Properties

Label 399.2.w.c.170.3
Level $399$
Weight $2$
Character 399.170
Analytic conductor $3.186$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(170,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.170"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.w (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 170.3
Root \(0.178197 + 1.72286i\) of defining polynomial
Character \(\chi\) \(=\) 399.170
Dual form 399.2.w.c.284.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178197 + 1.72286i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(-2.00000 - 1.73205i) q^{7} +(-2.93649 + 0.614017i) q^{9} +(-3.87298 + 2.23607i) q^{11} +(-2.80588 + 2.03151i) q^{12} +4.24264i q^{13} +(1.58114 - 3.53553i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(1.93649 - 1.11803i) q^{17} +(3.17423 + 2.98735i) q^{19} -4.47214i q^{20} +(2.62769 - 3.75437i) q^{21} +(-1.93649 - 1.11803i) q^{23} +(-1.58114 - 4.94975i) q^{27} +(1.00000 - 5.19615i) q^{28} -9.48683 q^{29} +(-4.54259 - 6.27415i) q^{33} +(1.93649 + 5.59017i) q^{35} +(-4.00000 - 4.47214i) q^{36} +(7.34847 + 4.24264i) q^{37} +(-7.30948 + 0.756026i) q^{39} +9.48683 q^{41} +5.00000 q^{43} +(-7.74597 - 4.47214i) q^{44} +(6.37298 + 2.09406i) q^{45} +(3.87298 + 2.23607i) q^{47} +(-6.32456 - 2.82843i) q^{48} +(1.00000 + 6.92820i) q^{49} +(2.27129 + 3.13707i) q^{51} +(-7.34847 + 4.24264i) q^{52} +(4.74342 + 8.21584i) q^{53} +10.0000 q^{55} +(-4.58114 + 6.00110i) q^{57} +(7.70486 - 0.796921i) q^{60} +(2.00000 - 3.46410i) q^{61} +(6.93649 + 3.85812i) q^{63} -8.00000 q^{64} +(4.74342 - 8.21584i) q^{65} +(-11.0227 + 6.36396i) q^{67} +(3.87298 + 2.23607i) q^{68} +(1.58114 - 3.53553i) q^{69} +(-4.00000 - 6.92820i) q^{73} +(-2.00000 + 8.48528i) q^{76} +(11.6190 + 2.23607i) q^{77} +(-11.0227 - 6.36396i) q^{79} +(7.74597 - 4.47214i) q^{80} +(8.24597 - 3.60611i) q^{81} +15.6525i q^{83} +(9.13044 + 0.796921i) q^{84} -5.00000 q^{85} +(-1.69052 - 16.3445i) q^{87} +(-4.74342 + 8.21584i) q^{89} +(7.34847 - 8.48528i) q^{91} -4.47214i q^{92} +(-2.80692 - 9.33387i) q^{95} +8.48528i q^{97} +(10.0000 - 8.94427i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 16 q^{7} - 8 q^{9} - 16 q^{16} - 4 q^{19} + 8 q^{28} - 32 q^{36} - 12 q^{39} + 40 q^{43} + 20 q^{45} + 8 q^{49} + 80 q^{55} - 24 q^{57} + 16 q^{61} + 40 q^{63} - 64 q^{64} - 32 q^{73} - 16 q^{76}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0.178197 + 1.72286i 0.102882 + 0.994694i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) −1.93649 1.11803i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −2.00000 1.73205i −0.755929 0.654654i
\(8\) 0 0
\(9\) −2.93649 + 0.614017i −0.978831 + 0.204672i
\(10\) 0 0
\(11\) −3.87298 + 2.23607i −1.16775 + 0.674200i −0.953149 0.302502i \(-0.902178\pi\)
−0.214600 + 0.976702i \(0.568845\pi\)
\(12\) −2.80588 + 2.03151i −0.809989 + 0.586445i
\(13\) 4.24264i 1.17670i 0.808608 + 0.588348i \(0.200222\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) 0 0
\(15\) 1.58114 3.53553i 0.408248 0.912871i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 1.93649 1.11803i 0.469668 0.271163i −0.246433 0.969160i \(-0.579258\pi\)
0.716101 + 0.697997i \(0.245925\pi\)
\(18\) 0 0
\(19\) 3.17423 + 2.98735i 0.728219 + 0.685344i
\(20\) 4.47214i 1.00000i
\(21\) 2.62769 3.75437i 0.573408 0.819270i
\(22\) 0 0
\(23\) −1.93649 1.11803i −0.403786 0.233126i 0.284330 0.958726i \(-0.408229\pi\)
−0.688116 + 0.725600i \(0.741562\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.58114 4.94975i −0.304290 0.952579i
\(28\) 1.00000 5.19615i 0.188982 0.981981i
\(29\) −9.48683 −1.76166 −0.880830 0.473432i \(-0.843015\pi\)
−0.880830 + 0.473432i \(0.843015\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) −4.54259 6.27415i −0.790763 1.09219i
\(34\) 0 0
\(35\) 1.93649 + 5.59017i 0.327327 + 0.944911i
\(36\) −4.00000 4.47214i −0.666667 0.745356i
\(37\) 7.34847 + 4.24264i 1.20808 + 0.697486i 0.962340 0.271850i \(-0.0876353\pi\)
0.245741 + 0.969335i \(0.420969\pi\)
\(38\) 0 0
\(39\) −7.30948 + 0.756026i −1.17045 + 0.121061i
\(40\) 0 0
\(41\) 9.48683 1.48159 0.740797 0.671729i \(-0.234448\pi\)
0.740797 + 0.671729i \(0.234448\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) −7.74597 4.47214i −1.16775 0.674200i
\(45\) 6.37298 + 2.09406i 0.950028 + 0.312164i
\(46\) 0 0
\(47\) 3.87298 + 2.23607i 0.564933 + 0.326164i 0.755123 0.655583i \(-0.227577\pi\)
−0.190190 + 0.981747i \(0.560910\pi\)
\(48\) −6.32456 2.82843i −0.912871 0.408248i
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 2.27129 + 3.13707i 0.318045 + 0.439278i
\(52\) −7.34847 + 4.24264i −1.01905 + 0.588348i
\(53\) 4.74342 + 8.21584i 0.651558 + 1.12853i 0.982745 + 0.184967i \(0.0592178\pi\)
−0.331186 + 0.943565i \(0.607449\pi\)
\(54\) 0 0
\(55\) 10.0000 1.34840
\(56\) 0 0
\(57\) −4.58114 + 6.00110i −0.606787 + 0.794865i
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 7.70486 0.796921i 0.994694 0.102882i
\(61\) 2.00000 3.46410i 0.256074 0.443533i −0.709113 0.705095i \(-0.750904\pi\)
0.965187 + 0.261562i \(0.0842377\pi\)
\(62\) 0 0
\(63\) 6.93649 + 3.85812i 0.873916 + 0.486077i
\(64\) −8.00000 −1.00000
\(65\) 4.74342 8.21584i 0.588348 1.01905i
\(66\) 0 0
\(67\) −11.0227 + 6.36396i −1.34664 + 0.777482i −0.987772 0.155908i \(-0.950170\pi\)
−0.358866 + 0.933389i \(0.616836\pi\)
\(68\) 3.87298 + 2.23607i 0.469668 + 0.271163i
\(69\) 1.58114 3.53553i 0.190347 0.425628i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −4.00000 6.92820i −0.468165 0.810885i 0.531174 0.847263i \(-0.321751\pi\)
−0.999338 + 0.0363782i \(0.988418\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −2.00000 + 8.48528i −0.229416 + 0.973329i
