gp: [N,k,chi] = [399,2,Mod(10,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.10");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 3, 17]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [84]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{84} + 39 T_{2}^{79} - 682 T_{2}^{78} - 69 T_{2}^{77} + 90 T_{2}^{76} + 39 T_{2}^{74} + \cdots + 263169 \)
T2^84 + 39*T2^79 - 682*T2^78 - 69*T2^77 + 90*T2^76 + 39*T2^74 - 25560*T2^73 + 330569*T2^72 - 23385*T2^71 + 42216*T2^70 - 216255*T2^69 + 541710*T2^68 + 8257785*T2^67 - 75063867*T2^66 - 931767*T2^65 - 7192263*T2^64 + 40841919*T2^63 - 105105210*T2^62 - 1216981935*T2^61 + 12112949646*T2^60 - 1997069772*T2^59 - 434812776*T2^58 + 4779980709*T2^57 + 10308853416*T2^56 + 102524591226*T2^55 - 873249587668*T2^54 + 76303958154*T2^53 + 265181627880*T2^52 - 483520124169*T2^51 - 1524231045429*T2^50 - 3515805566643*T2^49 + 44234949101962*T2^48 - 9913938166566*T2^47 - 5114896265967*T2^46 + 21500887584270*T2^45 + 52823477166228*T2^44 + 97521166558785*T2^43 - 932658138996158*T2^42 + 260264689353027*T2^41 - 443257685961714*T2^40 + 22546536540819*T2^39 - 21142267074132*T2^38 - 1242489987272784*T2^37 + 13333171474952912*T2^36 - 8119913771331411*T2^35 + 11647454604647697*T2^34 - 11633093079205908*T2^33 + 17522444518822329*T2^32 - 12962042349893154*T2^31 - 47723571417428443*T2^30 + 34132442970642471*T2^29 - 41731307386050987*T2^28 + 29905254314850690*T2^27 - 22178264009168895*T2^26 + 11273594983320015*T2^25 + 175629004455695617*T2^24 - 94507239515716161*T2^23 - 19366513034453238*T2^22 + 47601587218920168*T2^21 - 73319238841508706*T2^20 - 49009819527532833*T2^19 + 1706588347999417*T2^18 + 30857736035337627*T2^17 + 26288056838116632*T2^16 + 1352069198226075*T2^15 - 3041941826197521*T2^14 + 332185864296264*T2^13 + 621220589590528*T2^12 - 4327823617533*T2^11 - 114977395321416*T2^10 - 18418899137004*T2^9 + 4371363878166*T2^8 + 825401864718*T2^7 + 403438246938*T2^6 + 61572486474*T2^5 + 17752070727*T2^4 + 1019669553*T2^3 + 150257106*T2^2 - 7188669*T2 + 263169
acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\).