Properties

Label 3971.2.a.t.1.4
Level $3971$
Weight $2$
Character 3971.1
Self dual yes
Analytic conductor $31.709$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3971,2,Mod(1,3971)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3971.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3971, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3971.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,6,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7085946427\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 3971.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.68287 q^{2} +0.146409 q^{3} +0.832058 q^{4} +3.02083 q^{5} -0.246387 q^{6} -2.73938 q^{7} +1.96550 q^{8} -2.97856 q^{9} -5.08367 q^{10} +1.00000 q^{11} +0.121821 q^{12} -3.11321 q^{13} +4.61003 q^{14} +0.442276 q^{15} -4.97180 q^{16} -4.43069 q^{17} +5.01254 q^{18} +2.51351 q^{20} -0.401070 q^{21} -1.68287 q^{22} -4.74211 q^{23} +0.287766 q^{24} +4.12540 q^{25} +5.23914 q^{26} -0.875315 q^{27} -2.27933 q^{28} -3.88758 q^{29} -0.744294 q^{30} -3.90204 q^{31} +4.43590 q^{32} +0.146409 q^{33} +7.45628 q^{34} -8.27520 q^{35} -2.47834 q^{36} +2.67887 q^{37} -0.455802 q^{39} +5.93743 q^{40} +11.1225 q^{41} +0.674949 q^{42} -5.11919 q^{43} +0.832058 q^{44} -8.99773 q^{45} +7.98036 q^{46} +9.02479 q^{47} -0.727915 q^{48} +0.504216 q^{49} -6.94252 q^{50} -0.648692 q^{51} -2.59037 q^{52} +8.09736 q^{53} +1.47304 q^{54} +3.02083 q^{55} -5.38425 q^{56} +6.54230 q^{58} +6.73170 q^{59} +0.367999 q^{60} -13.7126 q^{61} +6.56663 q^{62} +8.15943 q^{63} +2.47853 q^{64} -9.40448 q^{65} -0.246387 q^{66} +2.31270 q^{67} -3.68659 q^{68} -0.694287 q^{69} +13.9261 q^{70} +14.4450 q^{71} -5.85436 q^{72} +1.07891 q^{73} -4.50819 q^{74} +0.603995 q^{75} -2.73938 q^{77} +0.767056 q^{78} -2.29927 q^{79} -15.0189 q^{80} +8.80754 q^{81} -18.7178 q^{82} +8.04434 q^{83} -0.333714 q^{84} -13.3843 q^{85} +8.61494 q^{86} -0.569176 q^{87} +1.96550 q^{88} +1.45068 q^{89} +15.1420 q^{90} +8.52828 q^{91} -3.94571 q^{92} -0.571293 q^{93} -15.1876 q^{94} +0.649456 q^{96} +6.93562 q^{97} -0.848531 q^{98} -2.97856 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 6 q^{2} + 15 q^{3} + 18 q^{4} + 6 q^{5} - 6 q^{6} + 6 q^{7} + 15 q^{8} + 18 q^{9} - 6 q^{10} + 21 q^{11} + 30 q^{12} + 36 q^{13} + 12 q^{14} + 12 q^{15} + 12 q^{16} + 21 q^{17} + 6 q^{18} + 15 q^{20}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68287 −1.18997 −0.594985 0.803737i \(-0.702842\pi\)
−0.594985 + 0.803737i \(0.702842\pi\)
\(3\) 0.146409 0.0845292 0.0422646 0.999106i \(-0.486543\pi\)
0.0422646 + 0.999106i \(0.486543\pi\)
\(4\) 0.832058 0.416029
\(5\) 3.02083 1.35096 0.675478 0.737380i \(-0.263937\pi\)
0.675478 + 0.737380i \(0.263937\pi\)
\(6\) −0.246387 −0.100587
\(7\) −2.73938 −1.03539 −0.517695 0.855565i \(-0.673210\pi\)
−0.517695 + 0.855565i \(0.673210\pi\)
\(8\) 1.96550 0.694908
\(9\) −2.97856 −0.992855
\(10\) −5.08367 −1.60760
\(11\) 1.00000 0.301511
\(12\) 0.121821 0.0351666
\(13\) −3.11321 −0.863450 −0.431725 0.902005i \(-0.642095\pi\)
−0.431725 + 0.902005i \(0.642095\pi\)
\(14\) 4.61003 1.23208
\(15\) 0.442276 0.114195
\(16\) −4.97180 −1.24295
\(17\) −4.43069 −1.07460 −0.537300 0.843391i \(-0.680556\pi\)
−0.537300 + 0.843391i \(0.680556\pi\)
\(18\) 5.01254 1.18147
\(19\) 0 0
\(20\) 2.51351 0.562037
\(21\) −0.401070 −0.0875206
\(22\) −1.68287 −0.358790
\(23\) −4.74211 −0.988798 −0.494399 0.869235i \(-0.664612\pi\)
−0.494399 + 0.869235i \(0.664612\pi\)
\(24\) 0.287766 0.0587400
\(25\) 4.12540 0.825080
\(26\) 5.23914 1.02748
\(27\) −0.875315 −0.168454
\(28\) −2.27933 −0.430752
\(29\) −3.88758 −0.721906 −0.360953 0.932584i \(-0.617548\pi\)
−0.360953 + 0.932584i \(0.617548\pi\)
\(30\) −0.744294 −0.135889
\(31\) −3.90204 −0.700827 −0.350413 0.936595i \(-0.613959\pi\)
−0.350413 + 0.936595i \(0.613959\pi\)
\(32\) 4.43590 0.784164
\(33\) 0.146409 0.0254865
\(34\) 7.45628 1.27874
\(35\) −8.27520 −1.39876
\(36\) −2.47834 −0.413057
\(37\) 2.67887 0.440403 0.220202 0.975454i \(-0.429328\pi\)
0.220202 + 0.975454i \(0.429328\pi\)
\(38\) 0 0
\(39\) −0.455802 −0.0729867
\(40\) 5.93743 0.938790
\(41\) 11.1225 1.73704 0.868522 0.495650i \(-0.165070\pi\)
0.868522 + 0.495650i \(0.165070\pi\)
\(42\) 0.674949 0.104147
\(43\) −5.11919 −0.780669 −0.390335 0.920673i \(-0.627641\pi\)
−0.390335 + 0.920673i \(0.627641\pi\)
\(44\) 0.832058 0.125438
\(45\) −8.99773 −1.34130
\(46\) 7.98036 1.17664
\(47\) 9.02479 1.31640 0.658200 0.752843i \(-0.271318\pi\)
0.658200 + 0.752843i \(0.271318\pi\)
\(48\) −0.727915 −0.105065
\(49\) 0.504216 0.0720309
\(50\) −6.94252 −0.981821
\(51\) −0.648692 −0.0908350
\(52\) −2.59037 −0.359220
\(53\) 8.09736 1.11226 0.556129 0.831096i \(-0.312286\pi\)
0.556129 + 0.831096i \(0.312286\pi\)
\(54\) 1.47304 0.200456