\(77\) 11.6190 + 2.23607i 1.32410 + 0.254824i
\(78\) 0 0
\(79\) −11.0227 6.36396i −1.24015 0.716002i −0.271026 0.962572i \(-0.587363\pi\)
−0.969125 + 0.246570i \(0.920696\pi\)
\(80\) 7.74597 4.47214i 0.866025 0.500000i
\(81\) 8.24597 3.60611i 0.916219 0.400679i
\(82\) 0 0
\(83\) 15.6525i 1.71808i 0.511906 + 0.859041i \(0.328939\pi\)
−0.511906 + 0.859041i \(0.671061\pi\)
\(84\) 9.13044 + 0.796921i 0.996213 + 0.0869512i
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) −1.69052 16.3445i −0.181243 1.75231i
\(88\) 0 0
\(89\) −4.74342 + 8.21584i −0.502801 + 0.870877i 0.497194 + 0.867640i \(0.334364\pi\)
−0.999995 + 0.00323751i \(0.998969\pi\)
\(90\) 0 0
\(91\) 7.34847 8.48528i 0.770329 0.889499i
\(92\) 4.47214i 0.466252i
\(93\) 0 0
\(94\) 0 0
\(95\) −2.80692 9.33387i −0.287984 0.957635i
\(96\) 0 0
\(97\) 8.48528i 0.861550i 0.902459 + 0.430775i \(0.141760\pi\)
−0.902459 + 0.430775i \(0.858240\pi\)
\(98\) 0 0
\(99\) 10.0000 8.94427i 1.00504 0.898933i
\(100\) 0 0
\(101\) 13.5554 7.82624i 1.34882 0.778740i 0.360735 0.932668i \(-0.382526\pi\)
0.988082 + 0.153929i \(0.0491926\pi\)
\(102\) 0 0
\(103\) 3.67423 + 2.12132i 0.362033 + 0.209020i 0.669972 0.742386i \(-0.266306\pi\)
−0.307939 + 0.951406i \(0.599639\pi\)
\(104\) 0 0
\(105\) −9.28600 + 4.33246i −0.906221 + 0.422804i
\(106\) 0 0
\(107\) −4.74342 + 8.21584i −0.458563 + 0.794255i −0.998885 0.0472033i \(-0.984969\pi\)
0.540322 + 0.841458i \(0.318302\pi\)
\(108\) 6.99208 7.68836i 0.672813 0.739813i
\(109\) 7.34847 4.24264i 0.703856 0.406371i −0.104926 0.994480i \(-0.533461\pi\)
0.808782 + 0.588109i \(0.200127\pi\)
\(110\) 0 0
\(111\) −6.00000 + 13.4164i −0.569495 + 1.27343i
\(112\) 10.0000 3.46410i 0.944911 0.327327i
\(113\) 9.48683 0.892446 0.446223 0.894922i \(-0.352769\pi\)
0.446223 + 0.894922i \(0.352769\pi\)
\(114\) 0 0
\(115\) 2.50000 + 4.33013i 0.233126 + 0.403786i
\(116\) −9.48683 16.4317i −0.880830 1.52564i
\(117\) −2.60505 12.4585i −0.240837 1.15179i
\(118\) 0 0
\(119\) −5.80948 1.11803i −0.532554 0.102490i
\(120\) 0 0
\(121\) 4.50000 7.79423i 0.409091 0.708566i
\(122\) 0 0
\(123\) 1.69052 + 16.3445i 0.152430 + 1.47373i
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 12.7279i 1.12942i −0.825289 0.564710i \(-0.808988\pi\)
0.825289 0.564710i \(-0.191012\pi\)
\(128\) 0 0
\(129\) 0.890985 + 8.61430i 0.0784468 + 0.758447i
\(130\) 0 0
\(131\) −13.5554 7.82624i −1.18434 0.683782i −0.227329 0.973818i \(-0.572999\pi\)
−0.957016 + 0.290036i \(0.906333\pi\)
\(132\) 6.32456 14.1421i 0.550482 1.23091i
\(133\) −1.17423 11.4726i −0.101819 0.994803i
\(134\) 0 0
\(135\) −2.47212 + 11.3529i −0.212767 + 0.977103i
\(136\) 0 0
\(137\) −3.87298 + 2.23607i −0.330891 + 0.191040i −0.656237 0.754555i \(-0.727853\pi\)
0.325345 + 0.945595i \(0.394519\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) −7.74597 + 8.94427i −0.654654 + 0.755929i
\(141\) −3.16228 + 7.07107i −0.266312 + 0.595491i
\(142\) 0 0
\(143\) −9.48683 16.4317i −0.793329 1.37409i
\(144\) 3.74597 11.4003i 0.312164 0.950028i
\(145\) 18.3712 + 10.6066i 1.52564 + 0.880830i
\(146\) 0 0
\(147\) −11.7581 + 2.95744i −0.969794 + 0.243926i
\(148\) 16.9706i 1.39497i
\(149\) −1.93649 1.11803i −0.158644 0.0915929i 0.418576 0.908182i \(-0.362529\pi\)
−0.577220 + 0.816589i \(0.695863\pi\)
\(150\) 0 0
\(151\) 3.67423 2.12132i 0.299005 0.172631i −0.342991 0.939339i \(-0.611440\pi\)
0.641996 + 0.766708i \(0.278107\pi\)
\(152\) 0 0
\(153\) −5.00000 + 4.47214i −0.404226 + 0.361551i
\(154\) 0 0
\(155\) 0 0
\(156\) −8.61895 11.9044i −0.690068 0.953111i
\(157\) −5.50000 9.52628i −0.438948 0.760280i 0.558661 0.829396i \(-0.311315\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) 0 0
\(159\) −13.3095 + 9.63628i −1.05551 + 0.764207i
\(160\) 0 0
\(161\) 1.93649 + 5.59017i 0.152617 + 0.440567i
\(162\) 0 0
\(163\) −8.50000 + 14.7224i −0.665771 + 1.15315i 0.313304 + 0.949653i \(0.398564\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 9.48683 + 16.4317i 0.740797 + 1.28310i
\(165\) 1.78197 + 17.2286i 0.138726 + 1.34124i
\(166\) 0 0
\(167\) 9.48683 0.734113 0.367057 0.930199i \(-0.380366\pi\)
0.367057 + 0.930199i \(0.380366\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −11.1554 6.82328i −0.853074 0.521789i
\(172\) 5.00000 + 8.66025i 0.381246 + 0.660338i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.8885i 1.34840i
\(177\) 0 0
\(178\) 0 0
\(179\) 4.74342 + 8.21584i 0.354540 + 0.614081i 0.987039 0.160480i \(-0.0513043\pi\)
−0.632499 + 0.774561i \(0.717971\pi\)
\(180\) 2.74597 + 13.1324i 0.204672 + 0.978831i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 6.32456 + 2.82843i 0.467525 + 0.209083i
\(184\) 0 0
\(185\) −9.48683 16.4317i −0.697486 1.20808i
\(186\) 0 0
\(187\) −5.00000 + 8.66025i −0.365636 + 0.633300i
\(188\) 8.94427i 0.652328i
\(189\) −5.41094 + 12.6381i −0.393588 + 0.919287i
\(190\) 0 0
\(191\) −13.5554 7.82624i −0.980837 0.566287i −0.0783145 0.996929i \(-0.524954\pi\)
−0.902523 + 0.430642i \(0.858287\pi\)
\(192\) −1.42558 13.7829i −0.102882 0.994694i
\(193\) 11.0227 6.36396i 0.793432 0.458088i −0.0477376 0.998860i \(-0.515201\pi\)
0.841169 + 0.540772i \(0.181868\pi\)
\(194\) 0 0
\(195\) 15.0000 + 6.70820i 1.07417 + 0.480384i
\(196\) −11.0000 + 8.66025i −0.785714 + 0.618590i
\(197\) 11.1803i 0.796566i −0.917263 0.398283i \(-0.869606\pi\)
0.917263 0.398283i \(-0.130394\pi\)
\(198\) 0 0
\(199\) −8.50000 14.7224i −0.602549 1.04365i −0.992434 0.122782i \(-0.960818\pi\)
0.389885 0.920864i \(-0.372515\pi\)
\(200\) 0 0
\(201\) −12.9284 17.8565i −0.911901 1.25950i
\(202\) 0 0
\(203\) 18.9737 + 16.4317i 1.33169 + 1.15328i
