00000 + 8.00000i) q^{94} +17.2665i q^{96} +6.63325 q^{97} +(-1.63325 + 1.63325i) q^{98} +(19.9499 - 19.9499i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 2 q^{3} + 8 q^{8} + 6 q^{11} + 4 q^{12} + 4 q^{13} - 4 q^{14} - 16 q^{16} + 8 q^{17} + 12 q^{18} + 6 q^{19} + 20 q^{21} - 12 q^{22} - 8 q^{24} + 22 q^{27} + 8 q^{28} + 8 q^{29} + 4 q^{31}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) −2.15831 + 2.15831i −1.24610 + 1.24610i −0.288675 + 0.957427i \(0.593215\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 4.31662i 1.76225i
\(7\) 2.31662i 0.875602i −0.899072 0.437801i \(-0.855757\pi\)
0.899072 0.437801i \(-0.144243\pi\)
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 6.31662i 2.10554i
\(10\) 0 0
\(11\) 3.15831 + 3.15831i 0.952267 + 0.952267i 0.998912 0.0466445i \(-0.0148528\pi\)
−0.0466445 + 0.998912i \(0.514853\pi\)
\(12\) 4.31662 + 4.31662i 1.24610 + 1.24610i
\(13\) 4.31662 4.31662i 1.19722 1.19722i 0.222220 0.974997i \(-0.428670\pi\)
0.974997 0.222220i \(-0.0713302\pi\)
\(14\) 2.31662 + 2.31662i 0.619144 + 0.619144i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.31662 −0.319328 −0.159664 0.987171i \(-0.551041\pi\)
−0.159664 + 0.987171i \(0.551041\pi\)
\(18\) 6.31662 + 6.31662i 1.48884 + 1.48884i
\(19\) −0.158312 + 0.158312i −0.0363194 + 0.0363194i −0.725033 0.688714i \(-0.758176\pi\)
0.688714 + 0.725033i \(0.258176\pi\)
\(20\) 0 0
\(21\) 5.00000 + 5.00000i 1.09109 + 1.09109i
\(22\) −6.31662 −1.34671
\(23\) 0.316625i 0.0660208i −0.999455 0.0330104i \(-0.989491\pi\)
0.999455 0.0330104i \(-0.0105095\pi\)
\(24\) −8.63325 −1.76225
\(25\) 0 0
\(26\) 8.63325i 1.69312i
\(27\) 7.15831 + 7.15831i 1.37762 + 1.37762i
\(28\) −4.63325 −0.875602
\(29\) 2.00000 2.00000i 0.371391 0.371391i −0.496593 0.867984i \(-0.665416\pi\)
0.867984 + 0.496593i \(0.165416\pi\)
\(30\) 0 0
\(31\) −2.31662 −0.416078 −0.208039 0.978121i \(-0.566708\pi\)
−0.208039 + 0.978121i \(0.566708\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) −13.6332 −2.37324
\(34\) 1.31662 1.31662i 0.225799 0.225799i
\(35\) 0 0
\(36\) −12.6332 −2.10554
\(37\) −0.683375 0.683375i −0.112346 0.112346i 0.648699 0.761045i \(-0.275313\pi\)
−0.761045 + 0.648699i \(0.775313\pi\)
\(38\) 0.316625i 0.0513633i
\(39\) 18.6332i 2.98371i
\(40\) 0 0
\(41\) 5.00000i 0.780869i 0.920631 + 0.390434i \(0.127675\pi\)
−0.920631 + 0.390434i \(0.872325\pi\)
\(42\) −10.0000 −1.54303
\(43\) 7.63325 + 7.63325i 1.16406 + 1.16406i 0.983578 + 0.180481i \(0.0577655\pi\)
0.180481 + 0.983578i \(0.442234\pi\)
\(44\) 6.31662 6.31662i 0.952267 0.952267i
\(45\) 0 0
\(46\) 0.316625 + 0.316625i 0.0466838 + 0.0466838i
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 8.63325 8.63325i 1.24610 1.24610i
\(49\) 1.63325 0.233321
\(50\) 0 0
\(51\) 2.84169 2.84169i 0.397916 0.397916i
\(52\) −8.63325 8.63325i −1.19722 1.19722i
\(53\) 3.31662 + 3.31662i 0.455573 + 0.455573i 0.897199 0.441626i \(-0.145598\pi\)
−0.441626 + 0.897199i \(0.645598\pi\)
\(54\) −14.3166 −1.94825
\(55\) 0 0
\(56\) 4.63325 4.63325i 0.619144 0.619144i
\(57\) 0.683375i 0.0905153i
\(58\) 4.00000i 0.525226i
\(59\) −1.31662 1.31662i −0.171410 0.171410i 0.616189 0.787599i \(-0.288676\pi\)
−0.787599 + 0.616189i \(0.788676\pi\)
\(60\) 0 0
\(61\) 9.63325 9.63325i 1.23341 1.23341i 0.270766 0.962645i \(-0.412723\pi\)
0.962645 0.270766i \(-0.0872770\pi\)
\(62\) 2.31662 2.31662i 0.294212 0.294212i
\(63\) −14.6332 −1.84362
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 13.6332 13.6332i 1.67814 1.67814i
\(67\) −9.15831 + 9.15831i −1.11887 + 1.11887i −0.126958 + 0.991908i \(0.540521\pi\)
−0.991908 + 0.126958i \(0.959479\pi\)
\(68\) 2.63325i 0.319328i
\(69\) 0.683375 + 0.683375i 0.0822687 + 0.0822687i
\(70\) 0 0
\(71\) 8.63325i 1.02458i −0.858813 0.512289i \(-0.828798\pi\)
0.858813 0.512289i \(-0.171202\pi\)
\(72\) 12.6332 12.6332i 1.48884 1.48884i
\(73\) 6.68338i 0.782230i −0.920342 0.391115i \(-0.872089\pi\)
0.920342 0.391115i \(-0.127911\pi\)
\(74\) 1.36675 0.158882
\(75\) 0 0
\(76\) 0.316625 + 0.316625i 0.0363194 + 0.0363194i
\(77\) 7.31662 7.31662i 0.833807 0.833807i
\(78\) −18.6332 18.6332i −2.10980 2.10980i
\(79\) 4.31662 0.485658 0.242829 0.970069i \(-0.421925\pi\)
0.242829 + 0.970069i \(0.421925\pi\)
\(80\) 0 0
\(81\) −11.9499 −1.32776
\(82\) −5.00000 5.00000i −0.552158 0.552158i
\(83\) 7.15831 7.15831i 0.785727 0.785727i −0.195064 0.980791i \(-0.562491\pi\)
0.980791 + 0.195064i \(0.0624914\pi\)
\(84\) 10.0000 10.0000i 1.09109 1.09109i
\(85\) 0 0
\(86\) −15.2665 −1.64623
\(87\) 8.63325i 0.925582i
\(88\) 12.6332i 1.34671i
\(89\) 3.94987i 0.418686i 0.977842 + 0.209343i \(0.0671325\pi\)
−0.977842 + 0.209343i \(0.932868\pi\)
\(90\) 0 0
\(91\) −10.0000 10.0000i −1.04828 1.04828i
\(92\) −0.633250 −0.0660208
\(93\) 5.00000 5.00000i 0.518476 0.518476i
\(94\) −8.00000 + 8.00000i −0.825137 + 0.825137i
\(95\) 0 0
\(96\) 17.2665i 1.76225i
\(97\) 6.63325 0.673504 0.336752 0.941593i \(-0.390672\pi\)
0.336752 + 0.941593i \(0.390672\pi\)
\(98\) −1.63325 + 1.63325i −0.164983 + 0.164983i
\(99\) 19.9499 19.9499i 2.00504 2.00504i
\(100\) 0 0
\(101\) 5.31662 + 5.31662i 0.529024 + 0.529024i 0.920281 0.391257i \(-0.127960\pi\)
−0.391257 + 0.920281i \(0.627960\pi\)
\(102\) 5.68338i 0.562738i
\(103\) 4.63325i 0.456528i −0.973599 0.228264i \(-0.926695\pi\)
0.973599 0.228264i \(-0.0733049\pi\)
\(104\) 17.2665 1.69312
\(105\) 0 0
\(106\) −6.63325 −0.644278
\(107\) 2.84169 + 2.84169i 0.274716 + 0.274716i 0.830995 0.556279i \(-0.187771\pi\)
−0.556279 + 0.830995i \(0.687771\pi\)
\(108\) 14.3166 14.3166i 1.37762 1.37762i
\(109\) −5.94987 + 5.94987i −0.569895 + 0.569895i −0.932099 0.362204i \(-0.882024\pi\)
0.362204 + 0.932099i \(0.382024\pi\)
\(110\) 0 0