\(55\) 3.02083 0.407328
\(56\) −5.38425 −0.719500
\(57\) 0 0
\(58\) 6.54230 0.859046
\(59\) 6.73170 0.876393 0.438196 0.898879i \(-0.355617\pi\)
0.438196 + 0.898879i \(0.355617\pi\)
\(60\) 0.367999 0.0475085
\(61\) −13.7126 −1.75572 −0.877859 0.478919i \(-0.841029\pi\)
−0.877859 + 0.478919i \(0.841029\pi\)
\(62\) 6.56663 0.833963
\(63\) 8.15943 1.02799
\(64\) 2.47853 0.309817
\(65\) −9.40448 −1.16648
\(66\) −0.246387 −0.0303282
\(67\) 2.31270 0.282541 0.141270 0.989971i \(-0.454881\pi\)
0.141270 + 0.989971i \(0.454881\pi\)
\(68\) −3.68659 −0.447065
\(69\) −0.694287 −0.0835823
\(70\) 13.9261 1.66449
\(71\) 14.4450 1.71431 0.857156 0.515057i \(-0.172229\pi\)
0.857156 + 0.515057i \(0.172229\pi\)
\(72\) −5.85436 −0.689943
\(73\) 1.07891 0.126277 0.0631386 0.998005i \(-0.479889\pi\)
0.0631386 + 0.998005i \(0.479889\pi\)
\(74\) −4.50819 −0.524067
\(75\) 0.603995 0.0697434
\(76\) 0 0
\(77\) −2.73938 −0.312182
\(78\) 0.767056 0.0868520
\(79\) −2.29927 −0.258688 −0.129344 0.991600i \(-0.541287\pi\)
−0.129344 + 0.991600i \(0.541287\pi\)
\(80\) −15.0189 −1.67917
\(81\) 8.80754 0.978615
\(82\) −18.7178 −2.06703
\(83\) 8.04434 0.882981 0.441490 0.897266i \(-0.354450\pi\)
0.441490 + 0.897266i \(0.354450\pi\)
\(84\) −0.333714 −0.0364111
\(85\) −13.3843 −1.45174
\(86\) 8.61494 0.928973
\(87\) −0.569176 −0.0610221
\(88\) 1.96550 0.209523
\(89\) 1.45068 0.153771 0.0768857 0.997040i \(-0.475502\pi\)
0.0768857 + 0.997040i \(0.475502\pi\)
\(90\) 15.1420 1.59611
\(91\) 8.52828 0.894006
\(92\) −3.94571 −0.411369
\(93\) −0.571293 −0.0592403
\(94\) −15.1876 −1.56648
\(95\) 0 0
\(96\) 0.649456 0.0662848
\(97\) 6.93562 0.704206 0.352103 0.935961i \(-0.385467\pi\)
0.352103 + 0.935961i \(0.385467\pi\)
\(98\) −0.848531 −0.0857146
\(99\) −2.97856 −0.299357
\(100\) 3.43258 0.343258
\(101\) 19.8015 1.97032 0.985159 0.171642i \(-0.0549071\pi\)
0.985159 + 0.171642i \(0.0549071\pi\)
\(102\) 1.09167 0.108091
\(103\) 0.466338 0.0459497 0.0229748 0.999736i \(-0.492686\pi\)
0.0229748 + 0.999736i \(0.492686\pi\)
\(104\) −6.11901 −0.600018
\(105\) −1.21156 −0.118236
\(106\) −13.6268 −1.32355
\(107\) 18.9846 1.83531 0.917657 0.397373i \(-0.130078\pi\)
0.917657 + 0.397373i \(0.130078\pi\)
\(108\) −0.728313 −0.0700820
\(109\) 12.8593 1.23170 0.615848 0.787865i \(-0.288813\pi\)
0.615848 + 0.787865i \(0.288813\pi\)
\(110\) −5.08367 −0.484709
\(111\) 0.392210 0.0372269
\(112\) 13.6196 1.28694
\(113\) −0.947234 −0.0891083 −0.0445541 0.999007i \(-0.514187\pi\)
−0.0445541 + 0.999007i \(0.514187\pi\)
\(114\) 0 0
\(115\) −14.3251 −1.33582
\(116\) −3.23469 −0.300334
\(117\) 9.27290 0.857280
\(118\) −11.3286 −1.04288
\(119\) 12.1373 1.11263
\(120\) 0.869292 0.0793551
\(121\) 1.00000 0.0909091
\(122\) 23.0766 2.08925
\(123\) 1.62843 0.146831
\(124\) −3.24672 −0.291564
\(125\) −2.64201 −0.236308
\(126\) −13.7313 −1.22328
\(127\) −7.62107 −0.676261 −0.338130 0.941099i \(-0.609795\pi\)
−0.338130 + 0.941099i \(0.609795\pi\)
\(128\) −13.0429 −1.15284
\(129\) −0.749495 −0.0659894
\(130\) 15.8265 1.38808
\(131\) 5.40172 0.471950 0.235975 0.971759i \(-0.424172\pi\)
0.235975 + 0.971759i \(0.424172\pi\)
\(132\) 0.121821 0.0106031
\(133\) 0 0
\(134\) −3.89197 −0.336215
\(135\) −2.64418 −0.227574
\(136\) −8.70850 −0.746748
\(137\) −7.93722 −0.678123 −0.339061 0.940764i \(-0.610109\pi\)
−0.339061 + 0.940764i \(0.610109\pi\)
\(138\) 1.16840 0.0994605
\(139\) 0.150496 0.0127649 0.00638244 0.999980i \(-0.497968\pi\)
0.00638244 + 0.999980i \(0.497968\pi\)
\(140\) −6.88545 −0.581927
\(141\) 1.32131 0.111274
\(142\) −24.3092 −2.03998
\(143\) −3.11321 −0.260340
\(144\) 14.8088 1.23407
\(145\) −11.7437 −0.975262
\(146\) −1.81567 −0.150266
\(147\) 0.0738217 0.00608871
\(148\) 2.22898 0.183221
\(149\) 11.2114 0.918471 0.459236 0.888315i \(-0.348123\pi\)
0.459236 + 0.888315i \(0.348123\pi\)
\(150\) −1.01645 −0.0829926
\(151\) −13.1344 −1.06887 −0.534433 0.845211i \(-0.679475\pi\)
−0.534433 + 0.845211i \(0.679475\pi\)
\(152\) 0 0
\(153\) 13.1971 1.06692
\(154\) 4.61003 0.371487
\(155\) −11.7874 −0.946785
\(156\) −0.379254 −0.0303646
\(157\) 17.9137 1.42967 0.714835 0.699293i \(-0.246502\pi\)
0.714835 + 0.699293i \(0.246502\pi\)
\(158\) 3.86937 0.307831
\(159\) 1.18553 0.0940183
\(160\) 13.4001 1.05937
\(161\) 12.9905 1.02379
\(162\) −14.8220 −1.16452
\(163\) −15.2702 −1.19605 −0.598027 0.801476i \(-0.704049\pi\)
−0.598027 + 0.801476i \(0.704049\pi\)
\(164\) 9.25458 0.722661
\(165\) 0.442276 0.0344311
\(166\) −13.5376 −1.05072
\(167\) −16.6892 −1.29145 −0.645726 0.763570i \(-0.723445\pi\)
−0.645726 + 0.763570i \(0.723445\pi\)
\(168\) −0.788301 −0.0608188
\(169\) −3.30791 −0.254455
\(170\) 22.5241 1.72752
\(171\) 0 0
\(172\) −4.25947 −0.324781
\(173\) −6.99073 −0.531496 −0.265748 0.964043i \(-0.585619\pi\)
