Newspace parameters
| Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 40.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(30.7337272224\) |
| Analytic rank: | \(0\) |
| Dimension: | \(128\) |
| Relative dimension: | \(64\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1 | −45.2548 | + | 0.0166695i | −512.817 | − | 512.817i | 2048.00 | − | 1.50875i | 2579.37 | + | 6494.23i | 23216.0 | + | 23198.9i | −48901.7 | − | 48901.7i | −92681.8 | + | 102.417i | 348815.i | −116837. | − | 293852.i | ||
| 3.2 | −45.1450 | − | 3.15148i | 407.682 | + | 407.682i | 2028.14 | + | 284.547i | −6950.12 | + | 723.894i | −17120.0 | − | 19689.6i | −28654.9 | − | 28654.9i | −90663.4 | − | 19237.5i | 155262.i | 316044. | − | 10777.0i | ||
| 3.3 | −44.8665 | + | 5.91579i | −242.674 | − | 242.674i | 1978.01 | − | 530.842i | −5127.25 | + | 4747.57i | 12323.5 | + | 9452.33i | 59475.8 | + | 59475.8i | −85605.9 | + | 35518.5i | − | 59365.5i | 201956. | − | 243339.i | |
| 3.4 | −44.7090 | − | 7.00721i | 536.038 | + | 536.038i | 1949.80 | + | 626.571i | 4766.70 | + | 5109.47i | −20209.6 | − | 27721.9i | 17355.0 | + | 17355.0i | −82783.1 | − | 41676.0i | 397526.i | −177312. | − | 261841.i | ||
| 3.5 | −44.5442 | − | 7.98827i | 7.55508 | + | 7.55508i | 1920.38 | + | 711.662i | 6527.10 | − | 2495.01i | −276.183 | − | 396.887i | −8488.40 | − | 8488.40i | −79856.7 | − | 47040.9i | − | 177033.i | −310675. | + | 58998.1i | |
| 3.6 | −43.9230 | + | 10.8982i | 267.607 | + | 267.607i | 1810.46 | − | 957.367i | 220.376 | − | 6984.24i | −14670.5 | − | 8837.65i | 48495.9 | + | 48495.9i | −69087.0 | + | 61781.2i | − | 33920.1i | 66436.4 | + | 309170.i | |
| 3.7 | −43.4260 | − | 12.7352i | −347.850 | − | 347.850i | 1723.63 | + | 1106.08i | −4198.50 | − | 5585.76i | 10675.8 | + | 19535.7i | −6139.06 | − | 6139.06i | −60764.3 | − | 69983.1i | 64852.8i | 111188. | + | 296036.i | ||
| 3.8 | −41.4860 | + | 18.0807i | 33.8917 | + | 33.8917i | 1394.18 | − | 1500.19i | −5788.81 | − | 3913.80i | −2018.82 | − | 793.244i | −45957.4 | − | 45957.4i | −30714.2 | + | 87444.7i | − | 174850.i | 310919. | + | 57702.0i | |
| 3.9 | −41.2436 | + | 18.6269i | −478.390 | − | 478.390i | 1354.08 | − | 1536.48i | 1373.13 | − | 6851.47i | 28641.5 | + | 10819.6i | 4736.00 | + | 4736.00i | −27227.0 | + | 88592.5i | 280567.i | 70988.8 | + | 308157.i | ||
| 3.10 | −41.2233 | + | 18.6718i | 106.766 | + | 106.766i | 1350.73 | − | 1539.43i | 2141.26 | + | 6651.55i | −6394.79 | − | 2407.75i | −11151.9 | − | 11151.9i | −26937.6 | + | 88680.9i | − | 154349.i | −212466. | − | 234218.i | |
| 3.11 | −39.1257 | − | 22.7416i | −106.549 | − | 106.549i | 1013.64 | + | 1779.56i | −5069.71 | + | 4808.97i | 1745.71 | + | 6591.88i | −23188.0 | − | 23188.0i | 810.535 | − | 92678.4i | − | 154442.i | 307719. | − | 72861.1i | |