\(111\) 2.94987 0.279990
\(112\) 9.26650i 0.875602i
\(113\) −2.36675 −0.222645 −0.111323 0.993784i \(-0.535509\pi\)
−0.111323 + 0.993784i \(0.535509\pi\)
\(114\) 0.683375 + 0.683375i 0.0640040 + 0.0640040i
\(115\) 0 0
\(116\) −4.00000 4.00000i −0.371391 0.371391i
\(117\) −27.2665 27.2665i −2.52079 2.52079i
\(118\) 2.63325 0.242410
\(119\) 3.05013i 0.279605i
\(120\) 0 0
\(121\) 8.94987i 0.813625i
\(122\) 19.2665i 1.74431i
\(123\) −10.7916 10.7916i −0.973042 0.973042i
\(124\) 4.63325i 0.416078i
\(125\) 0 0
\(126\) 14.6332 14.6332i 1.30363 1.30363i
\(127\) −6.31662 −0.560510 −0.280255 0.959926i \(-0.590419\pi\)
−0.280255 + 0.959926i \(0.590419\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) −32.9499 −2.90107
\(130\) 0 0
\(131\) 1.00000 1.00000i 0.0873704 0.0873704i −0.662071 0.749441i \(-0.730322\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(132\) 27.2665i 2.37324i
\(133\) 0.366750 + 0.366750i 0.0318013 + 0.0318013i
\(134\) 18.3166i 1.58232i
\(135\) 0 0
\(136\) −2.63325 2.63325i −0.225799 0.225799i
\(137\) 11.6332i 0.993896i −0.867780 0.496948i \(-0.834454\pi\)
0.867780 0.496948i \(-0.165546\pi\)
\(138\) −1.36675 −0.116346
\(139\) −9.15831 9.15831i −0.776798 0.776798i 0.202487 0.979285i \(-0.435098\pi\)
−0.979285 + 0.202487i \(0.935098\pi\)
\(140\) 0 0
\(141\) −17.2665 + 17.2665i −1.45410 + 1.45410i
\(142\) 8.63325 + 8.63325i 0.724486 + 0.724486i
\(143\) 27.2665 2.28014
\(144\) 25.2665i 2.10554i
\(145\) 0 0
\(146\) 6.68338 + 6.68338i 0.553120 + 0.553120i
\(147\) −3.52506 + 3.52506i −0.290742 + 0.290742i
\(148\) −1.36675 + 1.36675i −0.112346 + 0.112346i
\(149\) 16.6332 + 16.6332i 1.36265 + 1.36265i 0.870525 + 0.492124i \(0.163779\pi\)
0.492124 + 0.870525i \(0.336221\pi\)
\(150\) 0 0
\(151\) 4.31662i 0.351282i 0.984454 + 0.175641i \(0.0561998\pi\)
−0.984454 + 0.175641i \(0.943800\pi\)
\(152\) −0.633250 −0.0513633
\(153\) 8.31662i 0.672359i
\(154\) 14.6332i 1.17918i
\(155\) 0 0
\(156\) 37.2665 2.98371
\(157\) −11.3166 + 11.3166i −0.903165 + 0.903165i −0.995709 0.0925436i \(-0.970500\pi\)
0.0925436 + 0.995709i \(0.470500\pi\)
\(158\) −4.31662 + 4.31662i −0.343412 + 0.343412i
\(159\) −14.3166 −1.13538
\(160\) 0 0
\(161\) −0.733501 −0.0578080
\(162\) 11.9499 11.9499i 0.938871 0.938871i
\(163\) 7.15831 7.15831i 0.560682 0.560682i −0.368819 0.929501i \(-0.620238\pi\)
0.929501 + 0.368819i \(0.120238\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 14.3166i 1.11119i
\(167\) 18.0000i 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 20.0000i 1.54303i
\(169\) 24.2665i 1.86665i
\(170\) 0 0
\(171\) 1.00000 + 1.00000i 0.0764719 + 0.0764719i
\(172\) 15.2665 15.2665i 1.16406 1.16406i
\(173\) −12.9499 + 12.9499i −0.984561 + 0.984561i −0.999883 0.0153219i \(-0.995123\pi\)
0.0153219 + 0.999883i \(0.495123\pi\)
\(174\) −8.63325 8.63325i −0.654485 0.654485i
\(175\) 0 0
\(176\) −12.6332 12.6332i −0.952267 0.952267i
\(177\) 5.68338 0.427189
\(178\) −3.94987 3.94987i −0.296056 0.296056i
\(179\) −8.79156 + 8.79156i −0.657112 + 0.657112i −0.954696 0.297584i \(-0.903819\pi\)
0.297584 + 0.954696i \(0.403819\pi\)
\(180\) 0 0
\(181\) −3.31662 3.31662i −0.246523 0.246523i 0.573019 0.819542i \(-0.305772\pi\)
−0.819542 + 0.573019i \(0.805772\pi\)
\(182\) 20.0000 1.48250
\(183\) 41.5831i 3.07391i
\(184\) 0.633250 0.633250i 0.0466838 0.0466838i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) −4.15831 4.15831i −0.304086 0.304086i
\(188\) 16.0000i 1.16692i
\(189\) 16.5831 16.5831i 1.20624 1.20624i
\(190\) 0 0
\(191\) −20.9499 −1.51588 −0.757940 0.652324i \(-0.773794\pi\)
−0.757940 + 0.652324i \(0.773794\pi\)
\(192\) −17.2665 17.2665i −1.24610 1.24610i
\(193\) 4.68338 0.337117 0.168558 0.985692i \(-0.446089\pi\)
0.168558 + 0.985692i \(0.446089\pi\)
\(194\) −6.63325 + 6.63325i −0.476240 + 0.476240i
\(195\) 0 0
\(196\) 3.26650i 0.233321i
\(197\) 16.5831 + 16.5831i 1.18150 + 1.18150i 0.979356 + 0.202143i \(0.0647904\pi\)
0.202143 + 0.979356i \(0.435210\pi\)
\(198\) 39.8997i 2.83555i
\(199\) 12.6332i 0.895547i −0.894147 0.447774i \(-0.852217\pi\)
0.894147 0.447774i \(-0.147783\pi\)
\(200\) 0 0
\(201\) 39.5330i 2.78844i
\(202\) −10.6332 −0.748153
\(203\) −4.63325 4.63325i −0.325190 0.325190i
\(204\) −5.68338 5.68338i −0.397916 0.397916i
\(205\) 0 0
\(206\) 4.63325 + 4.63325i 0.322814 + 0.322814i
\(207\) −2.00000 −0.139010
\(208\) −17.2665 + 17.2665i −1.19722 + 1.19722i
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 11.7916 11.7916i 0.811765 0.811765i −0.173134 0.984898i \(-0.555389\pi\)
0.984898 + 0.173134i \(0.0553893\pi\)
\(212\) 6.63325 6.63325i 0.455573 0.455573i
\(213\) 18.6332 + 18.6332i 1.27673 + 1.27673i
\(214\) −5.68338 −0.388508
\(215\) 0 0
\(216\) 28.6332i 1.94825i
\(217\) 5.36675i 0.364319i
\(218\) 11.8997i 0.805953i
\(219\) 14.4248 + 14.4248i 0.974738 + 0.974738i
\(220\) 0 0
\(221\) −5.68338 + 5.68338i −0.382305 + 0.382305i
\(222\) −2.94987 + 2.94987i −0.197983 + 0.197983i
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) −9.26650 9.26650i −0.619144 0.619144i
\(225\) 0 0
\(226\) 2.36675 2.36675i 0.157434 0.157434i
\(227\) 4.36675 4.36675i 0.289831 0.289831i −0.547182 0.837014i \(-0.684300\pi\)
0.837014 + 0.547182i \(0.184300\pi\)
\(228\) −1.36675 −0.0905153
\(229\) −2.00000 2.00000i −0.132164 0.132164i 0.637930 0.770094i \(-0.279791\pi\)
−0.770094 + 0.637930i \(0.779791\pi\)
\(230\) 0 0
\(231\) 31.5831i 2.07802i
\(232\) 8.00000 0.525226
\(233\) 11.8997i 0.779578i −0.920904 0.389789i \(-0.872548\pi\)
0.920904 0.389789i \(-0.127452\pi\)
\(234\) 54.5330 3.56493
\(235\) 0 0
\(236\) −2.63325 + 2.63325i −0.171410 + 0.171410i
\(237\) −9.31662 + 9.31662i −0.605180 + 0.605180i
\(238\) −3.05013 3.05013i −0.197710 0.197710i