−0.265748 + 0.964043i \(0.585619\pi\)
\(174\) 0.957851 0.0726145
\(175\) −11.3011 −0.854279
\(176\) −4.97180 −0.374763
\(177\) 0.985581 0.0740808
\(178\) −2.44130 −0.182983
\(179\) 2.41602 0.180582 0.0902911 0.995915i \(-0.471220\pi\)
0.0902911 + 0.995915i \(0.471220\pi\)
\(180\) −7.48664 −0.558021
\(181\) 16.5726 1.23183 0.615915 0.787813i \(-0.288787\pi\)
0.615915 + 0.787813i \(0.288787\pi\)
\(182\) −14.3520 −1.06384
\(183\) −2.00765 −0.148409
\(184\) −9.32060 −0.687124
\(185\) 8.09240 0.594965
\(186\) 0.961413 0.0704942
\(187\) −4.43069 −0.324004
\(188\) 7.50915 0.547661
\(189\) 2.39782 0.174416
\(190\) 0 0
\(191\) 21.9959 1.59157 0.795783 0.605582i \(-0.207060\pi\)
0.795783 + 0.605582i \(0.207060\pi\)
\(192\) 0.362879 0.0261886
\(193\) 9.01705 0.649061 0.324531 0.945875i \(-0.394794\pi\)
0.324531 + 0.945875i \(0.394794\pi\)
\(194\) −11.6718 −0.837984
\(195\) −1.37690 −0.0986018
\(196\) 0.419537 0.0299669
\(197\) −7.42582 −0.529068 −0.264534 0.964376i \(-0.585218\pi\)
−0.264534 + 0.964376i \(0.585218\pi\)
\(198\) 5.01254 0.356226
\(199\) −23.2961 −1.65142 −0.825709 0.564097i \(-0.809225\pi\)
−0.825709 + 0.564097i \(0.809225\pi\)
\(200\) 8.10846 0.573355
\(201\) 0.338599 0.0238830
\(202\) −33.3233 −2.34462
\(203\) 10.6496 0.747453
\(204\) −0.539750 −0.0377900
\(205\) 33.5992 2.34667
\(206\) −0.784787 −0.0546787
\(207\) 14.1247 0.981733
\(208\) 15.4783 1.07322
\(209\) 0 0
\(210\) 2.03891 0.140698
\(211\) −19.3575 −1.33262 −0.666311 0.745674i \(-0.732128\pi\)
−0.666311 + 0.745674i \(0.732128\pi\)
\(212\) 6.73748 0.462732
\(213\) 2.11488 0.144909
\(214\) −31.9487 −2.18397
\(215\) −15.4642 −1.05465
\(216\) −1.72043 −0.117060
\(217\) 10.6892 0.725628
\(218\) −21.6405 −1.46568
\(219\) 0.157962 0.0106741
\(220\) 2.51351 0.169460
\(221\) 13.7937 0.927863
\(222\) −0.660039 −0.0442989
\(223\) −4.96632 −0.332569 −0.166285 0.986078i \(-0.553177\pi\)
−0.166285 + 0.986078i \(0.553177\pi\)
\(224\) −12.1516 −0.811915
\(225\) −12.2878 −0.819185
\(226\) 1.59407 0.106036
\(227\) −14.0397 −0.931846 −0.465923 0.884825i \(-0.654278\pi\)
−0.465923 + 0.884825i \(0.654278\pi\)
\(228\) 0 0
\(229\) 12.5658 0.830374 0.415187 0.909736i \(-0.363716\pi\)
0.415187 + 0.909736i \(0.363716\pi\)
\(230\) 24.1073 1.58959
\(231\) −0.401070 −0.0263885
\(232\) −7.64103 −0.501658
\(233\) −20.5279 −1.34483 −0.672413 0.740176i \(-0.734742\pi\)
−0.672413 + 0.740176i \(0.734742\pi\)
\(234\) −15.6051 −1.02014
\(235\) 27.2623 1.77840
\(236\) 5.60117 0.364605
\(237\) −0.336633 −0.0218667
\(238\) −20.4256 −1.32400
\(239\) −4.21758 −0.272812 −0.136406 0.990653i \(-0.543555\pi\)
−0.136406 + 0.990653i \(0.543555\pi\)
\(240\) −2.19891 −0.141939
\(241\) −12.9479 −0.834049 −0.417025 0.908895i \(-0.636927\pi\)
−0.417025 + 0.908895i \(0.636927\pi\)
\(242\) −1.68287 −0.108179
\(243\) 3.91545 0.251176
\(244\) −11.4097 −0.730430
\(245\) 1.52315 0.0973105
\(246\) −2.74045 −0.174724
\(247\) 0 0
\(248\) −7.66944 −0.487010
\(249\) 1.17776 0.0746376
\(250\) 4.44616 0.281200
\(251\) 20.9888 1.32480 0.662402 0.749148i \(-0.269537\pi\)
0.662402 + 0.749148i \(0.269537\pi\)
\(252\) 6.78912 0.427674
\(253\) −4.74211 −0.298134
\(254\) 12.8253 0.804730
\(255\) −1.95959 −0.122714
\(256\) 16.9924 1.06203
\(257\) −17.5287 −1.09341 −0.546705 0.837325i \(-0.684118\pi\)
−0.546705 + 0.837325i \(0.684118\pi\)
\(258\) 1.26130 0.0785254
\(259\) −7.33845 −0.455989
\(260\) −7.82507 −0.485291
\(261\) 11.5794 0.716748
\(262\) −9.09040 −0.561607
\(263\) 7.41725 0.457367 0.228684 0.973501i \(-0.426558\pi\)
0.228684 + 0.973501i \(0.426558\pi\)
\(264\) 0.287766 0.0177108
\(265\) 24.4607 1.50261
\(266\) 0 0
\(267\) 0.212392 0.0129982
\(268\) 1.92430 0.117545
\(269\) 17.3161 1.05578 0.527892 0.849311i \(-0.322983\pi\)
0.527892 + 0.849311i \(0.322983\pi\)
\(270\) 4.44981 0.270807
\(271\) −1.92665 −0.117036 −0.0585179 0.998286i \(-0.518637\pi\)
−0.0585179 + 0.998286i \(0.518637\pi\)
\(272\) 22.0285 1.33567
\(273\) 1.24862 0.0755696
\(274\) 13.3573 0.806946
\(275\) 4.12540 0.248771
\(276\) −0.577687 −0.0347727
\(277\) 5.38591 0.323608 0.161804 0.986823i \(-0.448269\pi\)
0.161804 + 0.986823i \(0.448269\pi\)
\(278\) −0.253265 −0.0151898
\(279\) 11.6225 0.695819
\(280\) −16.2649 −0.972013
\(281\) 19.3355 1.15346 0.576731 0.816934i \(-0.304328\pi\)
0.576731 + 0.816934i \(0.304328\pi\)
\(282\) −2.22359 −0.132413
\(283\) −6.83280 −0.406168 −0.203084 0.979161i \(-0.565096\pi\)
−0.203084 + 0.979161i \(0.565096\pi\)
\(284\) 12.0191 0.713204
\(285\) 0 0
\(286\) 5.23914 0.309797
\(287\) −30.4688 −1.79852
\(288\) −13.2126 −0.778561
\(289\) 2.63099 0.154764
\(290\) 19.7632 1.16053
\(291\) 1.01544 0.0595260
\(292\) 0.897718 0.0525350
\(293\) −28.5890 −1.67019 −0.835094 0.550108i \(-0.814587\pi\)
−0.835094 + 0.550108i \(0.814587\pi\)
\(294\) −0.124232 −0.00724538