\(204\) −3.16228 + 7.07107i −0.221404 + 0.495074i
\(205\) −18.3712 10.6066i −1.28310 0.740797i
\(206\) 0 0
\(207\) 6.37298 + 2.09406i 0.442953 + 0.145547i
\(208\) −14.6969 8.48528i −1.01905 0.588348i
\(209\) −18.9737 4.47214i −1.31244 0.309344i
\(210\) 0 0
\(211\) 4.24264i 0.292075i 0.989279 + 0.146038i \(0.0466521\pi\)
−0.989279 + 0.146038i \(0.953348\pi\)
\(212\) −9.48683 + 16.4317i −0.651558 + 1.12853i
\(213\) 0 0
\(214\) 0 0
\(215\) −9.68246 5.59017i −0.660338 0.381246i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.2235 8.12602i 0.758416 0.549106i
\(220\) 10.0000 + 17.3205i 0.674200 + 1.16775i
\(221\) 4.74342 + 8.21584i 0.319077 + 0.552657i
\(222\) 0 0
\(223\) 4.24264i 0.284108i −0.989859 0.142054i \(-0.954629\pi\)
0.989859 0.142054i \(-0.0453707\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.48683 + 16.4317i 0.629663 + 1.09061i 0.987619 + 0.156870i \(0.0501404\pi\)
−0.357956 + 0.933738i \(0.616526\pi\)
\(228\) −14.9753 1.93367i −0.991766 0.128060i
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) −1.78197 + 20.4163i −0.117245 + 1.34329i
\(232\) 0 0
\(233\) −1.93649 1.11803i −0.126864 0.0732448i 0.435225 0.900322i \(-0.356669\pi\)
−0.562089 + 0.827077i \(0.690002\pi\)
\(234\) 0 0
\(235\) −5.00000 8.66025i −0.326164 0.564933i
\(236\) 0 0
\(237\) 9.00000 20.1246i 0.584613 1.30723i
\(238\) 0 0
\(239\) 15.6525i 1.01247i 0.862394 + 0.506237i \(0.168964\pi\)
−0.862394 + 0.506237i \(0.831036\pi\)
\(240\) 9.08517 + 12.5483i 0.586445 + 0.809989i
\(241\) 14.6969 8.48528i 0.946713 0.546585i 0.0546547 0.998505i \(-0.482594\pi\)
0.892058 + 0.451920i \(0.149261\pi\)
\(242\) 0 0
\(243\) 7.68223 + 13.5640i 0.492815 + 0.870134i
\(244\) 8.00000 0.512148
\(245\) 5.80948 14.5344i 0.371154 0.928571i
\(246\) 0 0
\(247\) −12.6742 + 13.4671i −0.806442 + 0.856893i
\(248\) 0 0
\(249\) −26.9670 + 2.78922i −1.70897 + 0.176760i
\(250\) 0 0
\(251\) 11.1803i 0.705697i −0.935681 0.352848i \(-0.885213\pi\)
0.935681 0.352848i \(-0.114787\pi\)
\(252\) 0.254033 + 15.8725i 0.0160026 + 0.999872i
\(253\) 10.0000 0.628695
\(254\) 0 0
\(255\) −0.890985 8.61430i −0.0557956 0.539448i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 4.74342 8.21584i 0.295886 0.512490i −0.679304 0.733857i \(-0.737718\pi\)
0.975191 + 0.221367i \(0.0710518\pi\)
\(258\) 0 0
\(259\) −7.34847 21.2132i −0.456612 1.31812i
\(260\) 18.9737 1.17670
\(261\) 27.8580 5.82508i 1.72437 0.360563i
\(262\) 0 0
\(263\) −9.68246 + 5.59017i −0.597046 + 0.344705i −0.767879 0.640595i \(-0.778688\pi\)
0.170833 + 0.985300i \(0.445354\pi\)
\(264\) 0 0
\(265\) 21.2132i 1.30312i
\(266\) 0 0
\(267\) −15.0000 6.70820i −0.917985 0.410535i
\(268\) −22.0454 12.7279i −1.34664 0.777482i
\(269\) −9.48683 16.4317i −0.578422 1.00186i −0.995661 0.0930598i \(-0.970335\pi\)
0.417238 0.908797i \(-0.362998\pi\)
\(270\) 0 0
\(271\) −8.50000 + 14.7224i −0.516338 + 0.894324i 0.483482 + 0.875354i \(0.339372\pi\)
−0.999820 + 0.0189696i \(0.993961\pi\)
\(272\) 8.94427i 0.542326i
\(273\) 15.9284 + 11.1483i 0.964032 + 0.674728i
\(274\) 0 0
\(275\) 0 0
\(276\) 7.70486 0.796921i 0.463778 0.0479690i
\(277\) 2.00000 + 3.46410i 0.120168 + 0.208138i 0.919834 0.392308i \(-0.128323\pi\)
−0.799666 + 0.600446i \(0.794990\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.48683 −0.565937 −0.282969 0.959129i \(-0.591319\pi\)
−0.282969 + 0.959129i \(0.591319\pi\)
\(282\) 0 0
\(283\) 3.50000 + 6.06218i 0.208053 + 0.360359i 0.951101 0.308879i \(-0.0999539\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 15.5808 6.49921i 0.922925 0.384980i
\(286\) 0 0
\(287\) −18.9737 16.4317i −1.11998 0.969931i
\(288\) 0 0
\(289\) −6.00000 + 10.3923i −0.352941 + 0.611312i
\(290\) 0 0
\(291\) −14.6190 + 1.51205i −0.856978 + 0.0886380i
\(292\) 8.00000 13.8564i 0.468165 0.810885i
\(293\) −18.9737 −1.10845 −0.554227 0.832366i \(-0.686986\pi\)
−0.554227 + 0.832366i \(0.686986\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 17.1917 + 15.6348i 0.997563 + 0.907221i
\(298\) 0 0
\(299\) 4.74342 8.21584i 0.274319 0.475134i
\(300\) 0 0
\(301\) −10.0000 8.66025i −0.576390 0.499169i
\(302\) 0 0
\(303\) 15.8990 + 21.9595i 0.913377 + 1.26154i
\(304\) −16.6969 + 5.02118i −0.957635 + 0.287984i
\(305\) −7.74597 + 4.47214i −0.443533 + 0.256074i
\(306\) 0 0
\(307\) 25.4558i 1.45284i 0.687250 + 0.726421i \(0.258818\pi\)
−0.687250 + 0.726421i \(0.741182\pi\)
\(308\) 7.74597 + 22.3607i 0.441367 + 1.27412i
\(309\) −3.00000 + 6.70820i −0.170664 + 0.381616i
\(310\) 0 0
\(311\) 13.5554 7.82624i 0.768659 0.443785i −0.0637373 0.997967i \(-0.520302\pi\)
0.832396 + 0.554181i \(0.186969\pi\)
\(312\) 0 0
\(313\) −2.50000 + 4.33013i −0.141308 + 0.244753i −0.927990 0.372606i \(-0.878464\pi\)
0.786681 + 0.617359i \(0.211798\pi\)
\(314\) 0 0
\(315\) −9.11895 15.2264i −0.513795 0.857913i
\(316\) 25.4558i 1.43200i
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 36.7423 21.2132i 2.05718 1.18771i
\(320\) 15.4919 + 8.94427i 0.866025 + 0.500000i
\(321\) −15.0000 6.70820i −0.837218 0.374415i
\(322\) 0 0
\(323\) 9.48683 + 2.23607i 0.527862 + 0.124418i
\(324\) 14.4919 + 10.6763i 0.805107 + 0.593129i
\(325\) 0 0
\(326\) 0 0
\(327\) 8.61895 + 11.9044i 0.476629 + 0.658312i
\(328\) 0 0
\(329\) −3.87298 11.1803i −0.213524 0.616392i
\(330\) 0 0
\(331\) −22.0454 12.7279i −1.21173 0.699590i −0.248590 0.968609i \(-0.579967\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) −27.1109 + 15.6525i −1.48790 + 0.859041i
\(333\) −24.1838 7.94640i −1.32526 0.435460i
\(334\) 0 0
\(335\) 28.4605 1.55496
\(336\) 7.75013 + 16.6113i 0.422804 + 0.906221i
\(337\) 16.9706i 0.924445i 0.886764 + 0.462223i \(0.152948\pi\)