\(239\) −18.6332 −1.20528 −0.602642 0.798011i \(-0.705885\pi\)
−0.602642 + 0.798011i \(0.705885\pi\)
\(240\) 0 0
\(241\) 18.5831 1.19704 0.598522 0.801106i \(-0.295755\pi\)
0.598522 + 0.801106i \(0.295755\pi\)
\(242\) −8.94987 8.94987i −0.575320 0.575320i
\(243\) 4.31662 4.31662i 0.276912 0.276912i
\(244\) −19.2665 19.2665i −1.23341 1.23341i
\(245\) 0 0
\(246\) 21.5831 1.37609
\(247\) 1.36675i 0.0869642i
\(248\) −4.63325 4.63325i −0.294212 0.294212i
\(249\) 30.8997i 1.95819i
\(250\) 0 0
\(251\) −9.10819 9.10819i −0.574904 0.574904i 0.358591 0.933495i \(-0.383257\pi\)
−0.933495 + 0.358591i \(0.883257\pi\)
\(252\) 29.2665i 1.84362i
\(253\) 1.00000 1.00000i 0.0628695 0.0628695i
\(254\) 6.31662 6.31662i 0.396340 0.396340i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 16.6332 1.03755 0.518777 0.854910i \(-0.326388\pi\)
0.518777 + 0.854910i \(0.326388\pi\)
\(258\) 32.9499 32.9499i 2.05137 2.05137i
\(259\) −1.58312 + 1.58312i −0.0983705 + 0.0983705i
\(260\) 0 0
\(261\) −12.6332 12.6332i −0.781979 0.781979i
\(262\) 2.00000i 0.123560i
\(263\) 15.5831i 0.960897i 0.877023 + 0.480448i \(0.159526\pi\)
−0.877023 + 0.480448i \(0.840474\pi\)
\(264\) −27.2665 27.2665i −1.67814 1.67814i
\(265\) 0 0
\(266\) −0.733501 −0.0449738
\(267\) −8.52506 8.52506i −0.521725 0.521725i
\(268\) 18.3166 + 18.3166i 1.11887 + 1.11887i
\(269\) 6.31662 6.31662i 0.385131 0.385131i −0.487815 0.872947i \(-0.662206\pi\)
0.872947 + 0.487815i \(0.162206\pi\)
\(270\) 0 0
\(271\) −0.949874 −0.0577008 −0.0288504 0.999584i \(-0.509185\pi\)
−0.0288504 + 0.999584i \(0.509185\pi\)
\(272\) 5.26650 0.319328
\(273\) 43.1662 2.61254
\(274\) 11.6332 + 11.6332i 0.702790 + 0.702790i
\(275\) 0 0
\(276\) 1.36675 1.36675i 0.0822687 0.0822687i
\(277\) 14.3166 + 14.3166i 0.860203 + 0.860203i 0.991361 0.131159i \(-0.0418698\pi\)
−0.131159 + 0.991361i \(0.541870\pi\)
\(278\) 18.3166 1.09856
\(279\) 14.6332i 0.876070i
\(280\) 0 0
\(281\) 7.26650i 0.433483i 0.976229 + 0.216741i \(0.0695429\pi\)
−0.976229 + 0.216741i \(0.930457\pi\)
\(282\) 34.5330i 2.05641i
\(283\) −3.84169 3.84169i −0.228365 0.228365i 0.583645 0.812009i \(-0.301626\pi\)
−0.812009 + 0.583645i \(0.801626\pi\)
\(284\) −17.2665 −1.02458
\(285\) 0 0
\(286\) −27.2665 + 27.2665i −1.61230 + 1.61230i
\(287\) 11.5831 0.683730
\(288\) −25.2665 25.2665i −1.48884 1.48884i
\(289\) −15.2665 −0.898029
\(290\) 0 0
\(291\) −14.3166 + 14.3166i −0.839255 + 0.839255i
\(292\) −13.3668 −0.782230
\(293\) −18.2665 18.2665i −1.06714 1.06714i −0.997578 0.0695627i \(-0.977840\pi\)
−0.0695627 0.997578i \(-0.522160\pi\)
\(294\) 7.05013i 0.411172i
\(295\) 0 0
\(296\) 2.73350i 0.158882i
\(297\) 45.2164i 2.62372i
\(298\) −33.2665 −1.92708
\(299\) −1.36675 1.36675i −0.0790412 0.0790412i
\(300\) 0 0
\(301\) 17.6834 17.6834i 1.01925 1.01925i
\(302\) −4.31662 4.31662i −0.248394 0.248394i
\(303\) −22.9499 −1.31844
\(304\) 0.633250 0.633250i 0.0363194 0.0363194i
\(305\) 0 0
\(306\) −8.31662 8.31662i −0.475430 0.475430i
\(307\) −14.1583 + 14.1583i −0.808058 + 0.808058i −0.984340 0.176282i \(-0.943593\pi\)
0.176282 + 0.984340i \(0.443593\pi\)
\(308\) −14.6332 14.6332i −0.833807 0.833807i
\(309\) 10.0000 + 10.0000i 0.568880 + 0.568880i
\(310\) 0 0
\(311\) 12.9499i 0.734320i 0.930158 + 0.367160i \(0.119670\pi\)
−0.930158 + 0.367160i \(0.880330\pi\)
\(312\) −37.2665 + 37.2665i −2.10980 + 2.10980i
\(313\) 16.0000i 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) 22.6332i 1.27727i
\(315\) 0 0
\(316\) 8.63325i 0.485658i
\(317\) −14.9499 + 14.9499i −0.839669 + 0.839669i −0.988815 0.149147i \(-0.952347\pi\)
0.149147 + 0.988815i \(0.452347\pi\)
\(318\) 14.3166 14.3166i 0.802836 0.802836i
\(319\) 12.6332 0.707326
\(320\) 0 0
\(321\) −12.2665 −0.684649
\(322\) 0.733501 0.733501i 0.0408764 0.0408764i
\(323\) 0.208438 0.208438i 0.0115978 0.0115978i
\(324\) 23.8997i 1.32776i
\(325\) 0 0
\(326\) 14.3166i 0.792925i
\(327\) 25.6834i 1.42029i
\(328\) −10.0000 + 10.0000i −0.552158 + 0.552158i
\(329\) 18.5330i 1.02176i
\(330\) 0 0
\(331\) −1.15831 1.15831i −0.0636666 0.0636666i 0.674557 0.738223i \(-0.264335\pi\)
−0.738223 + 0.674557i \(0.764335\pi\)
\(332\) −14.3166 14.3166i −0.785727 0.785727i
\(333\) −4.31662 + 4.31662i −0.236550 + 0.236550i
\(334\) 18.0000 + 18.0000i 0.984916 + 0.984916i
\(335\) 0 0
\(336\) −20.0000 20.0000i −1.09109 1.09109i
\(337\) −22.8997 −1.24743 −0.623714 0.781652i \(-0.714377\pi\)
−0.623714 + 0.781652i \(0.714377\pi\)
\(338\) 24.2665 + 24.2665i 1.31992 + 1.31992i
\(339\) 5.10819 5.10819i 0.277439 0.277439i
\(340\) 0 0
\(341\) −7.31662 7.31662i −0.396217 0.396217i
\(342\) −2.00000 −0.108148
\(343\) 20.0000i 1.07990i
\(344\) 30.5330i 1.64623i
\(345\) 0 0
\(346\) 25.8997i 1.39238i
\(347\) −14.4248 14.4248i −0.774364 0.774364i 0.204502 0.978866i \(-0.434443\pi\)
−0.978866 + 0.204502i \(0.934443\pi\)
\(348\) 17.2665 0.925582
\(349\) 24.2665 24.2665i 1.29896 1.29896i 0.369874 0.929082i \(-0.379401\pi\)
0.929082 0.369874i \(-0.120599\pi\)
\(350\) 0 0
\(351\) 61.7995 3.29861
\(352\) 25.2665 1.34671
\(353\) −33.2665 −1.77060 −0.885299 0.465023i \(-0.846046\pi\)
−0.885299 + 0.465023i \(0.846046\pi\)
\(354\) −5.68338 + 5.68338i −0.302068 + 0.302068i
\(355\) 0 0
\(356\) 7.89975 0.418686
\(357\) −6.58312 6.58312i −0.348416 0.348416i
\(358\) 17.5831i 0.929297i
\(359\) 9.68338i 0.511069i −0.966800 0.255534i \(-0.917749\pi\)
0.966800 0.255534i \(-0.0822514\pi\)
\(360\) 0 0
\(361\) 18.9499i 0.997362i
\(362\) 6.63325 0.348636
\(363\) −19.3166 19.3166i −1.01386 1.01386i
\(364\) −20.0000 + 20.0000i −1.04828 + 1.04828i
\(365\) 0 0
\(366\) −41.5831 41.5831i −2.17358 2.17358i
\(367\) 26.6332 1.39024 0.695122 0.718892i \(-0.255350\pi\)
0.695122 + 0.718892i \(0.255350\pi\)