\(295\) 20.3353 1.18397
\(296\) 5.26531 0.306040
\(297\) −0.875315 −0.0507909
\(298\) −18.8673 −1.09295
\(299\) 14.7632 0.853777
\(300\) 0.502559 0.0290153
\(301\) 14.0234 0.808297
\(302\) 22.1036 1.27192
\(303\) 2.89911 0.166549
\(304\) 0 0
\(305\) −41.4234 −2.37190
\(306\) −22.2090 −1.26960
\(307\) 18.6587 1.06491 0.532454 0.846459i \(-0.321270\pi\)
0.532454 + 0.846459i \(0.321270\pi\)
\(308\) −2.27933 −0.129877
\(309\) 0.0682760 0.00388409
\(310\) 19.8367 1.12665
\(311\) 4.75786 0.269793 0.134897 0.990860i \(-0.456930\pi\)
0.134897 + 0.990860i \(0.456930\pi\)
\(312\) −0.895877 −0.0507190
\(313\) 11.5658 0.653736 0.326868 0.945070i \(-0.394007\pi\)
0.326868 + 0.945070i \(0.394007\pi\)
\(314\) −30.1465 −1.70126
\(315\) 24.6482 1.38877
\(316\) −1.91313 −0.107622
\(317\) 25.8412 1.45139 0.725693 0.688019i \(-0.241519\pi\)
0.725693 + 0.688019i \(0.241519\pi\)
\(318\) −1.99509 −0.111879
\(319\) −3.88758 −0.217663
\(320\) 7.48722 0.418549
\(321\) 2.77952 0.155138
\(322\) −21.8613 −1.21828
\(323\) 0 0
\(324\) 7.32839 0.407133
\(325\) −12.8433 −0.712415
\(326\) 25.6978 1.42327
\(327\) 1.88271 0.104114
\(328\) 21.8613 1.20709
\(329\) −24.7224 −1.36299
\(330\) −0.744294 −0.0409720
\(331\) −11.9015 −0.654164 −0.327082 0.944996i \(-0.606065\pi\)
−0.327082 + 0.944996i \(0.606065\pi\)
\(332\) 6.69336 0.367346
\(333\) −7.97918 −0.437257
\(334\) 28.0858 1.53679
\(335\) 6.98626 0.381700
\(336\) 1.99404 0.108784
\(337\) −5.64567 −0.307539 −0.153770 0.988107i \(-0.549141\pi\)
−0.153770 + 0.988107i \(0.549141\pi\)
\(338\) 5.56679 0.302794
\(339\) −0.138683 −0.00753225
\(340\) −11.1366 −0.603965
\(341\) −3.90204 −0.211307
\(342\) 0 0
\(343\) 17.7944 0.960809
\(344\) −10.0618 −0.542493
\(345\) −2.09732 −0.112916
\(346\) 11.7645 0.632464
\(347\) 5.33345 0.286314 0.143157 0.989700i \(-0.454275\pi\)
0.143157 + 0.989700i \(0.454275\pi\)
\(348\) −0.473588 −0.0253870
\(349\) −2.10061 −0.112443 −0.0562215 0.998418i \(-0.517905\pi\)
−0.0562215 + 0.998418i \(0.517905\pi\)
\(350\) 19.0182 1.01657
\(351\) 2.72504 0.145452
\(352\) 4.43590 0.236434
\(353\) 4.21622 0.224407 0.112203 0.993685i \(-0.464209\pi\)
0.112203 + 0.993685i \(0.464209\pi\)
\(354\) −1.65861 −0.0881539
\(355\) 43.6360 2.31596
\(356\) 1.20705 0.0639734
\(357\) 1.77702 0.0940496
\(358\) −4.06586 −0.214887
\(359\) −0.632715 −0.0333934 −0.0166967 0.999861i \(-0.505315\pi\)
−0.0166967 + 0.999861i \(0.505315\pi\)
\(360\) −17.6850 −0.932082
\(361\) 0 0
\(362\) −27.8895 −1.46584
\(363\) 0.146409 0.00768447
\(364\) 7.09602 0.371933
\(365\) 3.25921 0.170595
\(366\) 3.37861 0.176603
\(367\) 21.0594 1.09929 0.549646 0.835397i \(-0.314762\pi\)
0.549646 + 0.835397i \(0.314762\pi\)
\(368\) 23.5768 1.22903
\(369\) −33.1291 −1.72463
\(370\) −13.6185 −0.707991
\(371\) −22.1818 −1.15162
\(372\) −0.475349 −0.0246457
\(373\) 16.7265 0.866063 0.433032 0.901379i \(-0.357444\pi\)
0.433032 + 0.901379i \(0.357444\pi\)
\(374\) 7.45628 0.385555
\(375\) −0.386814 −0.0199750
\(376\) 17.7382 0.914777
\(377\) 12.1029 0.623329
\(378\) −4.03523 −0.207550
\(379\) −8.48098 −0.435639 −0.217819 0.975989i \(-0.569894\pi\)
−0.217819 + 0.975989i \(0.569894\pi\)
\(380\) 0 0
\(381\) −1.11579 −0.0571638
\(382\) −37.0162 −1.89392
\(383\) −14.4497 −0.738344 −0.369172 0.929361i \(-0.620359\pi\)
−0.369172 + 0.929361i \(0.620359\pi\)
\(384\) −1.90959 −0.0974484
\(385\) −8.27520 −0.421743
\(386\) −15.1745 −0.772364
\(387\) 15.2478 0.775091
\(388\) 5.77084 0.292970
\(389\) 12.6489 0.641325 0.320663 0.947194i \(-0.396094\pi\)
0.320663 + 0.947194i \(0.396094\pi\)
\(390\) 2.31714 0.117333
\(391\) 21.0108 1.06256
\(392\) 0.991035 0.0500548
\(393\) 0.790859 0.0398936
\(394\) 12.4967 0.629575
\(395\) −6.94569 −0.349476
\(396\) −2.47834 −0.124541
\(397\) 5.12134 0.257033 0.128516 0.991707i \(-0.458979\pi\)
0.128516 + 0.991707i \(0.458979\pi\)
\(398\) 39.2044 1.96514
\(399\) 0 0
\(400\) −20.5107 −1.02553
\(401\) 39.1602 1.95557 0.977785 0.209612i \(-0.0672201\pi\)
0.977785 + 0.209612i \(0.0672201\pi\)
\(402\) −0.569819 −0.0284200
\(403\) 12.1479 0.605128
\(404\) 16.4760 0.819710
\(405\) 26.6061 1.32207
\(406\) −17.9219 −0.889447
\(407\) 2.67887 0.132787
\(408\) −1.27500 −0.0631220
\(409\) 13.4305 0.664094 0.332047 0.943263i \(-0.392261\pi\)
0.332047 + 0.943263i \(0.392261\pi\)
\(410\) −56.5431 −2.79247
\(411\) −1.16208 −0.0573212
\(412\) 0.388020 0.0191164
\(413\) −18.4407 −0.907408
\(414\) −23.7700 −1.16823
\(415\) 24.3006 1.19287
\(416\) −13.8099 −0.677086
\(417\) 0.0220339 0.00107900
\(418\) 0 0
\(419\) −6.55196 −0.320084 −0.160042 0.987110i \(-0.551163\pi\)
−0.160042 + 0.987110i \(0.551163\pi\)
\(420\) −1.00809 −0.0491898
\(421\) −6.18732 −0.301552 −0.150776 0.988568i \(-0.548177\pi\)
−0.150776 + 0.988568i \(0.548177\pi\)
\(422\) 32.5761 1.58578