−0.886764 + 0.462223i \(0.847052\pi\)
\(338\) 0 0
\(339\) 1.69052 + 16.3445i 0.0918167 + 0.887710i
\(340\) −5.00000 8.66025i −0.271163 0.469668i
\(341\) 0 0
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) −7.01471 + 5.07877i −0.377659 + 0.273432i
\(346\) 0 0
\(347\) 1.93649 1.11803i 0.103956 0.0600192i −0.447120 0.894474i \(-0.647550\pi\)
0.551077 + 0.834455i \(0.314217\pi\)
\(348\) 26.6190 19.2726i 1.42693 1.03312i
\(349\) −1.00000 −0.0535288 −0.0267644 0.999642i \(-0.508520\pi\)
−0.0267644 + 0.999642i \(0.508520\pi\)
\(350\) 0 0
\(351\) 21.0000 6.70820i 1.12090 0.358057i
\(352\) 0 0
\(353\) 7.74597 4.47214i 0.412276 0.238028i −0.279491 0.960148i \(-0.590166\pi\)
0.691767 + 0.722121i \(0.256832\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −18.9737 −1.00560
\(357\) 0.890985 10.2081i 0.0471559 0.540272i
\(358\) 0 0
\(359\) 27.1109 + 15.6525i 1.43086 + 0.826106i 0.997186 0.0749650i \(-0.0238845\pi\)
0.433672 + 0.901071i \(0.357218\pi\)
\(360\) 0 0
\(361\) 1.15153 + 18.9651i 0.0606069 + 0.998162i
\(362\) 0 0
\(363\) 14.2302 + 6.36396i 0.746894 + 0.334021i
\(364\) 22.0454 + 4.24264i 1.15549 + 0.222375i
\(365\) 17.8885i 0.936329i
\(366\) 0 0
\(367\) 5.00000 + 8.66025i 0.260998 + 0.452062i 0.966507 0.256639i \(-0.0826151\pi\)
−0.705509 + 0.708700i \(0.749282\pi\)
\(368\) 7.74597 4.47214i 0.403786 0.233126i
\(369\) −27.8580 + 5.82508i −1.45023 + 0.303241i
\(370\) 0 0
\(371\) 4.74342 24.6475i 0.246266 1.27964i
\(372\) 0 0
\(373\) 3.67423 + 2.12132i 0.190245 + 0.109838i 0.592097 0.805867i \(-0.298300\pi\)
−0.401852 + 0.915704i \(0.631634\pi\)
\(374\) 0 0
\(375\) −19.2622 + 1.99230i −0.994694 + 0.102882i
\(376\) 0 0
\(377\) 40.2492i 2.07294i
\(378\) 0 0
\(379\) 12.7279i 0.653789i 0.945061 + 0.326895i \(0.106002\pi\)
−0.945061 + 0.326895i \(0.893998\pi\)
\(380\) 13.3598 14.1956i 0.685344 0.728219i
\(381\) 21.9284 2.26808i 1.12343 0.116197i
\(382\) 0 0
\(383\) 4.74342 8.21584i 0.242377 0.419810i −0.719014 0.694996i \(-0.755406\pi\)
0.961391 + 0.275186i \(0.0887395\pi\)
\(384\) 0 0
\(385\) −20.0000 17.3205i −1.01929 0.882735i
\(386\) 0 0
\(387\) −14.6825 + 3.07008i −0.746351 + 0.156061i
\(388\) −14.6969 + 8.48528i −0.746124 + 0.430775i
\(389\) 25.1744 14.5344i 1.27639 0.736925i 0.300209 0.953873i \(-0.402944\pi\)
0.976183 + 0.216948i \(0.0696102\pi\)
\(390\) 0 0
\(391\) −5.00000 −0.252861
\(392\) 0 0
\(393\) 11.0680 24.7487i 0.558305 1.24841i
\(394\) 0 0
\(395\) 14.2302 + 24.6475i 0.716002 + 1.24015i
\(396\) 25.4919 + 8.37624i 1.28102 + 0.420922i
\(397\) 12.5000 21.6506i 0.627357 1.08661i −0.360723 0.932673i \(-0.617470\pi\)
0.988080 0.153941i \(-0.0491966\pi\)
\(398\) 0 0
\(399\) 19.5565 4.06743i 0.979049 0.203626i
\(400\) 0 0
\(401\) −9.48683 + 16.4317i −0.473750 + 0.820559i −0.999548 0.0300503i \(-0.990433\pi\)
0.525799 + 0.850609i \(0.323767\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 27.1109 + 15.6525i 1.34882 + 0.778740i
\(405\) −20.0000 2.23607i −0.993808 0.111111i
\(406\) 0 0
\(407\) −37.9473 −1.88098
\(408\) 0 0
\(409\) 11.0227 6.36396i 0.545038 0.314678i −0.202080 0.979369i \(-0.564770\pi\)
0.747118 + 0.664691i \(0.231437\pi\)
\(410\) 0 0
\(411\) −4.54259 6.27415i −0.224069 0.309481i
\(412\) 8.48528i 0.418040i
\(413\) 0 0
\(414\) 0 0
\(415\) 17.5000 30.3109i 0.859041 1.48790i
\(416\) 0 0
\(417\) 0.356394 + 3.44572i 0.0174527 + 0.168738i
\(418\) 0 0
\(419\) 2.23607i 0.109239i 0.998507 + 0.0546195i \(0.0173946\pi\)
−0.998507 + 0.0546195i \(0.982605\pi\)
\(420\) −16.7900 11.7514i −0.819270 0.573408i
\(421\) 4.24264i 0.206774i −0.994641 0.103387i \(-0.967032\pi\)
0.994641 0.103387i \(-0.0329680\pi\)
\(422\) 0 0
\(423\) −12.7460 4.18812i −0.619730 0.203633i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 + 3.46410i −0.483934 + 0.167640i
\(428\) −18.9737 −0.917127
\(429\) 26.6190 19.2726i 1.28518 0.930488i
\(430\) 0 0
\(431\) 18.9737 + 32.8634i 0.913929 + 1.58297i 0.808461 + 0.588549i \(0.200301\pi\)
0.105468 + 0.994423i \(0.466366\pi\)
\(432\) 20.3087 + 4.42227i 0.977103 + 0.212767i
\(433\) 12.7279i 0.611665i 0.952085 + 0.305832i \(0.0989347\pi\)
−0.952085 + 0.305832i \(0.901065\pi\)
\(434\) 0 0
\(435\) −15.0000 + 33.5410i −0.719195 + 1.60817i
\(436\) 14.6969 + 8.48528i 0.703856 + 0.406371i
\(437\) −2.80692 9.33387i −0.134273 0.446500i
\(438\) 0 0
\(439\) −11.0227 6.36396i −0.526085 0.303735i 0.213336 0.976979i \(-0.431567\pi\)
−0.739421 + 0.673244i \(0.764901\pi\)
\(440\) 0 0
\(441\) −7.19052 19.7306i −0.342406 0.939552i
\(442\) 0 0
\(443\) 9.68246 + 5.59017i 0.460027 + 0.265597i 0.712056 0.702123i \(-0.247764\pi\)
−0.252028 + 0.967720i \(0.581098\pi\)
\(444\) −29.2379 + 3.02410i −1.38757 + 0.143518i
\(445\) 18.3712 10.6066i 0.870877 0.502801i
\(446\) 0 0
\(447\) 1.58114 3.53553i 0.0747853 0.167225i
\(448\) 16.0000 + 13.8564i 0.755929 + 0.654654i
\(449\) 28.4605 1.34313 0.671567 0.740944i \(-0.265622\pi\)
0.671567 + 0.740944i \(0.265622\pi\)
\(450\) 0 0
\(451\) −36.7423 + 21.2132i −1.73013 + 0.998891i
\(452\) 9.48683 + 16.4317i 0.446223 + 0.772881i
\(453\) 4.30948 + 5.95218i 0.202477 + 0.279658i
\(454\) 0 0
\(455\) −23.7171 + 8.21584i −1.11187 + 0.385164i
\(456\) 0 0
\(457\) 2.00000 3.46410i 0.0935561 0.162044i −0.815449 0.578829i \(-0.803510\pi\)
0.909005 + 0.416785i \(0.136843\pi\)
\(458\) 0 0
\(459\) −8.59585 7.81738i −0.401220 0.364884i
\(460\) −5.00000 + 8.66025i −0.233126 + 0.403786i
\(461\) 4.47214i 0.208288i −0.994562 0.104144i \(-0.966790\pi\)
0.994562 0.104144i \(-0.0332103\pi\)
\(462\) 0 0
\(463\) 38.0000 1.76601 0.883005 0.469364i \(-0.155517\pi\)
0.883005 + 0.469364i \(0.155517\pi\)
\(464\) 18.9737 32.8634i 0.880830 1.52564i