\(368\) 1.26650i 0.0660208i
\(369\) 31.5831 1.64415
\(370\) 0 0
\(371\) 7.68338 7.68338i 0.398901 0.398901i
\(372\) −10.0000 10.0000i −0.518476 0.518476i
\(373\) −2.36675 2.36675i −0.122546 0.122546i 0.643174 0.765720i \(-0.277617\pi\)
−0.765720 + 0.643174i \(0.777617\pi\)
\(374\) 8.31662 0.430042
\(375\) 0 0
\(376\) 16.0000 + 16.0000i 0.825137 + 0.825137i
\(377\) 17.2665i 0.889270i
\(378\) 33.1662i 1.70589i
\(379\) −11.4248 11.4248i −0.586853 0.586853i 0.349925 0.936778i \(-0.386207\pi\)
−0.936778 + 0.349925i \(0.886207\pi\)
\(380\) 0 0
\(381\) 13.6332 13.6332i 0.698453 0.698453i
\(382\) 20.9499 20.9499i 1.07189 1.07189i
\(383\) 16.9499 0.866098 0.433049 0.901370i \(-0.357438\pi\)
0.433049 + 0.901370i \(0.357438\pi\)
\(384\) 34.5330 1.76225
\(385\) 0 0
\(386\) −4.68338 + 4.68338i −0.238378 + 0.238378i
\(387\) 48.2164 48.2164i 2.45098 2.45098i
\(388\) 13.2665i 0.673504i
\(389\) −4.26650 4.26650i −0.216320 0.216320i 0.590626 0.806946i \(-0.298881\pi\)
−0.806946 + 0.590626i \(0.798881\pi\)
\(390\) 0 0
\(391\) 0.416876i 0.0210823i
\(392\) 3.26650 + 3.26650i 0.164983 + 0.164983i
\(393\) 4.31662i 0.217745i
\(394\) −33.1662 −1.67089
\(395\) 0 0
\(396\) −39.8997 39.8997i −2.00504 2.00504i
\(397\) 25.2665 25.2665i 1.26809 1.26809i 0.321015 0.947074i \(-0.395976\pi\)
0.947074 0.321015i \(-0.104024\pi\)
\(398\) 12.6332 + 12.6332i 0.633248 + 0.633248i
\(399\) −1.58312 −0.0792553
\(400\) 0 0
\(401\) 2.68338 0.134001 0.0670007 0.997753i \(-0.478657\pi\)
0.0670007 + 0.997753i \(0.478657\pi\)
\(402\) 39.5330 + 39.5330i 1.97173 + 1.97173i
\(403\) −10.0000 + 10.0000i −0.498135 + 0.498135i
\(404\) 10.6332 10.6332i 0.529024 0.529024i
\(405\) 0 0
\(406\) 9.26650 0.459889
\(407\) 4.31662i 0.213967i
\(408\) 11.3668 0.562738
\(409\) 19.6332i 0.970802i 0.874292 + 0.485401i \(0.161326\pi\)
−0.874292 + 0.485401i \(0.838674\pi\)
\(410\) 0 0
\(411\) 25.1082 + 25.1082i 1.23850 + 1.23850i
\(412\) −9.26650 −0.456528
\(413\) −3.05013 + 3.05013i −0.150087 + 0.150087i
\(414\) 2.00000 2.00000i 0.0982946 0.0982946i
\(415\) 0 0
\(416\) 34.5330i 1.69312i
\(417\) 39.5330 1.93594
\(418\) 1.00000 1.00000i 0.0489116 0.0489116i
\(419\) −11.5251 + 11.5251i −0.563036 + 0.563036i −0.930169 0.367132i \(-0.880340\pi\)
0.367132 + 0.930169i \(0.380340\pi\)
\(420\) 0 0
\(421\) 4.63325 + 4.63325i 0.225811 + 0.225811i 0.810940 0.585129i \(-0.198956\pi\)
−0.585129 + 0.810940i \(0.698956\pi\)
\(422\) 23.5831i 1.14801i
\(423\) 50.5330i 2.45700i
\(424\) 13.2665i 0.644278i
\(425\) 0 0
\(426\) −37.2665 −1.80557
\(427\) −22.3166 22.3166i −1.07998 1.07998i
\(428\) 5.68338 5.68338i 0.274716 0.274716i
\(429\) −58.8496 + 58.8496i −2.84129 + 2.84129i
\(430\) 0 0
\(431\) −10.9499 −0.527437 −0.263718 0.964600i \(-0.584949\pi\)
−0.263718 + 0.964600i \(0.584949\pi\)
\(432\) −28.6332 28.6332i −1.37762 1.37762i
\(433\) −12.5831 −0.604706 −0.302353 0.953196i \(-0.597772\pi\)
−0.302353 + 0.953196i \(0.597772\pi\)
\(434\) −5.36675 5.36675i −0.257612 0.257612i
\(435\) 0 0
\(436\) 11.8997 + 11.8997i 0.569895 + 0.569895i
\(437\) 0.0501256 + 0.0501256i 0.00239783 + 0.00239783i
\(438\) −28.8496 −1.37849
\(439\) 5.36675i 0.256141i −0.991765 0.128071i \(-0.959122\pi\)
0.991765 0.128071i \(-0.0408784\pi\)
\(440\) 0 0
\(441\) 10.3166i 0.491268i
\(442\) 11.3668i 0.540661i
\(443\) 19.1082 + 19.1082i 0.907857 + 0.907857i 0.996099 0.0882417i \(-0.0281248\pi\)
−0.0882417 + 0.996099i \(0.528125\pi\)
\(444\) 5.89975i 0.279990i
\(445\) 0 0
\(446\) 6.00000 6.00000i 0.284108 0.284108i
\(447\) −71.7995 −3.39600
\(448\) 18.5330 0.875602
\(449\) 20.6834 0.976109 0.488054 0.872813i \(-0.337707\pi\)
0.488054 + 0.872813i \(0.337707\pi\)
\(450\) 0 0
\(451\) −15.7916 + 15.7916i −0.743596 + 0.743596i
\(452\) 4.73350i 0.222645i
\(453\) −9.31662 9.31662i −0.437733 0.437733i
\(454\) 8.73350i 0.409884i
\(455\) 0 0
\(456\) 1.36675 1.36675i 0.0640040 0.0640040i
\(457\) 17.0000i 0.795226i 0.917553 + 0.397613i \(0.130161\pi\)
−0.917553 + 0.397613i \(0.869839\pi\)
\(458\) 4.00000 0.186908
\(459\) −9.42481 9.42481i −0.439913 0.439913i
\(460\) 0 0
\(461\) −19.6834 + 19.6834i −0.916746 + 0.916746i −0.996791 0.0800451i \(-0.974494\pi\)
0.0800451 + 0.996791i \(0.474494\pi\)
\(462\) −31.5831 31.5831i −1.46938 1.46938i
\(463\) −24.6332 −1.14480 −0.572402 0.819973i \(-0.693988\pi\)
−0.572402 + 0.819973i \(0.693988\pi\)
\(464\) −8.00000 + 8.00000i −0.371391 + 0.371391i
\(465\) 0 0
\(466\) 11.8997 + 11.8997i 0.551245 + 0.551245i
\(467\) −14.2665 + 14.2665i −0.660175 + 0.660175i −0.955421 0.295246i \(-0.904598\pi\)
0.295246 + 0.955421i \(0.404598\pi\)
\(468\) −54.5330 + 54.5330i −2.52079 + 2.52079i
\(469\) 21.2164 + 21.2164i 0.979681 + 0.979681i
\(470\) 0 0
\(471\) 48.8496i 2.25087i
\(472\) 5.26650i 0.242410i
\(473\) 48.2164i 2.21699i
\(474\) 18.6332i 0.855853i
\(475\) 0 0
\(476\) 6.10025 0.279605
\(477\) 20.9499 20.9499i 0.959229 0.959229i
\(478\) 18.6332 18.6332i 0.852265 0.852265i
\(479\) 10.2164 0.466798 0.233399 0.972381i \(-0.425015\pi\)
0.233399 + 0.972381i \(0.425015\pi\)
\(480\) 0 0
\(481\) −5.89975 −0.269005
\(482\) −18.5831 + 18.5831i −0.846438 + 0.846438i
\(483\) 1.58312 1.58312i 0.0720346 0.0720346i
\(484\) 17.8997 0.813625
\(485\) 0 0
\(486\) 8.63325i 0.391612i
\(487\) 32.2164i 1.45986i 0.683520 + 0.729932i \(0.260448\pi\)
−0.683520 + 0.729932i \(0.739552\pi\)
\(488\) 38.5330 1.74431
\(489\) 30.8997i 1.39733i
\(490\) 0 0
\(491\) 29.6332 + 29.6332i 1.33733 + 1.33733i 0.898637 + 0.438693i \(0.144558\pi\)
0.438693 + 0.898637i \(0.355442\pi\)
\(492\) −21.5831 + 21.5831i −0.973042 + 0.973042i
\(493\) −2.63325 + 2.63325i −0.118596 + 0.118596i
\(494\) −1.36675 1.36675i −0.0614930 0.0614930i
\(495\) 0 0
\(496\) 9.26650 0.416078