| 3.12 | −35.7238 | − | 27.7815i | 299.701 | + | 299.701i | 504.382 | + | 1984.92i | −5247.28 | − | 4614.56i | −2380.33 | − | 19032.6i | 37379.9 | + | 37379.9i | 37125.5 | − | 84921.3i | 2494.06i | 59253.5 | + | 310627.i | ||
| 3.13 | −35.6957 | − | 27.8176i | −465.247 | − | 465.247i | 500.363 | + | 1985.94i | 6743.24 | + | 1832.15i | 3665.25 | + | 29549.4i | 56964.7 | + | 56964.7i | 37383.2 | − | 84808.2i | 255762.i | −189739. | − | 252981.i | ||
| 3.14 | −35.0127 | − | 28.6725i | 161.775 | + | 161.775i | 403.781 | + | 2007.80i | 1170.45 | + | 6888.99i | −1025.70 | − | 10302.7i | 18427.4 | + | 18427.4i | 43431.1 | − | 81876.0i | − | 124804.i | 156544. | − | 274762.i | |
| 3.15 | −34.4421 | + | 29.3555i | −280.418 | − | 280.418i | 324.511 | − | 2022.13i | 6970.18 | − | 494.633i | 17890.0 | + | 1426.37i | 9905.30 | + | 9905.30i | 48183.7 | + | 79172.4i | − | 19878.4i | −225547. | + | 221649.i | |
| 3.16 | −33.9596 | + | 29.9123i | 462.074 | + | 462.074i | 258.514 | − | 2031.62i | 5907.12 | − | 3732.84i | −29513.6 | − | 1870.19i | −32730.0 | − | 32730.0i | 51991.2 | + | 76725.8i | 249879.i | −88945.8 | + | 303461.i | ||
| 3.17 | −32.4144 | − | 31.5801i | 420.354 | + | 420.354i | 53.3909 | + | 2047.30i | 2247.72 | − | 6616.33i | −350.704 | − | 26900.4i | −46629.5 | − | 46629.5i | 62923.5 | − | 68048.3i | 176249.i | −281803. | + | 143481.i | ||
| 3.18 | −29.9123 | + | 33.9596i | 462.074 | + | 462.074i | −258.514 | − | 2031.62i | −5907.12 | + | 3732.84i | −29513.6 | + | 1870.19i | 32730.0 | + | 32730.0i | 76725.8 | + | 51991.2i | 249879.i | 49929.2 | − | 312261.i | ||
| 3.19 | −29.3555 | + | 34.4421i | −280.418 | − | 280.418i | −324.511 | − | 2022.13i | −6970.18 | + | 494.633i | 17890.0 | − | 1426.37i | −9905.30 | − | 9905.30i | 79172.4 | + | 48183.7i | − | 19878.4i | 187577. | − | 254588.i | |
| 3.20 | −26.3884 | − | 36.7648i | −240.149 | − | 240.149i | −655.299 | + | 1940.33i | 1087.38 | − | 6902.59i | −2491.86 | + | 15166.2i | −4728.67 | − | 4728.67i | 88628.2 | − | 27110.4i | − | 61804.2i | −282466. | + | 142171.i | |
| See next 80 embeddings (of 128 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.c | odd | 4 | 1 | inner |
| 8.d | odd | 2 | 1 | inner |
| 40.k | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 40.12.k.a | ✓ | 128 |
| 5.c | odd | 4 | 1 | inner | 40.12.k.a | ✓ | 128 |
| 8.d | odd | 2 | 1 | inner | 40.12.k.a | ✓ | 128 |
| 40.k | even | 4 | 1 | inner | 40.12.k.a | ✓ | 128 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 40.12.k.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
| 40.12.k.a | ✓ | 128 | 5.c | odd | 4 | 1 | inner |
| 40.12.k.a | ✓ | 128 | 8.d | odd | 2 | 1 | inner |
| 40.12.k.a | ✓ | 128 | 40.k | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{12}^{\mathrm{new}}(40, [\chi])\).