\(465\) 0 0
\(466\) 0 0
\(467\) −7.74597 4.47214i −0.358441 0.206946i 0.309956 0.950751i \(-0.399686\pi\)
−0.668397 + 0.743805i \(0.733019\pi\)
\(468\) 18.9737 16.9706i 0.877058 0.784465i
\(469\) 33.0681 + 6.36396i 1.52694 + 0.293860i
\(470\) 0 0
\(471\) 15.4324 11.1733i 0.711086 0.514838i
\(472\) 0 0
\(473\) −19.3649 + 11.1803i −0.890400 + 0.514073i
\(474\) 0 0
\(475\) 0 0
\(476\) −3.87298 11.1803i −0.177518 0.512450i
\(477\) −18.9737 21.2132i −0.868744 0.971286i
\(478\) 0 0
\(479\) −21.3014 + 12.2984i −0.973286 + 0.561927i −0.900236 0.435401i \(-0.856607\pi\)
−0.0730497 + 0.997328i \(0.523273\pi\)
\(480\) 0 0
\(481\) −18.0000 + 31.1769i −0.820729 + 1.42154i
\(482\) 0 0
\(483\) −9.28600 + 4.33246i −0.422528 + 0.197134i
\(484\) 18.0000 0.818182
\(485\) 9.48683 16.4317i 0.430775 0.746124i
\(486\) 0 0
\(487\) −3.67423 + 2.12132i −0.166495 + 0.0961262i −0.580932 0.813952i \(-0.697312\pi\)
0.414437 + 0.910078i \(0.363979\pi\)
\(488\) 0 0
\(489\) −26.8794 12.0208i −1.21553 0.543600i
\(490\) 0 0
\(491\) 2.23607i 0.100912i 0.998726 + 0.0504562i \(0.0160675\pi\)
−0.998726 + 0.0504562i \(0.983932\pi\)
\(492\) −26.6190 + 19.2726i −1.20007 + 0.868874i
\(493\) −18.3712 + 10.6066i −0.827396 + 0.477697i
\(494\) 0 0
\(495\) −29.3649 + 6.14017i −1.31985 + 0.275980i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.50000 6.06218i 0.156682 0.271380i −0.776989 0.629515i \(-0.783254\pi\)
0.933670 + 0.358134i \(0.116587\pi\)
\(500\) −19.3649 + 11.1803i −0.866025 + 0.500000i
\(501\) 1.69052 + 16.3445i 0.0755271 + 0.730218i
\(502\) 0 0
\(503\) 29.0689i 1.29612i 0.761590 + 0.648059i \(0.224419\pi\)
−0.761590 + 0.648059i \(0.775581\pi\)
\(504\) 0 0
\(505\) −35.0000 −1.55748
\(506\) 0 0
\(507\) −0.890985 8.61430i −0.0395700 0.382574i
\(508\) 22.0454 12.7279i 0.978107 0.564710i
\(509\) −9.48683 + 16.4317i −0.420496 + 0.728321i −0.995988 0.0894865i \(-0.971477\pi\)
0.575492 + 0.817808i \(0.304811\pi\)
\(510\) 0 0
\(511\) −4.00000 + 20.7846i −0.176950 + 0.919457i
\(512\) 0 0
\(513\) 9.76770 20.4351i 0.431255 0.902230i
\(514\) 0 0
\(515\) −4.74342 8.21584i −0.209020 0.362033i
\(516\) −14.0294 + 10.1575i −0.617611 + 0.447160i
\(517\) −20.0000 −0.879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.74342 + 8.21584i 0.207813 + 0.359942i 0.951025 0.309113i \(-0.100032\pi\)
−0.743212 + 0.669056i \(0.766699\pi\)
\(522\) 0 0
\(523\) 7.34847 + 4.24264i 0.321326 + 0.185518i 0.651984 0.758233i \(-0.273937\pi\)
−0.330657 + 0.943751i \(0.607270\pi\)
\(524\) 31.3050i 1.36756i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 30.8195 3.18768i 1.34124 0.138726i
\(529\) −9.00000 15.5885i −0.391304 0.677759i
\(530\) 0 0
\(531\) 0 0
\(532\) 18.6969 13.5065i 0.810615 0.585579i
\(533\) 40.2492i 1.74339i
\(534\) 0 0
\(535\) 18.3712 10.6066i 0.794255 0.458563i
\(536\) 0 0
\(537\) −13.3095 + 9.63628i −0.574346 + 0.415836i
\(538\) 0 0
\(539\) −19.3649 24.5967i −0.834106 1.05946i
\(540\) −22.1359 + 7.07107i −0.952579 + 0.304290i
\(541\) 0.500000 0.866025i 0.0214967 0.0372333i −0.855077 0.518501i \(-0.826490\pi\)
0.876574 + 0.481268i \(0.159824\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.9737 −0.812743
\(546\) 0 0
\(547\) 4.24264i 0.181402i −0.995878 0.0907011i \(-0.971089\pi\)
0.995878 0.0907011i \(-0.0289108\pi\)
\(548\) −7.74597 4.47214i −0.330891 0.191040i
\(549\) −3.74597 + 11.4003i −0.159874 + 0.486555i
\(550\) 0 0
\(551\) −30.1134 28.3405i −1.28288 1.20734i
\(552\) 0 0
\(553\) 11.0227 + 31.8198i 0.468733 + 1.35312i
\(554\) 0 0
\(555\) 26.6190 19.2726i 1.12991 0.818075i
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) 25.1744 14.5344i 1.06667 0.615844i 0.139403 0.990236i \(-0.455482\pi\)
0.927271 + 0.374392i \(0.122148\pi\)
\(558\) 0 0
\(559\) 21.2132i 0.897223i
\(560\) −23.2379 4.47214i −0.981981 0.188982i
\(561\) −15.8114 7.07107i −0.667557 0.298541i
\(562\) 0 0
\(563\) 14.2302 + 24.6475i 0.599734 + 1.03877i 0.992860 + 0.119285i \(0.0380601\pi\)
−0.393127 + 0.919484i \(0.628607\pi\)
\(564\) −15.4097 + 1.59384i −0.648867 + 0.0671129i
\(565\) −18.3712 10.6066i −0.772881 0.446223i
\(566\) 0 0
\(567\) −22.7379 7.07021i −0.954902 0.296921i
\(568\) 0 0
\(569\) −14.2302 + 24.6475i −0.596563 + 1.03328i 0.396761 + 0.917922i \(0.370134\pi\)
−0.993324 + 0.115356i \(0.963199\pi\)
\(570\) 0 0
\(571\) −14.5000 25.1147i −0.606806 1.05102i −0.991763 0.128085i \(-0.959117\pi\)
0.384957 0.922934i \(-0.374216\pi\)
\(572\) 18.9737 32.8634i 0.793329 1.37409i
\(573\) 11.0680 24.7487i 0.462371 1.03389i
\(574\) 0 0
\(575\) 0 0
\(576\) 23.4919 4.91213i 0.978831 0.204672i
\(577\) 5.00000 + 8.66025i 0.208153 + 0.360531i 0.951133 0.308783i \(-0.0999216\pi\)
−0.742980 + 0.669314i \(0.766588\pi\)
\(578\) 0 0
\(579\) 12.9284 + 17.8565i 0.537287 + 0.742092i
\(580\) 42.4264i 1.76166i
\(581\) 27.1109 31.3050i 1.12475 1.29875i
\(582\) 0 0
\(583\) −36.7423 21.2132i −1.52171 0.878561i
\(584\) 0 0
\(585\) −8.88434 + 27.0383i −0.367322 + 1.11790i
\(586\) 0 0
\(587\) 11.1803i 0.461462i −0.973018 0.230731i \(-0.925888\pi\)
0.973018 0.230731i \(-0.0741117\pi\)
\(588\) −16.8806 17.4082i −0.696143 0.717903i
\(589\) 0 0
\(590\) 0 0
\(591\) 19.2622 1.99230i 0.792339 0.0819524i
\(592\) −29.3939 + 16.9706i −1.20808 + 0.697486i
\(593\) 9.68246 + 5.59017i 0.397611 + 0.229561i 0.685453 0.728117i \(-0.259604\pi\)
−0.287842 + 0.957678i \(0.592938\pi\)
\(594\) 0 0
\(595\) 10.0000 + 8.66025i 0.409960 + 0.355036i
\(596\) 4.47214i 0.183186i
\(597\) 23.8500 17.2678i 0.976116 0.706724i
\(598\) 0 0
\(599\) −14.2302 24.6475i −0.581432 1.00707i −0.995310 0.0967377i \(-0.969159\pi\)
0.413878 0.910333i \(-0.364174\pi\)