\(497\) −20.0000 −0.897123
\(498\) −30.8997 30.8997i −1.38465 1.38465i
\(499\) 22.8997 22.8997i 1.02513 1.02513i 0.0254576 0.999676i \(-0.491896\pi\)
0.999676 0.0254576i \(-0.00810429\pi\)
\(500\) 0 0
\(501\) 38.8496 + 38.8496i 1.73567 + 1.73567i
\(502\) 18.2164 0.813037
\(503\) 31.8997i 1.42234i −0.703020 0.711170i \(-0.748166\pi\)
0.703020 0.711170i \(-0.251834\pi\)
\(504\) −29.2665 29.2665i −1.30363 1.30363i
\(505\) 0 0
\(506\) 2.00000i 0.0889108i
\(507\) 52.3747 + 52.3747i 2.32604 + 2.32604i
\(508\) 12.6332i 0.560510i
\(509\) −20.2665 + 20.2665i −0.898297 + 0.898297i −0.995285 0.0969887i \(-0.969079\pi\)
0.0969887 + 0.995285i \(0.469079\pi\)
\(510\) 0 0
\(511\) −15.4829 −0.684922
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −2.26650 −0.100068
\(514\) −16.6332 + 16.6332i −0.733661 + 0.733661i
\(515\) 0 0
\(516\) 65.8997i 2.90107i
\(517\) 25.2665 + 25.2665i 1.11122 + 1.11122i
\(518\) 3.16625i 0.139117i
\(519\) 55.8997i 2.45373i
\(520\) 0 0
\(521\) 13.6332i 0.597284i −0.954365 0.298642i \(-0.903466\pi\)
0.954365 0.298642i \(-0.0965336\pi\)
\(522\) 25.2665 1.10588
\(523\) −7.47494 7.47494i −0.326856 0.326856i 0.524534 0.851390i \(-0.324240\pi\)
−0.851390 + 0.524534i \(0.824240\pi\)
\(524\) −2.00000 2.00000i −0.0873704 0.0873704i
\(525\) 0 0
\(526\) −15.5831 15.5831i −0.679456 0.679456i
\(527\) 3.05013 0.132866
\(528\) 54.5330 2.37324
\(529\) 22.8997 0.995641
\(530\) 0 0
\(531\) −8.31662 + 8.31662i −0.360911 + 0.360911i
\(532\) 0.733501 0.733501i 0.0318013 0.0318013i
\(533\) 21.5831 + 21.5831i 0.934869 + 0.934869i
\(534\) 17.0501 0.737831
\(535\) 0 0
\(536\) −36.6332 −1.58232
\(537\) 37.9499i 1.63766i
\(538\) 12.6332i 0.544658i
\(539\) 5.15831 + 5.15831i 0.222184 + 0.222184i
\(540\) 0 0
\(541\) 11.6834 11.6834i 0.502308 0.502308i −0.409847 0.912154i \(-0.634418\pi\)
0.912154 + 0.409847i \(0.134418\pi\)
\(542\) 0.949874 0.949874i 0.0408006 0.0408006i
\(543\) 14.3166 0.614385
\(544\) −5.26650 + 5.26650i −0.225799 + 0.225799i
\(545\) 0 0
\(546\) −43.1662 + 43.1662i −1.84734 + 1.84734i
\(547\) −15.7414 + 15.7414i −0.673055 + 0.673055i −0.958419 0.285364i \(-0.907886\pi\)
0.285364 + 0.958419i \(0.407886\pi\)
\(548\) −23.2665 −0.993896
\(549\) −60.8496 60.8496i −2.59700 2.59700i
\(550\) 0 0
\(551\) 0.633250i 0.0269773i
\(552\) 2.73350i 0.116346i
\(553\) 10.0000i 0.425243i
\(554\) −28.6332 −1.21651
\(555\) 0 0
\(556\) −18.3166 + 18.3166i −0.776798 + 0.776798i
\(557\) −26.3166 + 26.3166i −1.11507 + 1.11507i −0.122617 + 0.992454i \(0.539129\pi\)
−0.992454 + 0.122617i \(0.960871\pi\)
\(558\) −14.6332 14.6332i −0.619475 0.619475i
\(559\) 65.8997 2.78726
\(560\) 0 0
\(561\) 17.9499 0.757844
\(562\) −7.26650 7.26650i −0.306519 0.306519i
\(563\) −17.9499 + 17.9499i −0.756497 + 0.756497i −0.975683 0.219186i \(-0.929660\pi\)
0.219186 + 0.975683i \(0.429660\pi\)
\(564\) 34.5330 + 34.5330i 1.45410 + 1.45410i
\(565\) 0 0
\(566\) 7.68338 0.322956
\(567\) 27.6834i 1.16259i
\(568\) 17.2665 17.2665i 0.724486 0.724486i
\(569\) 9.00000i 0.377300i −0.982044 0.188650i \(-0.939589\pi\)
0.982044 0.188650i \(-0.0604111\pi\)
\(570\) 0 0
\(571\) −1.73350 1.73350i −0.0725448 0.0725448i 0.669903 0.742448i \(-0.266335\pi\)
−0.742448 + 0.669903i \(0.766335\pi\)
\(572\) 54.5330i 2.28014i
\(573\) 45.2164 45.2164i 1.88894 1.88894i
\(574\) −11.5831 + 11.5831i −0.483470 + 0.483470i
\(575\) 0 0
\(576\) 50.5330 2.10554
\(577\) −15.6332 −0.650821 −0.325410 0.945573i \(-0.605502\pi\)
−0.325410 + 0.945573i \(0.605502\pi\)
\(578\) 15.2665 15.2665i 0.635003 0.635003i
\(579\) −10.1082 + 10.1082i −0.420082 + 0.420082i
\(580\) 0 0
\(581\) −16.5831 16.5831i −0.687984 0.687984i
\(582\) 28.6332i 1.18689i
\(583\) 20.9499i 0.867655i
\(584\) 13.3668 13.3668i 0.553120 0.553120i
\(585\) 0 0
\(586\) 36.5330 1.50916
\(587\) 9.42481 + 9.42481i 0.389004 + 0.389004i 0.874332 0.485328i \(-0.161300\pi\)
−0.485328 + 0.874332i \(0.661300\pi\)
\(588\) 7.05013 + 7.05013i 0.290742 + 0.290742i
\(589\) 0.366750 0.366750i 0.0151117 0.0151117i
\(590\) 0 0
\(591\) −71.5831 −2.94454
\(592\) 2.73350 + 2.73350i 0.112346 + 0.112346i
\(593\) −35.5330 −1.45917 −0.729583 0.683893i \(-0.760286\pi\)
−0.729583 + 0.683893i \(0.760286\pi\)
\(594\) −45.2164 45.2164i −1.85525 1.85525i
\(595\) 0 0
\(596\) 33.2665 33.2665i 1.36265 1.36265i
\(597\) 27.2665 + 27.2665i 1.11594 + 1.11594i
\(598\) 2.73350 0.111781
\(599\) 36.2164i 1.47976i 0.672738 + 0.739880i \(0.265118\pi\)
−0.672738 + 0.739880i \(0.734882\pi\)
\(600\) 0 0
\(601\) 22.0501i 0.899443i 0.893169 + 0.449722i \(0.148477\pi\)
−0.893169 + 0.449722i \(0.851523\pi\)
\(602\) 35.3668i 1.44144i
\(603\) 57.8496 + 57.8496i 2.35582 + 2.35582i
\(604\) 8.63325 0.351282
\(605\) 0 0
\(606\) 22.9499 22.9499i 0.932275 0.932275i
\(607\) 21.1662 0.859112 0.429556 0.903040i \(-0.358670\pi\)
0.429556 + 0.903040i \(0.358670\pi\)
\(608\) 1.26650i 0.0513633i
\(609\) 20.0000 0.810441
\(610\) 0 0
\(611\) 34.5330 34.5330i 1.39706 1.39706i
\(612\) 16.6332 0.672359
\(613\) 16.2665 + 16.2665i 0.656998 + 0.656998i 0.954669 0.297671i \(-0.0962098\pi\)
−0.297671 + 0.954669i \(0.596210\pi\)
\(614\) 28.3166i 1.14277i
\(615\) 0 0
\(616\) 29.2665 1.17918
\(617\) 0.733501i 0.0295296i −0.999891 0.0147648i \(-0.995300\pi\)
0.999891 0.0147648i \(-0.00469996\pi\)
\(618\) −20.0000 −0.804518
\(619\) −8.36675 8.36675i −0.336288 0.336288i 0.518680 0.854968i \(-0.326424\pi\)
−0.854968 + 0.518680i \(0.826424\pi\)
\(620\) 0 0
\(621\) 2.26650 2.26650i 0.0909515 0.0909515i
\(622\) −12.9499 12.9499i −0.519243 0.519243i
\(623\) 9.15038 0.366602
\(624\) 74.5330i 2.98371i
\(625\) 0 0
\(626\) 16.0000 + 16.0000i 0.639489 + 0.639489i
\(627\) 2.15831 2.15831i 0.0861947 0.0861947i
\(628\) 22.6332 + 22.6332i 0.903165 + 0.903165i