\(423\) −26.8809 −1.30700
\(424\) 15.9153 0.772917
\(425\) −18.2784 −0.886631
\(426\) −3.55908 −0.172438
\(427\) 37.5641 1.81785
\(428\) 15.7963 0.763544
\(429\) −0.455802 −0.0220063
\(430\) 26.0243 1.25500
\(431\) 31.2369 1.50463 0.752315 0.658803i \(-0.228937\pi\)
0.752315 + 0.658803i \(0.228937\pi\)
\(432\) 4.35189 0.209380
\(433\) 23.8590 1.14659 0.573296 0.819349i \(-0.305665\pi\)
0.573296 + 0.819349i \(0.305665\pi\)
\(434\) −17.9885 −0.863476
\(435\) −1.71938 −0.0824381
\(436\) 10.6997 0.512422
\(437\) 0 0
\(438\) −0.265830 −0.0127019
\(439\) −9.61741 −0.459014 −0.229507 0.973307i \(-0.573711\pi\)
−0.229507 + 0.973307i \(0.573711\pi\)
\(440\) 5.93743 0.283056
\(441\) −1.50184 −0.0715162
\(442\) −23.2130 −1.10413
\(443\) −13.3447 −0.634024 −0.317012 0.948422i \(-0.602680\pi\)
−0.317012 + 0.948422i \(0.602680\pi\)
\(444\) 0.326342 0.0154875
\(445\) 4.38224 0.207738
\(446\) 8.35768 0.395748
\(447\) 1.64144 0.0776376
\(448\) −6.78965 −0.320781
\(449\) 29.6953 1.40141 0.700704 0.713452i \(-0.252869\pi\)
0.700704 + 0.713452i \(0.252869\pi\)
\(450\) 20.6788 0.974806
\(451\) 11.1225 0.523739
\(452\) −0.788154 −0.0370716
\(453\) −1.92300 −0.0903504
\(454\) 23.6270 1.10887
\(455\) 25.7625 1.20776
\(456\) 0 0
\(457\) 7.31038 0.341965 0.170983 0.985274i \(-0.445306\pi\)
0.170983 + 0.985274i \(0.445306\pi\)
\(458\) −21.1467 −0.988121
\(459\) 3.87825 0.181021
\(460\) −11.9193 −0.555741
\(461\) 6.41757 0.298896 0.149448 0.988770i \(-0.452250\pi\)
0.149448 + 0.988770i \(0.452250\pi\)
\(462\) 0.674949 0.0314015
\(463\) 18.7396 0.870904 0.435452 0.900212i \(-0.356589\pi\)
0.435452 + 0.900212i \(0.356589\pi\)
\(464\) 19.3283 0.897292
\(465\) −1.72578 −0.0800310
\(466\) 34.5458 1.60030
\(467\) 30.5291 1.41272 0.706359 0.707853i \(-0.250336\pi\)
0.706359 + 0.707853i \(0.250336\pi\)
\(468\) 7.71560 0.356654
\(469\) −6.33536 −0.292540
\(470\) −45.8790 −2.11624
\(471\) 2.62273 0.120849
\(472\) 13.2311 0.609012
\(473\) −5.11919 −0.235381
\(474\) 0.566511 0.0260207
\(475\) 0 0
\(476\) 10.0990 0.462886
\(477\) −24.1185 −1.10431
\(478\) 7.09764 0.324639
\(479\) −28.1218 −1.28492 −0.642459 0.766320i \(-0.722086\pi\)
−0.642459 + 0.766320i \(0.722086\pi\)
\(480\) 1.96189 0.0895478
\(481\) −8.33988 −0.380266
\(482\) 21.7897 0.992494
\(483\) 1.90192 0.0865402
\(484\) 0.832058 0.0378208
\(485\) 20.9513 0.951351
\(486\) −6.58920 −0.298892
\(487\) 33.0398 1.49718 0.748589 0.663034i \(-0.230732\pi\)
0.748589 + 0.663034i \(0.230732\pi\)
\(488\) −26.9521 −1.22006
\(489\) −2.23569 −0.101102
\(490\) −2.56327 −0.115797
\(491\) −22.7858 −1.02831 −0.514154 0.857698i \(-0.671894\pi\)
−0.514154 + 0.857698i \(0.671894\pi\)
\(492\) 1.35495 0.0610860
\(493\) 17.2247 0.775760
\(494\) 0 0
\(495\) −8.99773 −0.404418
\(496\) 19.4001 0.871092
\(497\) −39.5705 −1.77498
\(498\) −1.98202 −0.0888166
\(499\) −42.7320 −1.91295 −0.956473 0.291820i \(-0.905739\pi\)
−0.956473 + 0.291820i \(0.905739\pi\)
\(500\) −2.19831 −0.0983112
\(501\) −2.44345 −0.109165
\(502\) −35.3215 −1.57648
\(503\) 22.2573 0.992402 0.496201 0.868208i \(-0.334728\pi\)
0.496201 + 0.868208i \(0.334728\pi\)
\(504\) 16.0373 0.714359
\(505\) 59.8168 2.66181
\(506\) 7.98036 0.354770
\(507\) −0.484308 −0.0215089
\(508\) −6.34118 −0.281344
\(509\) −39.3241 −1.74301 −0.871505 0.490387i \(-0.836855\pi\)
−0.871505 + 0.490387i \(0.836855\pi\)
\(510\) 3.29773 0.146026
\(511\) −2.95555 −0.130746
\(512\) −2.51031 −0.110941
\(513\) 0 0
\(514\) 29.4986 1.30113
\(515\) 1.40873 0.0620759
\(516\) −0.623624 −0.0274535
\(517\) 9.02479 0.396910
\(518\) 12.3497 0.542613
\(519\) −1.02351 −0.0449269
\(520\) −18.4845 −0.810597
\(521\) 34.1490 1.49610 0.748048 0.663645i \(-0.230991\pi\)
0.748048 + 0.663645i \(0.230991\pi\)
\(522\) −19.4867 −0.852908
\(523\) −3.59852 −0.157352 −0.0786761 0.996900i \(-0.525069\pi\)
−0.0786761 + 0.996900i \(0.525069\pi\)
\(524\) 4.49455 0.196345
\(525\) −1.65457 −0.0722116
\(526\) −12.4823 −0.544254
\(527\) 17.2887 0.753108
\(528\) −0.727915 −0.0316784
\(529\) −0.512397 −0.0222781
\(530\) −41.1643 −1.78806
\(531\) −20.0508 −0.870131
\(532\) 0 0
\(533\) −34.6267 −1.49985
\(534\) −0.357428 −0.0154674
\(535\) 57.3493 2.47943
\(536\) 4.54560 0.196340
\(537\) 0.353727 0.0152645
\(538\) −29.1409 −1.25635
\(539\) 0.504216 0.0217181
\(540\) −2.20011 −0.0946776
\(541\) −22.4253 −0.964138 −0.482069 0.876133i \(-0.660115\pi\)
−0.482069 + 0.876133i \(0.660115\pi\)
\(542\) 3.24231 0.139269
\(543\) 2.42637 0.104126
\(544\) −19.6541 −0.842663
\(545\) 38.8457 1.66397
\(546\) −2.10126 −0.0899256
\(547\) −13.1967 −0.564249 −0.282125 0.959378i \(-0.591039\pi\)
−0.282125 + 0.959378i \(0.591039\pi\)
\(548\) −6.60423 −0.282119
\(549\) 40.8439 1.74317
\(550\) −6.94252 −0.296030
\(551\) 0 0
\(552\) −1.36462 −0.0580820
\(553\) 6.29857 0.267843