\(600\) 0 0
\(601\) 4.24264i 0.173061i −0.996249 0.0865305i \(-0.972422\pi\)
0.996249 0.0865305i \(-0.0275780\pi\)
\(602\) 0 0
\(603\) 28.4605 25.4558i 1.15900 1.03664i
\(604\) 7.34847 + 4.24264i 0.299005 + 0.172631i
\(605\) −17.4284 + 10.0623i −0.708566 + 0.409091i
\(606\) 0 0
\(607\) 25.7196 + 14.8492i 1.04393 + 0.602712i 0.920943 0.389696i \(-0.127420\pi\)
0.122985 + 0.992409i \(0.460753\pi\)
\(608\) 0 0
\(609\) −24.9284 + 35.6170i −1.01015 + 1.44328i
\(610\) 0 0
\(611\) −9.48683 + 16.4317i −0.383796 + 0.664754i
\(612\) −12.7460 4.18812i −0.515225 0.169295i
\(613\) 12.5000 + 21.6506i 0.504870 + 0.874461i 0.999984 + 0.00563283i \(0.00179300\pi\)
−0.495114 + 0.868828i \(0.664874\pi\)
\(614\) 0 0
\(615\) 15.0000 33.5410i 0.604858 1.35250i
\(616\) 0 0
\(617\) 38.0132i 1.53035i −0.643821 0.765176i \(-0.722652\pi\)
0.643821 0.765176i \(-0.277348\pi\)
\(618\) 0 0
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) 0 0
\(621\) −2.47212 + 11.3529i −0.0992029 + 0.455577i
\(622\) 0 0
\(623\) 23.7171 8.21584i 0.950205 0.329161i
\(624\) 12.0000 26.8328i 0.480384 1.07417i
\(625\) 12.5000 21.6506i 0.500000 0.866025i
\(626\) 0 0
\(627\) 4.32381 33.4859i 0.172676 1.33730i
\(628\) 11.0000 19.0526i 0.438948 0.760280i
\(629\) 18.9737 0.756530
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) 0 0
\(633\) −7.30948 + 0.756026i −0.290526 + 0.0300493i
\(634\) 0 0
\(635\) −14.2302 + 24.6475i −0.564710 + 0.978107i
\(636\) −30.0000 13.4164i −1.18958 0.531995i
\(637\) −29.3939 + 4.24264i −1.16463 + 0.168100i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.9737 32.8634i −0.749415 1.29802i −0.948104 0.317962i \(-0.897002\pi\)
0.198689 0.980063i \(-0.436332\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) −7.74597 + 8.94427i −0.305234 + 0.352454i
\(645\) 7.90569 17.6777i 0.311286 0.696058i
\(646\) 0 0
\(647\) −9.68246 + 5.59017i −0.380657 + 0.219772i −0.678104 0.734966i \(-0.737198\pi\)
0.297447 + 0.954738i \(0.403865\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −34.0000 −1.33154
\(653\) 21.3014 + 12.2984i 0.833589 + 0.481273i 0.855080 0.518496i \(-0.173508\pi\)
−0.0214912 + 0.999769i \(0.506841\pi\)
\(654\) 0 0
\(655\) 17.5000 + 30.3109i 0.683782 + 1.18434i
\(656\) −18.9737 + 32.8634i −0.740797 + 1.28310i
\(657\) 16.0000 + 17.8885i 0.624219 + 0.697899i
\(658\) 0 0
\(659\) 18.9737 0.739109 0.369555 0.929209i \(-0.379510\pi\)
0.369555 + 0.929209i \(0.379510\pi\)
\(660\) −28.0588 + 20.3151i −1.09219 + 0.790763i
\(661\) −22.0454 + 12.7279i −0.857467 + 0.495059i −0.863163 0.504925i \(-0.831520\pi\)
0.00569625 + 0.999984i \(0.498187\pi\)
\(662\) 0 0
\(663\) −13.3095 + 9.63628i −0.516897 + 0.374242i
\(664\) 0 0
\(665\) −10.5529 + 23.5295i −0.409224 + 0.912434i
\(666\) 0 0
\(667\) 18.3712 + 10.6066i 0.711335 + 0.410689i
\(668\) 9.48683 + 16.4317i 0.367057 + 0.635761i
\(669\) 7.30948 0.756026i 0.282601 0.0292296i
\(670\) 0 0
\(671\) 17.8885i 0.690580i
\(672\) 0 0
\(673\) 46.6690i 1.79896i 0.436962 + 0.899480i \(0.356054\pi\)
−0.436962 + 0.899480i \(0.643946\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −5.00000 8.66025i −0.192308 0.333087i
\(677\) −14.2302 + 24.6475i −0.546913 + 0.947281i 0.451571 + 0.892235i \(0.350864\pi\)
−0.998484 + 0.0550457i \(0.982470\pi\)
\(678\) 0 0
\(679\) 14.6969 16.9706i 0.564017 0.651270i
\(680\) 0 0
\(681\) −26.6190 + 19.2726i −1.02004 + 0.738526i
\(682\) 0 0
\(683\) −9.48683 16.4317i −0.363004 0.628741i 0.625450 0.780264i \(-0.284915\pi\)
−0.988454 + 0.151524i \(0.951582\pi\)
\(684\) 0.662878 26.1450i 0.0253458 0.999679i
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) 20.5548 + 9.19239i 0.784215 + 0.350711i
\(688\) −10.0000 + 17.3205i −0.381246 + 0.660338i
\(689\) −34.8569 + 20.1246i −1.32794 + 0.766687i
\(690\) 0 0
\(691\) 9.50000 16.4545i 0.361397 0.625958i −0.626794 0.779185i \(-0.715633\pi\)
0.988191 + 0.153227i \(0.0489666\pi\)
\(692\) 0 0
\(693\) −35.4919 + 0.568036i −1.34823 + 0.0215779i
\(694\) 0 0
\(695\) −3.87298 2.23607i −0.146911 0.0848189i
\(696\) 0 0
\(697\) 18.3712 10.6066i 0.695858 0.401754i
\(698\) 0 0
\(699\) 1.58114 3.53553i 0.0598042 0.133726i
\(700\) 0 0
\(701\) 29.0689i 1.09792i 0.835850 + 0.548958i \(0.184975\pi\)
−0.835850 + 0.548958i \(0.815025\pi\)
\(702\) 0 0
\(703\) 10.6515 + 35.4196i 0.401730 + 1.33587i
\(704\) 30.9839 17.8885i 1.16775 0.674200i
\(705\) 14.0294 10.1575i 0.528378 0.382555i
\(706\) 0 0
\(707\) −40.6663 7.82624i −1.52941 0.294336i
\(708\) 0 0
\(709\) −11.5000 + 19.9186i −0.431892 + 0.748058i −0.997036 0.0769337i \(-0.975487\pi\)
0.565145 + 0.824992i \(0.308820\pi\)
\(710\) 0 0
\(711\) 36.2757 + 11.9196i 1.36044 + 0.447020i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 42.4264i 1.58666i
\(716\) −9.48683 + 16.4317i −0.354540 + 0.614081i
\(717\) −26.9670 + 2.78922i −1.00710 + 0.104165i
\(718\) 0 0
\(719\) −1.93649 1.11803i −0.0722190 0.0416956i 0.463456 0.886120i \(-0.346609\pi\)
−0.535675 + 0.844424i \(0.679943\pi\)
\(720\) −20.0000 + 17.8885i −0.745356 + 0.666667i
\(721\) −3.67423 10.6066i −0.136836 0.395010i
\(722\) 0 0
\(723\) 17.2379 + 23.8087i 0.641084 + 0.885456i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −49.0000 −1.81731 −0.908655 0.417548i \(-0.862889\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) 0 0
\(731\) 9.68246 5.59017i 0.358119 0.206760i
\(732\) 1.42558 + 13.7829i 0.0526908 + 0.509430i
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 0 0
\(735\) 26.0760 + 7.41892i 0.961829 + 0.273651i
\(736\) 0 0
\(737\) 28.4605 49.2950i 1.04836 1.81581i
\(738\) 0 0
\(739\) −23.5000 40.7032i −0.864461 1.49729i −0.867581 0.497296i \(-0.834326\pi\)