\(629\) 0.899749 + 0.899749i 0.0358753 + 0.0358753i
\(630\) 0 0
\(631\) 24.3166i 0.968030i −0.875060 0.484015i \(-0.839178\pi\)
0.875060 0.484015i \(-0.160822\pi\)
\(632\) 8.63325 + 8.63325i 0.343412 + 0.343412i
\(633\) 50.8997i 2.02308i
\(634\) 29.8997i 1.18747i
\(635\) 0 0
\(636\) 28.6332i 1.13538i
\(637\) 7.05013 7.05013i 0.279336 0.279336i
\(638\) −12.6332 + 12.6332i −0.500155 + 0.500155i
\(639\) −54.5330 −2.15729
\(640\) 0 0
\(641\) −23.8997 −0.943983 −0.471992 0.881603i \(-0.656465\pi\)
−0.471992 + 0.881603i \(0.656465\pi\)
\(642\) 12.2665 12.2665i 0.484120 0.484120i
\(643\) −2.26650 + 2.26650i −0.0893820 + 0.0893820i −0.750384 0.661002i \(-0.770131\pi\)
0.661002 + 0.750384i \(0.270131\pi\)
\(644\) 1.46700i 0.0578080i
\(645\) 0 0
\(646\) 0.416876i 0.0164018i
\(647\) 21.1662i 0.832131i −0.909335 0.416066i \(-0.863409\pi\)
0.909335 0.416066i \(-0.136591\pi\)
\(648\) −23.8997 23.8997i −0.938871 0.938871i
\(649\) 8.31662i 0.326456i
\(650\) 0 0
\(651\) −11.5831 11.5831i −0.453978 0.453978i
\(652\) −14.3166 14.3166i −0.560682 0.560682i
\(653\) −16.3668 + 16.3668i −0.640480 + 0.640480i −0.950674 0.310193i \(-0.899606\pi\)
0.310193 + 0.950674i \(0.399606\pi\)
\(654\) 25.6834 + 25.6834i 1.00430 + 1.00430i
\(655\) 0 0
\(656\) 20.0000i 0.780869i
\(657\) −42.2164 −1.64702
\(658\) 18.5330 + 18.5330i 0.722491 + 0.722491i
\(659\) −25.1583 + 25.1583i −0.980029 + 0.980029i −0.999804 0.0197757i \(-0.993705\pi\)
0.0197757 + 0.999804i \(0.493705\pi\)
\(660\) 0 0
\(661\) −35.5831 35.5831i −1.38402 1.38402i −0.837339 0.546684i \(-0.815890\pi\)
−0.546684 0.837339i \(-0.684110\pi\)
\(662\) 2.31662 0.0900382
\(663\) 24.5330i 0.952783i
\(664\) 28.6332 1.11119
\(665\) 0 0
\(666\) 8.63325i 0.334532i
\(667\) −0.633250 0.633250i −0.0245195 0.0245195i
\(668\) −36.0000 −1.39288
\(669\) 12.9499 12.9499i 0.500671 0.500671i
\(670\) 0 0
\(671\) 60.8496 2.34907
\(672\) 40.0000 1.54303
\(673\) 42.6332 1.64339 0.821696 0.569927i \(-0.193028\pi\)
0.821696 + 0.569927i \(0.193028\pi\)
\(674\) 22.8997 22.8997i 0.882065 0.882065i
\(675\) 0 0
\(676\) −48.5330 −1.86665
\(677\) −11.3668 11.3668i −0.436860 0.436860i 0.454094 0.890954i \(-0.349963\pi\)
−0.890954 + 0.454094i \(0.849963\pi\)
\(678\) 10.2164i 0.392357i
\(679\) 15.3668i 0.589722i
\(680\) 0 0
\(681\) 18.8496i 0.722319i
\(682\) 14.6332 0.560336
\(683\) 5.47494 + 5.47494i 0.209493 + 0.209493i 0.804052 0.594559i \(-0.202673\pi\)
−0.594559 + 0.804052i \(0.702673\pi\)
\(684\) 2.00000 2.00000i 0.0764719 0.0764719i
\(685\) 0 0
\(686\) 20.0000 + 20.0000i 0.763604 + 0.763604i
\(687\) 8.63325 0.329379
\(688\) −30.5330 30.5330i −1.16406 1.16406i
\(689\) 28.6332 1.09084
\(690\) 0 0
\(691\) −26.1583 + 26.1583i −0.995109 + 0.995109i −0.999988 0.00487900i \(-0.998447\pi\)
0.00487900 + 0.999988i \(0.498447\pi\)
\(692\) 25.8997 + 25.8997i 0.984561 + 0.984561i
\(693\) −46.2164 46.2164i −1.75561 1.75561i
\(694\) 28.8496 1.09512
\(695\) 0 0
\(696\) −17.2665 + 17.2665i −0.654485 + 0.654485i
\(697\) 6.58312i 0.249354i
\(698\) 48.5330i 1.83700i
\(699\) 25.6834 + 25.6834i 0.971434 + 0.971434i
\(700\) 0 0
\(701\) −21.2665 + 21.2665i −0.803225 + 0.803225i −0.983598 0.180374i \(-0.942269\pi\)
0.180374 + 0.983598i \(0.442269\pi\)
\(702\) −61.7995 + 61.7995i −2.33247 + 2.33247i
\(703\) 0.216374 0.00816068
\(704\) −25.2665 + 25.2665i −0.952267 + 0.952267i
\(705\) 0 0
\(706\) 33.2665 33.2665i 1.25200 1.25200i
\(707\) 12.3166 12.3166i 0.463214 0.463214i
\(708\) 11.3668i 0.427189i
\(709\) −22.0000 22.0000i −0.826227 0.826227i 0.160765 0.986993i \(-0.448604\pi\)
−0.986993 + 0.160765i \(0.948604\pi\)
\(710\) 0 0
\(711\) 27.2665i 1.02257i
\(712\) −7.89975 + 7.89975i −0.296056 + 0.296056i
\(713\) 0.733501i 0.0274698i
\(714\) 13.1662 0.492734
\(715\) 0 0
\(716\) 17.5831 + 17.5831i 0.657112 + 0.657112i
\(717\) 40.2164 40.2164i 1.50191 1.50191i
\(718\) 9.68338 + 9.68338i 0.361380 + 0.361380i
\(719\) 2.94987 0.110012 0.0550059 0.998486i \(-0.482482\pi\)
0.0550059 + 0.998486i \(0.482482\pi\)
\(720\) 0 0
\(721\) −10.7335 −0.399736
\(722\) −18.9499 18.9499i −0.705241 0.705241i
\(723\) −40.1082 + 40.1082i −1.49164 + 1.49164i
\(724\) −6.63325 + 6.63325i −0.246523 + 0.246523i
\(725\) 0 0
\(726\) 38.6332 1.43381
\(727\) 2.53300i 0.0939437i −0.998896 0.0469719i \(-0.985043\pi\)
0.998896 0.0469719i \(-0.0149571\pi\)
\(728\) 40.0000i 1.48250i
\(729\) 17.2164i 0.637643i
\(730\) 0 0
\(731\) −10.0501 10.0501i −0.371717 0.371717i
\(732\) 83.1662 3.07391
\(733\) −5.68338 + 5.68338i −0.209920 + 0.209920i −0.804234 0.594313i \(-0.797424\pi\)
0.594313 + 0.804234i \(0.297424\pi\)
\(734\) −26.6332 + 26.6332i −0.983051 + 0.983051i
\(735\) 0 0
\(736\) −1.26650 1.26650i −0.0466838 0.0466838i
\(737\) −57.8496 −2.13092
\(738\) −31.5831 + 31.5831i −1.16259 + 1.16259i
\(739\) −14.3668 + 14.3668i −0.528489 + 0.528489i −0.920122 0.391632i \(-0.871911\pi\)
0.391632 + 0.920122i \(0.371911\pi\)
\(740\) 0 0
\(741\) −2.94987 2.94987i −0.108366 0.108366i
\(742\) 15.3668i 0.564131i
\(743\) 20.3166i 0.745345i −0.927963 0.372672i \(-0.878442\pi\)
0.927963 0.372672i \(-0.121558\pi\)
\(744\) 20.0000 0.733236
\(745\) 0 0
\(746\) 4.73350 0.173306
\(747\) −45.2164 45.2164i −1.65438 1.65438i
\(748\) −8.31662 + 8.31662i −0.304086 + 0.304086i
\(749\) 6.58312 6.58312i 0.240542 0.240542i
\(750\) 0 0
\(751\) 42.4327 1.54839 0.774196 0.632945i \(-0.218154\pi\)
0.774196 + 0.632945i \(0.218154\pi\)
\(752\) −32.0000 −1.16692
\(753\) 39.3166 1.43278
\(754\) 17.2665 + 17.2665i 0.628809 + 0.628809i
\(755\) 0 0
\(756\) −33.1662 33.1662i −1.20624 1.20624i
\(757\) −34.3166 34.3166i −1.24726 1.24726i −0.956926 0.290333i \(-0.906234\pi\)
−0.290333 0.956926i \(-0.593766\pi\)
\(758\) 22.8496 0.829936