\(554\) −9.06380 −0.385084
\(555\) 1.18480 0.0502919
\(556\) 0.125221 0.00531056
\(557\) −39.5188 −1.67446 −0.837232 0.546848i \(-0.815828\pi\)
−0.837232 + 0.546848i \(0.815828\pi\)
\(558\) −19.5591 −0.828004
\(559\) 15.9371 0.674069
\(560\) 41.1426 1.73859
\(561\) −0.648692 −0.0273878
\(562\) −32.5392 −1.37259
\(563\) −9.60572 −0.404833 −0.202416 0.979300i \(-0.564879\pi\)
−0.202416 + 0.979300i \(0.564879\pi\)
\(564\) 1.09941 0.0462934
\(565\) −2.86143 −0.120381
\(566\) 11.4987 0.483328
\(567\) −24.1272 −1.01325
\(568\) 28.3917 1.19129
\(569\) 36.9325 1.54829 0.774146 0.633007i \(-0.218179\pi\)
0.774146 + 0.633007i \(0.218179\pi\)
\(570\) 0 0
\(571\) 35.0368 1.46624 0.733122 0.680097i \(-0.238062\pi\)
0.733122 + 0.680097i \(0.238062\pi\)
\(572\) −2.59037 −0.108309
\(573\) 3.22039 0.134534
\(574\) 51.2751 2.14018
\(575\) −19.5631 −0.815838
\(576\) −7.38247 −0.307603
\(577\) −21.8967 −0.911573 −0.455786 0.890089i \(-0.650642\pi\)
−0.455786 + 0.890089i \(0.650642\pi\)
\(578\) −4.42762 −0.184165
\(579\) 1.32018 0.0548646
\(580\) −9.77146 −0.405738
\(581\) −22.0365 −0.914229
\(582\) −1.70885 −0.0708341
\(583\) 8.09736 0.335358
\(584\) 2.12060 0.0877510
\(585\) 28.0118 1.15815
\(586\) 48.1116 1.98747
\(587\) −33.9537 −1.40142 −0.700711 0.713446i \(-0.747134\pi\)
−0.700711 + 0.713446i \(0.747134\pi\)
\(588\) 0.0614240 0.00253308
\(589\) 0 0
\(590\) −34.2217 −1.40889
\(591\) −1.08721 −0.0447217
\(592\) −13.3188 −0.547399
\(593\) 8.63723 0.354689 0.177344 0.984149i \(-0.443249\pi\)
0.177344 + 0.984149i \(0.443249\pi\)
\(594\) 1.47304 0.0604397
\(595\) 36.6648 1.50311
\(596\) 9.32851 0.382111
\(597\) −3.41076 −0.139593
\(598\) −24.8446 −1.01597
\(599\) −16.8842 −0.689869 −0.344934 0.938627i \(-0.612099\pi\)
−0.344934 + 0.938627i \(0.612099\pi\)
\(600\) 1.18715 0.0484652
\(601\) −28.6569 −1.16894 −0.584469 0.811416i \(-0.698697\pi\)
−0.584469 + 0.811416i \(0.698697\pi\)
\(602\) −23.5996 −0.961849
\(603\) −6.88852 −0.280522
\(604\) −10.9286 −0.444680
\(605\) 3.02083 0.122814
\(606\) −4.87883 −0.198189
\(607\) −34.4975 −1.40021 −0.700106 0.714039i \(-0.746864\pi\)
−0.700106 + 0.714039i \(0.746864\pi\)
\(608\) 0 0
\(609\) 1.55919 0.0631816
\(610\) 69.7103 2.82249
\(611\) −28.0961 −1.13665
\(612\) 10.9807 0.443870
\(613\) 47.4139 1.91503 0.957514 0.288387i \(-0.0931191\pi\)
0.957514 + 0.288387i \(0.0931191\pi\)
\(614\) −31.4002 −1.26721
\(615\) 4.91922 0.198362
\(616\) −5.38425 −0.216937
\(617\) −16.0914 −0.647815 −0.323907 0.946089i \(-0.604997\pi\)
−0.323907 + 0.946089i \(0.604997\pi\)
\(618\) −0.114900 −0.00462195
\(619\) 24.4989 0.984696 0.492348 0.870398i \(-0.336139\pi\)
0.492348 + 0.870398i \(0.336139\pi\)
\(620\) −9.80779 −0.393890
\(621\) 4.15084 0.166567
\(622\) −8.00687 −0.321046
\(623\) −3.97396 −0.159213
\(624\) 2.26615 0.0907187
\(625\) −28.6081 −1.14432
\(626\) −19.4637 −0.777926
\(627\) 0 0
\(628\) 14.9053 0.594784
\(629\) −11.8692 −0.473257
\(630\) −41.4798 −1.65260
\(631\) 15.6922 0.624698 0.312349 0.949967i \(-0.398884\pi\)
0.312349 + 0.949967i \(0.398884\pi\)
\(632\) −4.51920 −0.179764
\(633\) −2.83410 −0.112646
\(634\) −43.4874 −1.72711
\(635\) −23.0220 −0.913598
\(636\) 0.986426 0.0391143
\(637\) −1.56973 −0.0621950
\(638\) 6.54230 0.259012
\(639\) −43.0255 −1.70206
\(640\) −39.4002 −1.55743
\(641\) 7.08845 0.279977 0.139988 0.990153i \(-0.455293\pi\)
0.139988 + 0.990153i \(0.455293\pi\)
\(642\) −4.67758 −0.184609
\(643\) −43.7524 −1.72543 −0.862713 0.505694i \(-0.831236\pi\)
−0.862713 + 0.505694i \(0.831236\pi\)
\(644\) 10.8088 0.425927
\(645\) −2.26410 −0.0891487
\(646\) 0 0
\(647\) −9.79736 −0.385174 −0.192587 0.981280i \(-0.561688\pi\)
−0.192587 + 0.981280i \(0.561688\pi\)
\(648\) 17.3112 0.680048
\(649\) 6.73170 0.264242
\(650\) 21.6135 0.847753
\(651\) 1.56499 0.0613368
\(652\) −12.7057 −0.497594
\(653\) 20.7746 0.812974 0.406487 0.913657i \(-0.366754\pi\)
0.406487 + 0.913657i \(0.366754\pi\)
\(654\) −3.16837 −0.123893
\(655\) 16.3177 0.637584
\(656\) −55.2988 −2.15906
\(657\) −3.21361 −0.125375
\(658\) 41.6046 1.62191
\(659\) −13.6273 −0.530846 −0.265423 0.964132i \(-0.585512\pi\)
−0.265423 + 0.964132i \(0.585512\pi\)
\(660\) 0.367999 0.0143244
\(661\) −14.4743 −0.562987 −0.281493 0.959563i \(-0.590830\pi\)
−0.281493 + 0.959563i \(0.590830\pi\)
\(662\) 20.0287 0.778436
\(663\) 2.01952 0.0784315
\(664\) 15.8111 0.613590
\(665\) 0 0
\(666\) 13.4279 0.520322
\(667\) 18.4353 0.713819
\(668\) −13.8864 −0.537281
\(669\) −0.727113 −0.0281118
\(670\) −11.7570 −0.454212
\(671\) −13.7126 −0.529369
\(672\) −1.77911 −0.0686305
\(673\) 9.40765 0.362638 0.181319 0.983424i \(-0.441963\pi\)
0.181319 + 0.983424i \(0.441963\pi\)
\(674\) 9.50094 0.365963
\(675\) −3.61103 −0.138988
\(676\) −2.75238 −0.105861
\(677\) 20.4389 0.785532 0.392766 0.919639i \(-0.371518\pi\)