0.00311943 0.999995i \(-0.499007\pi\)
\(740\) 18.9737 32.8634i 0.697486 1.20808i
\(741\) −25.4605 19.4361i −0.935315 0.714004i
\(742\) 0 0
\(743\) −18.9737 −0.696076 −0.348038 0.937480i \(-0.613152\pi\)
−0.348038 + 0.937480i \(0.613152\pi\)
\(744\) 0 0
\(745\) 2.50000 + 4.33013i 0.0915929 + 0.158644i
\(746\) 0 0
\(747\) −9.61088 45.9634i −0.351644 1.68171i
\(748\) −20.0000 −0.731272
\(749\) 23.7171 8.21584i 0.866603 0.300200i
\(750\) 0 0
\(751\) −40.4166 23.3345i −1.47482 0.851489i −0.475225 0.879864i \(-0.657633\pi\)
−0.999597 + 0.0283756i \(0.990967\pi\)
\(752\) −15.4919 + 8.94427i −0.564933 + 0.326164i
\(753\) 19.2622 1.99230i 0.701952 0.0726036i
\(754\) 0 0
\(755\) −9.48683 −0.345261
\(756\) −27.3008 + 3.26609i −0.992920 + 0.118787i
\(757\) 44.0000 1.59921 0.799604 0.600528i \(-0.205043\pi\)
0.799604 + 0.600528i \(0.205043\pi\)
\(758\) 0 0
\(759\) 1.78197 + 17.2286i 0.0646814 + 0.625358i
\(760\) 0 0
\(761\) −1.93649 1.11803i −0.0701978 0.0405287i 0.464490 0.885578i \(-0.346238\pi\)
−0.534688 + 0.845050i \(0.679571\pi\)
\(762\) 0 0
\(763\) −22.0454 4.24264i −0.798097 0.153594i
\(764\) 31.3050i 1.13257i
\(765\) 14.6825 3.07008i 0.530845 0.110999i
\(766\) 0 0
\(767\) 0 0
\(768\) 22.4471 16.2520i 0.809989 0.586445i
\(769\) 29.0000 1.04577 0.522883 0.852404i \(-0.324856\pi\)
0.522883 + 0.852404i \(0.324856\pi\)
\(770\) 0 0
\(771\) 15.0000 + 6.70820i 0.540212 + 0.241590i
\(772\) 22.0454 + 12.7279i 0.793432 + 0.458088i
\(773\) −23.7171 41.0792i −0.853044 1.47752i −0.878448 0.477839i \(-0.841420\pi\)
0.0254035 0.999677i \(-0.491913\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 35.2379 16.4405i 1.26415 0.589800i
\(778\) 0 0
\(779\) 30.1134 + 28.3405i 1.07893 + 1.01540i
\(780\) 3.38105 + 32.6890i 0.121061 + 1.17045i
\(781\) 0 0
\(782\) 0 0
\(783\) 15.0000 + 46.9574i 0.536056 + 1.67812i
\(784\) −26.0000 10.3923i −0.928571 0.371154i
\(785\) 24.5967i 0.877896i
\(786\) 0 0
\(787\) 44.0908 25.4558i 1.57167 0.907403i 0.575703 0.817659i \(-0.304728\pi\)
0.995965 0.0897439i \(-0.0286049\pi\)
\(788\) 19.3649 11.1803i 0.689847 0.398283i
\(789\) −11.3565 15.6854i −0.404301 0.558414i
\(790\) 0 0
\(791\) −18.9737 16.4317i −0.674626 0.584243i
\(792\) 0 0
\(793\) 14.6969 + 8.48528i 0.521904 + 0.301321i
\(794\) 0 0
\(795\) 36.5474 3.78013i 1.29620 0.134067i
\(796\) 17.0000 29.4449i 0.602549 1.04365i
\(797\) 37.9473 1.34416 0.672082 0.740477i \(-0.265400\pi\)
0.672082 + 0.740477i \(0.265400\pi\)
\(798\) 0 0
\(799\) 10.0000 0.353775
\(800\) 0 0
\(801\) 8.88434 27.0383i 0.313913 0.955351i
\(802\) 0 0
\(803\) 30.9839 + 17.8885i 1.09340 + 0.631273i
\(804\) 18.0000 40.2492i 0.634811 1.41948i
\(805\) 2.50000 12.9904i 0.0881134 0.457851i
\(806\) 0 0
\(807\) 26.6190 19.2726i 0.937031 0.678426i
\(808\) 0 0
\(809\) −44.5393 + 25.7148i −1.56592 + 0.904084i −0.569282 + 0.822143i \(0.692779\pi\)
−0.996637 + 0.0819409i \(0.973888\pi\)
\(810\) 0 0
\(811\) 25.4558i 0.893876i 0.894565 + 0.446938i \(0.147485\pi\)
−0.894565 + 0.446938i \(0.852515\pi\)
\(812\) −9.48683 + 49.2950i −0.332923 + 1.72992i
\(813\) −26.8794 12.0208i −0.942700 0.421588i
\(814\) 0 0
\(815\) 32.9204 19.0066i 1.15315 0.665771i
\(816\) −15.4097 + 1.59384i −0.539448 + 0.0557956i
\(817\) 15.8712 + 14.9367i 0.555262 + 0.522570i
\(818\) 0 0
\(819\) −16.3686 + 29.4290i −0.571966 + 1.02833i
\(820\) 42.4264i 1.48159i
\(821\) 38.7298 + 22.3607i 1.35168 + 0.780393i 0.988485 0.151320i \(-0.0483523\pi\)
0.363196 + 0.931713i \(0.381686\pi\)
\(822\) 0 0
\(823\) −1.00000 1.73205i −0.0348578 0.0603755i 0.848070 0.529884i \(-0.177765\pi\)
−0.882928 + 0.469508i \(0.844431\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 2.74597 + 13.1324i 0.0954289 + 0.456382i
\(829\) 29.3939 16.9706i 1.02089 0.589412i 0.106529 0.994310i \(-0.466026\pi\)
0.914362 + 0.404898i \(0.132693\pi\)
\(830\) 0 0
\(831\) −5.61177 + 4.06301i −0.194670 + 0.140944i
\(832\) 33.9411i 1.17670i
\(833\) 9.68246 + 12.2984i 0.335477 + 0.426113i
\(834\) 0 0
\(835\) −18.3712 10.6066i −0.635761 0.367057i
\(836\) −11.2277 37.3355i −0.388318 1.29127i
\(837\) 0 0
\(838\) 0 0
\(839\) −9.48683 −0.327522 −0.163761 0.986500i \(-0.552363\pi\)
−0.163761 + 0.986500i \(0.552363\pi\)
\(840\) 0 0
\(841\) 61.0000 2.10345
\(842\) 0 0
\(843\) −1.69052 16.3445i −0.0582248 0.562934i
\(844\) −7.34847 + 4.24264i −0.252945 + 0.146038i
\(845\) 9.68246 + 5.59017i 0.333087 + 0.192308i
\(846\) 0 0
\(847\) −22.5000 + 7.79423i −0.773109 + 0.267813i
\(848\) −37.9473 −1.30312
\(849\) −9.82059 + 7.11027i −0.337042 + 0.244024i
\(850\) 0 0
\(851\) −9.48683 16.4317i −0.325204 0.563271i
\(852\) 0 0
\(853\) 5.00000 0.171197 0.0855984 0.996330i \(-0.472720\pi\)
0.0855984 + 0.996330i \(0.472720\pi\)
\(854\) 0 0
\(855\) 13.9737 + 25.6853i 0.477889 + 0.878420i
\(856\) 0 0
\(857\) −4.74342 8.21584i −0.162032 0.280648i 0.773565 0.633717i \(-0.218471\pi\)
−0.935597 + 0.353069i \(0.885138\pi\)
\(858\) 0 0
\(859\) −14.5000 + 25.1147i −0.494734 + 0.856904i −0.999982 0.00607046i \(-0.998068\pi\)
0.505248 + 0.862974i \(0.331401\pi\)
\(860\) 22.3607i 0.762493i
\(861\) 24.9284 35.6170i 0.849558 1.21383i
\(862\) 0 0
\(863\) 9.48683 16.4317i 0.322936 0.559341i −0.658157 0.752881i \(-0.728664\pi\)
0.981092 + 0.193540i \(0.0619970\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −18.9737 8.48528i −0.644379 0.288175i
\(868\) 0 0
\(869\) 56.9210 1.93091
\(870\) 0 0
\(871\) −27.0000 46.7654i −0.914860 1.58458i
\(872\) 0 0
\(873\) −5.21011 24.9170i −0.176335 0.843311i
\(874\) 0 0
\(875\) 19.3649 22.3607i 0.654654 0.755929i
\(876\) 25.2982 + 11.3137i 0.854748 + 0.382255i
\(877\) −7.34847 4.24264i −0.248140 0.143264i 0.370772 0.928724i \(-0.379093\pi\)