\(759\) 4.31662i 0.156684i
\(760\) 0 0
\(761\) 32.2665i 1.16966i 0.811156 + 0.584830i \(0.198839\pi\)
−0.811156 + 0.584830i \(0.801161\pi\)
\(762\) 27.2665i 0.987761i
\(763\) 13.7836 + 13.7836i 0.499001 + 0.499001i
\(764\) 41.8997i 1.51588i
\(765\) 0 0
\(766\) −16.9499 + 16.9499i −0.612424 + 0.612424i
\(767\) −11.3668 −0.410430
\(768\) −34.5330 + 34.5330i −1.24610 + 1.24610i
\(769\) −32.4829 −1.17136 −0.585681 0.810542i \(-0.699173\pi\)
−0.585681 + 0.810542i \(0.699173\pi\)
\(770\) 0 0
\(771\) −35.8997 + 35.8997i −1.29290 + 1.29290i
\(772\) 9.36675i 0.337117i
\(773\) −17.3668 17.3668i −0.624639 0.624639i 0.322075 0.946714i \(-0.395620\pi\)
−0.946714 + 0.322075i \(0.895620\pi\)
\(774\) 96.4327i 3.46620i
\(775\) 0 0
\(776\) 13.2665 + 13.2665i 0.476240 + 0.476240i
\(777\) 6.83375i 0.245159i
\(778\) 8.53300 0.305923
\(779\) −0.791562 0.791562i −0.0283607 0.0283607i
\(780\) 0 0
\(781\) 27.2665 27.2665i 0.975672 0.975672i
\(782\) −0.416876 0.416876i −0.0149075 0.0149075i
\(783\) 28.6332 1.02327
\(784\) −6.53300 −0.233321
\(785\) 0 0
\(786\) −4.31662 4.31662i −0.153969 0.153969i
\(787\) −7.00000 + 7.00000i −0.249523 + 0.249523i −0.820775 0.571252i \(-0.806458\pi\)
0.571252 + 0.820775i \(0.306458\pi\)
\(788\) 33.1662 33.1662i 1.18150 1.18150i
\(789\) −33.6332 33.6332i −1.19738 1.19738i
\(790\) 0 0
\(791\) 5.48287i 0.194949i
\(792\) 79.7995 2.83555
\(793\) 83.1662i 2.95332i
\(794\) 50.5330i 1.79335i
\(795\) 0 0
\(796\) −25.2665 −0.895547
\(797\) −15.6332 + 15.6332i −0.553758 + 0.553758i −0.927523 0.373765i \(-0.878067\pi\)
0.373765 + 0.927523i \(0.378067\pi\)
\(798\) 1.58312 1.58312i 0.0560420 0.0560420i
\(799\) −10.5330 −0.372631
\(800\) 0 0
\(801\) 24.9499 0.881560
\(802\) −2.68338 + 2.68338i −0.0947533 + 0.0947533i
\(803\) 21.1082 21.1082i 0.744892 0.744892i
\(804\) −79.0660 −2.78844
\(805\) 0 0
\(806\) 20.0000i 0.704470i
\(807\) 27.2665i 0.959826i
\(808\) 21.2665i 0.748153i
\(809\) 38.5330i 1.35475i −0.735639 0.677374i \(-0.763118\pi\)
0.735639 0.677374i \(-0.236882\pi\)
\(810\) 0 0
\(811\) −37.6332 37.6332i −1.32148 1.32148i −0.912577 0.408905i \(-0.865911\pi\)
−0.408905 0.912577i \(-0.634089\pi\)
\(812\) −9.26650 + 9.26650i −0.325190 + 0.325190i
\(813\) 2.05013 2.05013i 0.0719010 0.0719010i
\(814\) 4.31662 + 4.31662i 0.151298 + 0.151298i
\(815\) 0 0
\(816\) −11.3668 + 11.3668i −0.397916 + 0.397916i
\(817\) −2.41688 −0.0845558
\(818\) −19.6332 19.6332i −0.686460 0.686460i
\(819\) −63.1662 + 63.1662i −2.20721 + 2.20721i
\(820\) 0 0
\(821\) −1.73350 1.73350i −0.0604996 0.0604996i 0.676210 0.736709i \(-0.263621\pi\)
−0.736709 + 0.676210i \(0.763621\pi\)
\(822\) −50.2164 −1.75150
\(823\) 9.89975i 0.345084i 0.985002 + 0.172542i \(0.0551980\pi\)
−0.985002 + 0.172542i \(0.944802\pi\)
\(824\) 9.26650 9.26650i 0.322814 0.322814i
\(825\) 0 0
\(826\) 6.10025i 0.212255i
\(827\) 7.84169 + 7.84169i 0.272682 + 0.272682i 0.830179 0.557497i \(-0.188238\pi\)
−0.557497 + 0.830179i \(0.688238\pi\)
\(828\) 4.00000i 0.139010i
\(829\) −0.733501 + 0.733501i −0.0254755 + 0.0254755i −0.719730 0.694254i \(-0.755734\pi\)
0.694254 + 0.719730i \(0.255734\pi\)
\(830\) 0 0
\(831\) −61.7995 −2.14380
\(832\) 34.5330 + 34.5330i 1.19722 + 1.19722i
\(833\) −2.15038 −0.0745061
\(834\) −39.5330 + 39.5330i −1.36892 + 1.36892i
\(835\) 0 0
\(836\) 2.00000i 0.0691714i
\(837\) −16.5831 16.5831i −0.573197 0.573197i
\(838\) 23.0501i 0.796253i
\(839\) 2.63325i 0.0909099i −0.998966 0.0454549i \(-0.985526\pi\)
0.998966 0.0454549i \(-0.0144737\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) −9.26650 −0.319345
\(843\) −15.6834 15.6834i −0.540164 0.540164i
\(844\) −23.5831 23.5831i −0.811765 0.811765i
\(845\) 0 0
\(846\) 50.5330 + 50.5330i 1.73736 + 1.73736i
\(847\) 20.7335 0.712412
\(848\) −13.2665 13.2665i −0.455573 0.455573i
\(849\) 16.5831 0.569131
\(850\) 0 0
\(851\) −0.216374 + 0.216374i −0.00741719 + 0.00741719i
\(852\) 37.2665 37.2665i 1.27673 1.27673i
\(853\) 20.3668 + 20.3668i 0.697344 + 0.697344i 0.963837 0.266493i \(-0.0858648\pi\)
−0.266493 + 0.963837i \(0.585865\pi\)
\(854\) 44.6332 1.52732
\(855\) 0 0
\(856\) 11.3668i 0.388508i
\(857\) 21.6332i 0.738978i −0.929235 0.369489i \(-0.879533\pi\)
0.929235 0.369489i \(-0.120467\pi\)
\(858\) 117.699i 4.01819i
\(859\) 22.4248 + 22.4248i 0.765125 + 0.765125i 0.977244 0.212119i \(-0.0680365\pi\)
−0.212119 + 0.977244i \(0.568036\pi\)
\(860\) 0 0
\(861\) −25.0000 + 25.0000i −0.851998 + 0.851998i
\(862\) 10.9499 10.9499i 0.372954 0.372954i
\(863\) −20.5330 −0.698951 −0.349476 0.936945i \(-0.613640\pi\)
−0.349476 + 0.936945i \(0.613640\pi\)
\(864\) 57.2665 1.94825
\(865\) 0 0
\(866\) 12.5831 12.5831i 0.427592 0.427592i
\(867\) 32.9499 32.9499i 1.11904 1.11904i
\(868\) 10.7335 0.364319
\(869\) 13.6332 + 13.6332i 0.462476 + 0.462476i
\(870\) 0 0
\(871\) 79.0660i 2.67905i
\(872\) −23.7995 −0.805953
\(873\) 41.8997i 1.41809i
\(874\) −0.100251 −0.00339105
\(875\) 0 0
\(876\) 28.8496 28.8496i 0.974738 0.974738i
\(877\) 6.41688 6.41688i 0.216683 0.216683i −0.590416 0.807099i \(-0.701036\pi\)
0.807099 + 0.590416i \(0.201036\pi\)
\(878\) 5.36675 + 5.36675i 0.181119 + 0.181119i
\(879\) 78.8496 2.65953
\(880\) 0 0
\(881\) 37.8997 1.27687 0.638437 0.769674i \(-0.279581\pi\)
0.638437 + 0.769674i \(0.279581\pi\)
\(882\) 10.3166 + 10.3166i 0.347379 + 0.347379i
\(883\) −22.1583 + 22.1583i −0.745687 + 0.745687i −0.973666 0.227979i \(-0.926788\pi\)
0.227979 + 0.973666i \(0.426788\pi\)
\(884\) 11.3668 + 11.3668i 0.382305 + 0.382305i
\(885\) 0 0
\(886\) −38.2164 −1.28390
\(887\) 46.5330i 1.56243i 0.624265 + 0.781213i \(0.285399\pi\)
−0.624265 + 0.781213i \(0.714601\pi\)
\(888\) 5.89975 + 5.89975i 0.197983 + 0.197983i
\(889\) 14.6332i 0.490783i