0.392766 + 0.919639i \(0.371518\pi\)
\(678\) 0.233387 0.00896315
\(679\) −18.9993 −0.729127
\(680\) −26.3069 −1.00882
\(681\) −2.05553 −0.0787682
\(682\) 6.56663 0.251449
\(683\) 13.3968 0.512615 0.256308 0.966595i \(-0.417494\pi\)
0.256308 + 0.966595i \(0.417494\pi\)
\(684\) 0 0
\(685\) −23.9770 −0.916113
\(686\) −29.9458 −1.14333
\(687\) 1.83975 0.0701909
\(688\) 25.4516 0.970332
\(689\) −25.2088 −0.960379
\(690\) 3.52952 0.134367
\(691\) 48.6746 1.85167 0.925834 0.377930i \(-0.123364\pi\)
0.925834 + 0.377930i \(0.123364\pi\)
\(692\) −5.81670 −0.221118
\(693\) 8.15943 0.309951
\(694\) −8.97551 −0.340706
\(695\) 0.454621 0.0172448
\(696\) −1.11871 −0.0424047
\(697\) −49.2804 −1.86663
\(698\) 3.53506 0.133804
\(699\) −3.00546 −0.113677
\(700\) −9.40314 −0.355405
\(701\) 14.7366 0.556595 0.278298 0.960495i \(-0.410230\pi\)
0.278298 + 0.960495i \(0.410230\pi\)
\(702\) −4.58589 −0.173083
\(703\) 0 0
\(704\) 2.47853 0.0934132
\(705\) 3.99145 0.150327
\(706\) −7.09536 −0.267037
\(707\) −54.2438 −2.04005
\(708\) 0.820061 0.0308198
\(709\) −10.5648 −0.396769 −0.198384 0.980124i \(-0.563569\pi\)
−0.198384 + 0.980124i \(0.563569\pi\)
\(710\) −73.4338 −2.75592
\(711\) 6.84852 0.256839
\(712\) 2.85130 0.106857
\(713\) 18.5039 0.692976
\(714\) −2.99049 −0.111916
\(715\) −9.40448 −0.351708
\(716\) 2.01027 0.0751274
\(717\) −0.617491 −0.0230606
\(718\) 1.06478 0.0397372
\(719\) −16.1382 −0.601854 −0.300927 0.953647i \(-0.597296\pi\)
−0.300927 + 0.953647i \(0.597296\pi\)
\(720\) 44.7349 1.66717
\(721\) −1.27748 −0.0475758
\(722\) 0 0
\(723\) −1.89569 −0.0705015
\(724\) 13.7893 0.512477
\(725\) −16.0378 −0.595630
\(726\) −0.246387 −0.00914429
\(727\) −4.27672 −0.158615 −0.0793073 0.996850i \(-0.525271\pi\)
−0.0793073 + 0.996850i \(0.525271\pi\)
\(728\) 16.7623 0.621252
\(729\) −25.8494 −0.957384
\(730\) −5.48483 −0.203003
\(731\) 22.6815 0.838907
\(732\) −1.67048 −0.0617427
\(733\) 18.9894 0.701389 0.350694 0.936490i \(-0.385946\pi\)
0.350694 + 0.936490i \(0.385946\pi\)
\(734\) −35.4403 −1.30813
\(735\) 0.223003 0.00822558
\(736\) −21.0355 −0.775380
\(737\) 2.31270 0.0851893
\(738\) 55.7521 2.05226
\(739\) −32.7358 −1.20421 −0.602103 0.798418i \(-0.705670\pi\)
−0.602103 + 0.798418i \(0.705670\pi\)
\(740\) 6.73335 0.247523
\(741\) 0 0
\(742\) 37.3291 1.37039
\(743\) −8.37190 −0.307135 −0.153568 0.988138i \(-0.549076\pi\)
−0.153568 + 0.988138i \(0.549076\pi\)
\(744\) −1.12287 −0.0411666
\(745\) 33.8676 1.24081
\(746\) −28.1485 −1.03059
\(747\) −23.9606 −0.876672
\(748\) −3.68659 −0.134795
\(749\) −52.0062 −1.90026
\(750\) 0.650958 0.0237696
\(751\) 23.2556 0.848609 0.424304 0.905520i \(-0.360519\pi\)
0.424304 + 0.905520i \(0.360519\pi\)
\(752\) −44.8694 −1.63622
\(753\) 3.07295 0.111985
\(754\) −20.3676 −0.741743
\(755\) −39.6769 −1.44399
\(756\) 1.99513 0.0725621
\(757\) 44.3078 1.61040 0.805198 0.593006i \(-0.202059\pi\)
0.805198 + 0.593006i \(0.202059\pi\)
\(758\) 14.2724 0.518397
\(759\) −0.694287 −0.0252010
\(760\) 0 0
\(761\) 34.2261 1.24069 0.620347 0.784327i \(-0.286992\pi\)
0.620347 + 0.784327i \(0.286992\pi\)
\(762\) 1.87774 0.0680232
\(763\) −35.2265 −1.27529
\(764\) 18.3019 0.662138
\(765\) 39.8661 1.44136
\(766\) 24.3170 0.878608
\(767\) −20.9572 −0.756721
\(768\) 2.48784 0.0897721
\(769\) 18.0250 0.649996 0.324998 0.945715i \(-0.394636\pi\)
0.324998 + 0.945715i \(0.394636\pi\)
\(770\) 13.9261 0.501862
\(771\) −2.56636 −0.0924251
\(772\) 7.50271 0.270028
\(773\) −47.1420 −1.69558 −0.847790 0.530332i \(-0.822067\pi\)
−0.847790 + 0.530332i \(0.822067\pi\)
\(774\) −25.6602 −0.922336
\(775\) −16.0975 −0.578238
\(776\) 13.6319 0.489358
\(777\) −1.07441 −0.0385444
\(778\) −21.2865 −0.763158
\(779\) 0 0
\(780\) −1.14566 −0.0410212
\(781\) 14.4450 0.516884
\(782\) −35.3585 −1.26442
\(783\) 3.40286 0.121608
\(784\) −2.50686 −0.0895307
\(785\) 54.1142 1.93142
\(786\) −1.33092 −0.0474722
\(787\) −5.48812 −0.195630 −0.0978151 0.995205i \(-0.531185\pi\)
−0.0978151 + 0.995205i \(0.531185\pi\)
\(788\) −6.17872 −0.220108
\(789\) 1.08595 0.0386609
\(790\) 11.6887 0.415866
\(791\) 2.59484 0.0922618
\(792\) −5.85436 −0.208026
\(793\) 42.6902 1.51597
\(794\) −8.61856 −0.305861
\(795\) 3.58127 0.127014
\(796\) −19.3837 −0.687038
\(797\) −26.0730 −0.923552 −0.461776 0.886996i \(-0.652788\pi\)
−0.461776 + 0.886996i \(0.652788\pi\)
\(798\) 0 0
\(799\) −39.9860 −1.41460
\(800\) 18.2999 0.646999
\(801\) −4.32093 −0.152673
\(802\) −65.9017 −2.32707
\(803\) 1.07891 0.0380740
\(804\) 0.281734 0.00993601
\(805\) 39.2419 1.38310
\(806\) −20.4433 −0.720085
\(807\) 2.53524 0.0892446
\(808\) 38.9197 1.36919
\(809\) −40.8941 −1.43776 −0.718880 0.695134i \(-0.755345\pi\)
−0.718880 + 0.695134i \(0.755345\pi\)
\(810\) −44.7746 −1.57322