−0.618912 + 0.785460i \(0.712426\pi\)
\(878\) 0 0
\(879\) −3.38105 32.6890i −0.114040 1.10257i
\(880\) −20.0000 + 34.6410i −0.674200 + 1.16775i
\(881\) 38.0132i 1.28070i −0.768085 0.640348i \(-0.778790\pi\)
0.768085 0.640348i \(-0.221210\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) −9.48683 + 16.4317i −0.319077 + 0.552657i
\(885\) 0 0
\(886\) 0 0
\(887\) 18.9737 32.8634i 0.637073 1.10344i −0.348998 0.937123i \(-0.613478\pi\)
0.986072 0.166320i \(-0.0531885\pi\)
\(888\) 0 0
\(889\) −22.0454 + 25.4558i −0.739379 + 0.853762i
\(890\) 0 0
\(891\) −23.8730 + 32.4049i −0.799775 + 1.08561i
\(892\) 7.34847 4.24264i 0.246045 0.142054i
\(893\) 5.61385 + 18.6677i 0.187860 + 0.624692i
\(894\) 0 0
\(895\) 21.2132i 0.709079i
\(896\) 0 0
\(897\) 15.0000 + 6.70820i 0.500835 + 0.223980i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 18.3712 + 10.6066i 0.612033 + 0.353357i
\(902\) 0 0
\(903\) 13.1384 18.7718i 0.437220 0.624687i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −29.3939 + 16.9706i −0.976008 + 0.563498i −0.901062 0.433689i \(-0.857212\pi\)
−0.0749452 + 0.997188i \(0.523878\pi\)
\(908\) −18.9737 + 32.8634i −0.629663 + 1.09061i
\(909\) −35.0000 + 31.3050i −1.16088 + 1.03832i
\(910\) 0 0
\(911\) 18.9737 0.628626 0.314313 0.949319i \(-0.398226\pi\)
0.314313 + 0.949319i \(0.398226\pi\)
\(912\) −11.6261 27.8717i −0.384980 0.922925i
\(913\) −35.0000 60.6218i −1.15833 2.00629i
\(914\) 0 0
\(915\) −9.08517 12.5483i −0.300346 0.414834i
\(916\) 26.0000 0.859064
\(917\) 13.5554 + 39.1312i 0.447640 + 1.29223i
\(918\) 0 0
\(919\) 9.50000 16.4545i 0.313376 0.542783i −0.665715 0.746206i \(-0.731873\pi\)
0.979091 + 0.203423i \(0.0652066\pi\)
\(920\) 0 0
\(921\) −43.8569 + 4.53615i −1.44513 + 0.149471i
\(922\) 0 0
\(923\) 0 0
\(924\) −37.1440 + 17.3298i −1.22195 + 0.570109i
\(925\) 0 0
\(926\) 0 0
\(927\) −12.0919 3.97320i −0.397150 0.130497i
\(928\) 0 0
\(929\) −13.5554 7.82624i −0.444740 0.256771i 0.260866 0.965375i \(-0.415992\pi\)
−0.705606 + 0.708604i \(0.749325\pi\)
\(930\) 0 0
\(931\) −17.5227 + 24.9791i −0.574283 + 0.818657i
\(932\) 4.47214i 0.146490i
\(933\) 15.8990 + 21.9595i 0.520512 + 0.718922i
\(934\) 0 0
\(935\) 19.3649 11.1803i 0.633300 0.365636i
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) −7.90569 3.53553i −0.257993 0.115378i
\(940\) 10.0000 17.3205i 0.326164 0.564933i
\(941\) 28.4605 + 49.2950i 0.927786 + 1.60697i 0.787019 + 0.616929i \(0.211624\pi\)
0.140767 + 0.990043i \(0.455043\pi\)
\(942\) 0 0
\(943\) −18.3712 10.6066i −0.598248 0.345398i
\(944\) 0 0
\(945\) 24.6081 18.4240i 0.800500 0.599332i
\(946\) 0 0
\(947\) 27.1109 + 15.6525i 0.880985 + 0.508637i 0.870983 0.491313i \(-0.163483\pi\)
0.0100022 + 0.999950i \(0.496816\pi\)
\(948\) 43.8569 4.53615i 1.42440 0.147327i
\(949\) 29.3939 16.9706i 0.954166 0.550888i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 56.9210 1.84385 0.921926 0.387366i \(-0.126615\pi\)
0.921926 + 0.387366i \(0.126615\pi\)
\(954\) 0 0
\(955\) 17.5000 + 30.3109i 0.566287 + 0.980837i
\(956\) −27.1109 + 15.6525i −0.876829 + 0.506237i
\(957\) 43.0948 + 59.5218i 1.39306 + 1.92407i
\(958\) 0 0
\(959\) 11.6190 + 2.23607i 0.375195 + 0.0722064i
\(960\) −12.6491 + 28.2843i −0.408248 + 0.912871i
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 8.88434 27.0383i 0.286294 0.871296i
\(964\) 29.3939 + 16.9706i 0.946713 + 0.546585i
\(965\) −28.4605 −0.916176
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) −2.16191 + 16.7429i −0.0694504 + 0.537861i
\(970\) 0 0
\(971\) −18.9737 + 32.8634i −0.608894 + 1.05464i 0.382529 + 0.923943i \(0.375053\pi\)
−0.991423 + 0.130692i \(0.958280\pi\)
\(972\) −15.8114 + 26.8701i −0.507151 + 0.861858i
\(973\) −4.00000 3.46410i −0.128234 0.111054i
\(974\) 0 0
\(975\) 0 0
\(976\) 8.00000 + 13.8564i 0.256074 + 0.443533i
\(977\) 14.2302 + 24.6475i 0.455266 + 0.788544i 0.998703 0.0509058i \(-0.0162108\pi\)
−0.543437 + 0.839450i \(0.682877\pi\)
\(978\) 0 0
\(979\) 42.4264i 1.35595i
\(980\) 30.9839 4.47214i 0.989743 0.142857i
\(981\) −18.9737 + 16.9706i −0.605783 + 0.541828i
\(982\) 0 0
\(983\) −4.74342 8.21584i −0.151291 0.262045i 0.780411 0.625267i \(-0.215010\pi\)
−0.931702 + 0.363222i \(0.881677\pi\)
\(984\) 0 0
\(985\) −12.5000 + 21.6506i −0.398283 + 0.689847i
\(986\) 0 0
\(987\) 18.5720 8.66491i 0.591153 0.275807i
\(988\) −36.0000 8.48528i −1.14531 0.269953i
\(989\) −9.68246 5.59017i −0.307884 0.177757i
\(990\) 0 0
\(991\) −36.7423 + 21.2132i −1.16716 + 0.673860i −0.953009 0.302941i \(-0.902031\pi\)
−0.214150 + 0.976801i \(0.568698\pi\)
\(992\) 0 0
\(993\) 18.0000 40.2492i 0.571213 1.27727i
\(994\) 0 0
\(995\) 38.0132i 1.20510i
\(996\) −31.7981 43.9190i −1.00756 1.39163i
\(997\) 0.500000 + 0.866025i 0.0158352 + 0.0274273i 0.873834 0.486224i \(-0.161626\pi\)
−0.857999 + 0.513651i \(0.828293\pi\)
\(998\) 0 0
\(999\) 9.38105 43.0813i 0.296803 1.36303i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.w.c.170.3 yes 8
3.2 odd 2 inner 399.2.w.c.170.1 8
7.4 even 3 inner 399.2.w.c.284.4 yes 8
19.18 odd 2 inner 399.2.w.c.170.2 yes 8
21.11 odd 6 inner 399.2.w.c.284.2 yes 8
57.56 even 2 inner 399.2.w.c.170.4 yes 8
133.18 odd 6 inner 399.2.w.c.284.1 yes 8
399.284 even 6 inner 399.2.w.c.284.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.w.c.170.1 8 3.2 odd 2 inner
399.2.w.c.170.2 yes 8 19.18 odd 2 inner
399.2.w.c.170.3 yes 8 1.1 even 1 trivial
399.2.w.c.170.4 yes 8 57.56 even 2 inner
399.2.w.c.284.1 yes 8 133.18 odd 6 inner
399.2.w.c.284.2 yes 8 21.11 odd 6 inner
399.2.w.c.284.3 yes 8 399.284 even 6 inner
399.2.w.c.284.4 yes 8 7.4 even 3 inner