Properties

Label 399.2.ck.b
Level $399$
Weight $2$
Character orbit 399.ck
Analytic conductor $3.186$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(10,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 3, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.ck (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(14\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 84 q - 6 q^{7} - 12 q^{10} + 6 q^{11} - 96 q^{12} + 27 q^{13} + 9 q^{14} - 39 q^{19} + 6 q^{21} - 12 q^{22} - 6 q^{23} + 9 q^{24} + 18 q^{25} - 42 q^{27} + 45 q^{28} - 6 q^{29} + 18 q^{31} - 51 q^{32} + 12 q^{33}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1 −1.70778 2.03525i 0.173648 + 0.984808i −0.878441 + 4.98189i −0.754725 + 0.133078i 1.70778 2.03525i 2.63125 0.276653i 7.03780 4.06327i −0.939693 + 0.342020i 1.55975 + 1.30878i
10.2 −1.59239 1.89774i 0.173648 + 0.984808i −0.718403 + 4.07426i −0.187693 + 0.0330953i 1.59239 1.89774i −2.52570 0.787947i 4.58502 2.64716i −0.939693 + 0.342020i 0.361686 + 0.303491i
10.3 −1.18779 1.41555i 0.173648 + 0.984808i −0.245648 + 1.39314i 3.44602 0.607626i 1.18779 1.41555i 1.07748 2.41641i −0.936773 + 0.540846i −0.939693 + 0.342020i −4.95326 4.15628i
10.4 −1.01309 1.20736i 0.173648 + 0.984808i −0.0840576 + 0.476714i 0.743295 0.131063i 1.01309 1.20736i 0.344620 + 2.62321i −2.06915 + 1.19462i −0.939693 + 0.342020i −0.911267 0.764644i
10.5 −0.998594 1.19008i 0.173648 + 0.984808i −0.0717992 + 0.407193i −4.35353 + 0.767645i 0.998594 1.19008i 2.61034 0.431444i −2.13451 + 1.23236i −0.939693 + 0.342020i 5.26097 + 4.41447i
10.6 −0.254619 0.303443i 0.173648 + 0.984808i 0.320049 1.81509i −1.66318 + 0.293263i 0.254619 0.303443i 0.0963050 2.64400i −1.31836 + 0.761157i −0.939693 + 0.342020i 0.512465 + 0.430009i
10.7 −0.115373 0.137496i 0.173648 + 0.984808i 0.341702 1.93789i −2.49094 + 0.439220i 0.115373 0.137496i −1.76224 + 1.97345i −0.616759 + 0.356086i −0.939693 + 0.342020i 0.347778 + 0.291821i
10.8 0.0227955 + 0.0271666i 0.173648 + 0.984808i 0.347078 1.96838i 3.34814 0.590368i −0.0227955 + 0.0271666i 2.07064 + 1.64695i 0.122811 0.0709048i −0.939693 + 0.342020i 0.0923610 + 0.0775001i
10.9 0.265093 + 0.315925i 0.173648 + 0.984808i 0.317762 1.80212i 0.341437 0.0602045i −0.265093 + 0.315925i −2.36410 1.18787i 1.36789 0.789750i −0.939693 + 0.342020i 0.109533 + 0.0919087i
10.10 0.849174 + 1.01201i 0.173648 + 0.984808i 0.0442365 0.250878i 0.224052 0.0395064i −0.849174 + 1.01201i 1.93362 1.80586i 2.57963 1.48935i −0.939693 + 0.342020i 0.230240 + 0.193194i
10.11 1.14592 + 1.36566i 0.173648 + 0.984808i −0.204584 + 1.16026i 1.97843 0.348851i −1.14592 + 1.36566i −0.992518 + 2.45253i 1.26884 0.732568i −0.939693 + 0.342020i 2.74354 + 2.30211i
10.12 1.27666 + 1.52146i 0.173648 + 0.984808i −0.337696 + 1.91517i −4.09501 + 0.722060i −1.27666 + 1.52146i −2.58773 0.551064i 0.0950963 0.0549038i −0.939693 + 0.342020i −6.32652 5.30858i
10.13 1.62266 + 1.93381i 0.173648 + 0.984808i −0.759303 + 4.30622i −1.95594 + 0.344886i −1.62266 + 1.93381i 2.62508 + 0.330076i −5.18711 + 2.99478i −0.939693 + 0.342020i −3.84078 3.22280i
10.14 1.68733 + 2.01088i 0.173648 + 0.984808i −0.849267 + 4.81643i 3.71390 0.654861i −1.68733 + 2.01088i −0.919226 2.48093i −6.57161 + 3.79412i −0.939693 + 0.342020i 7.58342 + 6.36325i
40.1 −1.70778 + 2.03525i 0.173648 0.984808i −0.878441 4.98189i −0.754725 0.133078i 1.70778 + 2.03525i 2.63125 + 0.276653i 7.03780 + 4.06327i −0.939693 0.342020i 1.55975 1.30878i
40.2 −1.59239 + 1.89774i 0.173648 0.984808i −0.718403 4.07426i −0.187693 0.0330953i 1.59239 + 1.89774i −2.52570 + 0.787947i 4.58502 + 2.64716i −0.939693 0.342020i 0.361686 0.303491i
40.3 −1.18779 + 1.41555i 0.173648 0.984808i −0.245648 1.39314i 3.44602 + 0.607626i 1.18779 + 1.41555i 1.07748 + 2.41641i −0.936773 0.540846i −0.939693 0.342020i −4.95326 + 4.15628i
40.4 −1.01309 + 1.20736i 0.173648 0.984808i −0.0840576 0.476714i 0.743295 + 0.131063i 1.01309 + 1.20736i 0.344620 2.62321i −2.06915 1.19462i −0.939693 0.342020i −0.911267 + 0.764644i
40.5 −0.998594 + 1.19008i 0.173648 0.984808i −0.0717992 0.407193i −4.35353 0.767645i 0.998594 + 1.19008i 2.61034 + 0.431444i −2.13451 1.23236i −0.939693 0.342020i 5.26097 4.41447i
40.6 −0.254619 + 0.303443i 0.173648 0.984808i 0.320049 + 1.81509i −1.66318 0.293263i 0.254619 + 0.303443i 0.0963050 + 2.64400i −1.31836 0.761157i −0.939693 0.342020i 0.512465 0.430009i
See all 84 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 10.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.bf even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.ck.b yes 84
7.d odd 6 1 399.2.cd.b 84
19.f odd 18 1 399.2.cd.b 84
133.bf even 18 1 inner 399.2.ck.b yes 84
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.cd.b 84 7.d odd 6 1
399.2.cd.b 84 19.f odd 18 1
399.2.ck.b yes 84 1.a even 1 1 trivial
399.2.ck.b yes 84 133.bf even 18 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{84} + 39 T_{2}^{79} - 682 T_{2}^{78} - 69 T_{2}^{77} + 90 T_{2}^{76} + 39 T_{2}^{74} + \cdots + 263169 \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\). Copy content Toggle raw display