\(890\) 0 0
\(891\) −37.7414 37.7414i −1.26439 1.26439i
\(892\) 12.0000i 0.401790i
\(893\) −1.26650 + 1.26650i −0.0423818 + 0.0423818i
\(894\) 71.7995 71.7995i 2.40133 2.40133i
\(895\) 0 0
\(896\) −18.5330 + 18.5330i −0.619144 + 0.619144i
\(897\) 5.89975 0.196987
\(898\) −20.6834 + 20.6834i −0.690213 + 0.690213i
\(899\) −4.63325 + 4.63325i −0.154528 + 0.154528i
\(900\) 0 0
\(901\) −4.36675 4.36675i −0.145478 0.145478i
\(902\) 31.5831i 1.05160i
\(903\) 76.3325i 2.54019i
\(904\) −4.73350 4.73350i −0.157434 0.157434i
\(905\) 0 0
\(906\) 18.6332 0.619048
\(907\) −13.6332 13.6332i −0.452685 0.452685i 0.443560 0.896245i \(-0.353715\pi\)
−0.896245 + 0.443560i \(0.853715\pi\)
\(908\) −8.73350 8.73350i −0.289831 0.289831i
\(909\) 33.5831 33.5831i 1.11388 1.11388i
\(910\) 0 0
\(911\) −41.1662 −1.36390 −0.681949 0.731399i \(-0.738868\pi\)
−0.681949 + 0.731399i \(0.738868\pi\)
\(912\) 2.73350i 0.0905153i
\(913\) 45.2164 1.49644
\(914\) −17.0000 17.0000i −0.562310 0.562310i
\(915\) 0 0
\(916\) −4.00000 + 4.00000i −0.132164 + 0.132164i
\(917\) −2.31662 2.31662i −0.0765017 0.0765017i
\(918\) 18.8496 0.622130
\(919\) 4.41688i 0.145699i 0.997343 + 0.0728496i \(0.0232093\pi\)
−0.997343 + 0.0728496i \(0.976791\pi\)
\(920\) 0 0
\(921\) 61.1161i 2.01384i
\(922\) 39.3668i 1.29647i
\(923\) −37.2665 37.2665i −1.22664 1.22664i
\(924\) 63.1662 2.07802
\(925\) 0 0
\(926\) 24.6332 24.6332i 0.809499 0.809499i
\(927\) −29.2665 −0.961238
\(928\) 16.0000i 0.525226i
\(929\) −20.0000 −0.656179 −0.328089 0.944647i \(-0.606405\pi\)
−0.328089 + 0.944647i \(0.606405\pi\)
\(930\) 0 0
\(931\) −0.258564 + 0.258564i −0.00847408 + 0.00847408i
\(932\) −23.7995 −0.779578
\(933\) −27.9499 27.9499i −0.915038 0.915038i
\(934\) 28.5330i 0.933628i
\(935\) 0 0
\(936\) 109.066i 3.56493i
\(937\) 35.9499i 1.17443i −0.809431 0.587216i \(-0.800224\pi\)
0.809431 0.587216i \(-0.199776\pi\)
\(938\) −42.4327 −1.38548
\(939\) 34.5330 + 34.5330i 1.12694 + 1.12694i
\(940\) 0 0
\(941\) 8.94987 8.94987i 0.291758 0.291758i −0.546017 0.837774i \(-0.683856\pi\)
0.837774 + 0.546017i \(0.183856\pi\)
\(942\) 48.8496 + 48.8496i 1.59161 + 1.59161i
\(943\) 1.58312 0.0515536
\(944\) 5.26650 + 5.26650i 0.171410 + 0.171410i
\(945\) 0 0
\(946\) −48.2164 48.2164i −1.56765 1.56765i
\(947\) −5.41688 + 5.41688i −0.176025 + 0.176025i −0.789620 0.613596i \(-0.789723\pi\)
0.613596 + 0.789620i \(0.289723\pi\)
\(948\) 18.6332 + 18.6332i 0.605180 + 0.605180i
\(949\) −28.8496 28.8496i −0.936498 0.936498i
\(950\) 0 0
\(951\) 64.5330i 2.09263i
\(952\) −6.10025 + 6.10025i −0.197710 + 0.197710i
\(953\) 2.36675i 0.0766666i −0.999265 0.0383333i \(-0.987795\pi\)
0.999265 0.0383333i \(-0.0122049\pi\)
\(954\) 41.8997i 1.35655i
\(955\) 0 0
\(956\) 37.2665i 1.20528i
\(957\) −27.2665 + 27.2665i −0.881401 + 0.881401i
\(958\) −10.2164 + 10.2164i −0.330076 + 0.330076i
\(959\) −26.9499 −0.870257
\(960\) 0 0
\(961\) −25.6332 −0.826879
\(962\) 5.89975 5.89975i 0.190216 0.190216i
\(963\) 17.9499 17.9499i 0.578427 0.578427i
\(964\) 37.1662i 1.19704i
\(965\) 0 0
\(966\) 3.16625i 0.101872i
\(967\) 26.6332i 0.856468i −0.903668 0.428234i \(-0.859136\pi\)
0.903668 0.428234i \(-0.140864\pi\)
\(968\) −17.8997 + 17.8997i −0.575320 + 0.575320i
\(969\) 0.899749i 0.0289041i
\(970\) 0 0
\(971\) 37.4749 + 37.4749i 1.20263 + 1.20263i 0.973364 + 0.229264i \(0.0736318\pi\)
0.229264 + 0.973364i \(0.426368\pi\)
\(972\) −8.63325 8.63325i −0.276912 0.276912i
\(973\) −21.2164 + 21.2164i −0.680166 + 0.680166i
\(974\) −32.2164 32.2164i −1.03228 1.03228i
\(975\) 0 0
\(976\) −38.5330 + 38.5330i −1.23341 + 1.23341i
\(977\) 56.3826 1.80384 0.901920 0.431903i \(-0.142158\pi\)
0.901920 + 0.431903i \(0.142158\pi\)
\(978\) −30.8997 30.8997i −0.988065 0.988065i
\(979\) −12.4749 + 12.4749i −0.398701 + 0.398701i
\(980\) 0 0
\(981\) 37.5831 + 37.5831i 1.19994 + 1.19994i
\(982\) −59.2665 −1.89127
\(983\) 28.3166i 0.903160i 0.892231 + 0.451580i \(0.149139\pi\)
−0.892231 + 0.451580i \(0.850861\pi\)
\(984\) 43.1662i 1.37609i
\(985\) 0 0
\(986\) 5.26650i 0.167720i
\(987\) 40.0000 + 40.0000i 1.27321 + 1.27321i
\(988\) 2.73350 0.0869642
\(989\) 2.41688 2.41688i 0.0768522 0.0768522i
\(990\) 0 0
\(991\) 49.4829 1.57188 0.785938 0.618306i \(-0.212181\pi\)
0.785938 + 0.618306i \(0.212181\pi\)
\(992\) −9.26650 + 9.26650i −0.294212 + 0.294212i
\(993\) 5.00000 0.158670
\(994\) 20.0000 20.0000i 0.634361 0.634361i
\(995\) 0 0
\(996\) 61.7995 1.95819
\(997\) −2.94987 2.94987i −0.0934235 0.0934235i 0.658850 0.752274i \(-0.271043\pi\)
−0.752274 + 0.658850i \(0.771043\pi\)
\(998\) 45.7995i 1.44976i
\(999\) 9.78363i 0.309540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.l.d.101.1 4
4.3 odd 2 1600.2.l.e.1201.2 4
5.2 odd 4 400.2.q.c.149.2 4
5.3 odd 4 400.2.q.d.149.1 4
5.4 even 2 400.2.l.e.101.2 yes 4
16.3 odd 4 1600.2.l.e.401.2 4
16.13 even 4 inner 400.2.l.d.301.1 yes 4
20.3 even 4 1600.2.q.d.49.2 4
20.7 even 4 1600.2.q.c.49.1 4
20.19 odd 2 1600.2.l.d.1201.1 4
80.3 even 4 1600.2.q.c.849.1 4
80.13 odd 4 400.2.q.c.349.2 4
80.19 odd 4 1600.2.l.d.401.1 4
80.29 even 4 400.2.l.e.301.2 yes 4
80.67 even 4 1600.2.q.d.849.2 4
80.77 odd 4 400.2.q.d.349.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.l.d.101.1 4 1.1 even 1 trivial
400.2.l.d.301.1 yes 4 16.13 even 4 inner
400.2.l.e.101.2 yes 4 5.4 even 2
400.2.l.e.301.2 yes 4 80.29 even 4
400.2.q.c.149.2 4 5.2 odd 4
400.2.q.c.349.2 4 80.13 odd 4
400.2.q.d.149.1 4 5.3 odd 4
400.2.q.d.349.1 4 80.77 odd 4
1600.2.l.d.401.1 4 80.19 odd 4
1600.2.l.d.1201.1 4 20.19 odd 2
1600.2.l.e.401.2 4 16.3 odd 4
1600.2.l.e.1201.2 4 4.3 odd 2
1600.2.q.c.49.1 4 20.7 even 4
1600.2.q.c.849.1 4 80.3 even 4
1600.2.q.d.49.2 4 20.3 even 4
1600.2.q.d.849.2 4 80.67 even 4