\(811\) 17.6300 0.619074 0.309537 0.950887i \(-0.399826\pi\)
0.309537 + 0.950887i \(0.399826\pi\)
\(812\) 8.86107 0.310962
\(813\) −0.282079 −0.00989295
\(814\) −4.50819 −0.158012
\(815\) −46.1287 −1.61582
\(816\) 3.22516 0.112903
\(817\) 0 0
\(818\) −22.6018 −0.790252
\(819\) −25.4020 −0.887619
\(820\) 27.9565 0.976283
\(821\) 13.7336 0.479305 0.239653 0.970859i \(-0.422966\pi\)
0.239653 + 0.970859i \(0.422966\pi\)
\(822\) 1.95563 0.0682105
\(823\) 37.9263 1.32203 0.661014 0.750374i \(-0.270127\pi\)
0.661014 + 0.750374i \(0.270127\pi\)
\(824\) 0.916586 0.0319308
\(825\) 0.603995 0.0210284
\(826\) 31.0333 1.07979
\(827\) −10.9660 −0.381326 −0.190663 0.981656i \(-0.561064\pi\)
−0.190663 + 0.981656i \(0.561064\pi\)
\(828\) 11.7526 0.408430
\(829\) 50.2347 1.74472 0.872362 0.488861i \(-0.162588\pi\)
0.872362 + 0.488861i \(0.162588\pi\)
\(830\) −40.8947 −1.41948
\(831\) 0.788545 0.0273543
\(832\) −7.71620 −0.267511
\(833\) −2.23402 −0.0774043
\(834\) −0.0370802 −0.00128398
\(835\) −50.4153 −1.74469
\(836\) 0 0
\(837\) 3.41551 0.118057
\(838\) 11.0261 0.380891
\(839\) 6.77707 0.233970 0.116985 0.993134i \(-0.462677\pi\)
0.116985 + 0.993134i \(0.462677\pi\)
\(840\) −2.38132 −0.0821634
\(841\) −13.8867 −0.478852
\(842\) 10.4125 0.358837
\(843\) 2.83089 0.0975012
\(844\) −16.1065 −0.554410
\(845\) −9.99264 −0.343757
\(846\) 45.2371 1.55529
\(847\) −2.73938 −0.0941263
\(848\) −40.2584 −1.38248
\(849\) −1.00038 −0.0343330
\(850\) 30.7602 1.05506
\(851\) −12.7035 −0.435470
\(852\) 1.75971 0.0602865
\(853\) −9.01075 −0.308522 −0.154261 0.988030i \(-0.549300\pi\)
−0.154261 + 0.988030i \(0.549300\pi\)
\(854\) −63.2155 −2.16319
\(855\) 0 0
\(856\) 37.3142 1.27537
\(857\) 10.0303 0.342629 0.171315 0.985216i \(-0.445199\pi\)
0.171315 + 0.985216i \(0.445199\pi\)
\(858\) 0.767056 0.0261869
\(859\) 24.8891 0.849204 0.424602 0.905380i \(-0.360414\pi\)
0.424602 + 0.905380i \(0.360414\pi\)
\(860\) −12.8671 −0.438765
\(861\) −4.46090 −0.152027
\(862\) −52.5678 −1.79047
\(863\) −35.2512 −1.19997 −0.599983 0.800013i \(-0.704826\pi\)
−0.599983 + 0.800013i \(0.704826\pi\)
\(864\) −3.88281 −0.132096
\(865\) −21.1178 −0.718027
\(866\) −40.1517 −1.36441
\(867\) 0.385200 0.0130821
\(868\) 8.89402 0.301883
\(869\) −2.29927 −0.0779973
\(870\) 2.89350 0.0980989
\(871\) −7.19992 −0.243960
\(872\) 25.2749 0.855916
\(873\) −20.6582 −0.699174
\(874\) 0 0
\(875\) 7.23747 0.244671
\(876\) 0.131434 0.00444074
\(877\) 20.2240 0.682916 0.341458 0.939897i \(-0.389079\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(878\) 16.1849 0.546213
\(879\) −4.18568 −0.141180
\(880\) −15.0189 −0.506288
\(881\) 53.6736 1.80831 0.904155 0.427204i \(-0.140501\pi\)
0.904155 + 0.427204i \(0.140501\pi\)
\(882\) 2.52740 0.0851021
\(883\) −53.9771 −1.81647 −0.908237 0.418457i \(-0.862571\pi\)
−0.908237 + 0.418457i \(0.862571\pi\)
\(884\) 11.4771 0.386018
\(885\) 2.97727 0.100080
\(886\) 22.4574 0.754469
\(887\) −31.7801 −1.06707 −0.533536 0.845778i \(-0.679137\pi\)
−0.533536 + 0.845778i \(0.679137\pi\)
\(888\) 0.770887 0.0258693
\(889\) 20.8770 0.700193
\(890\) −7.37476 −0.247202
\(891\) 8.80754 0.295064
\(892\) −4.13227 −0.138359
\(893\) 0 0
\(894\) −2.76234 −0.0923865
\(895\) 7.29839 0.243958
\(896\) 35.7294 1.19363
\(897\) 2.16146 0.0721691
\(898\) −49.9734 −1.66763
\(899\) 15.1695 0.505931
\(900\) −10.2241 −0.340805
\(901\) −35.8769 −1.19523
\(902\) −18.7178 −0.623233
\(903\) 2.05315 0.0683247
\(904\) −1.86178 −0.0619220
\(905\) 50.0629 1.66415
\(906\) 3.23616 0.107514
\(907\) −40.3207 −1.33883 −0.669414 0.742890i \(-0.733455\pi\)
−0.669414 + 0.742890i \(0.733455\pi\)
\(908\) −11.6818 −0.387675
\(909\) −58.9799 −1.95624
\(910\) −43.3549 −1.43720
\(911\) 16.2257 0.537583 0.268791 0.963198i \(-0.413376\pi\)
0.268791 + 0.963198i \(0.413376\pi\)
\(912\) 0 0
\(913\) 8.04434 0.266229
\(914\) −12.3024 −0.406928
\(915\) −6.06475 −0.200495
\(916\) 10.4555 0.345460
\(917\) −14.7974 −0.488652
\(918\) −6.52659 −0.215410
\(919\) 32.6377 1.07662 0.538309 0.842748i \(-0.319063\pi\)
0.538309 + 0.842748i \(0.319063\pi\)
\(920\) −28.1559 −0.928273
\(921\) 2.73180 0.0900158
\(922\) −10.7999 −0.355677
\(923\) −44.9705 −1.48022
\(924\) −0.333714 −0.0109784
\(925\) 11.0514 0.363368
\(926\) −31.5364 −1.03635
\(927\) −1.38902 −0.0456213
\(928\) −17.2449 −0.566093
\(929\) −11.9251 −0.391251 −0.195625 0.980679i \(-0.562674\pi\)
−0.195625 + 0.980679i \(0.562674\pi\)
\(930\) 2.90426 0.0952345
\(931\) 0 0
\(932\) −17.0804 −0.559487
\(933\) 0.696593 0.0228054
\(934\) −51.3766 −1.68109
\(935\) −13.3843 −0.437715
\(936\) 18.2259 0.595731
\(937\) 31.5377 1.03029 0.515146 0.857102i \(-0.327738\pi\)
0.515146 + 0.857102i \(0.327738\pi\)
\(938\) 10.6616 0.348114
\(939\) 1.69333 0.0552598
\(940\) 22.6839 0.739866
\(941\) 10.0598 0.327942 0.163971 0.986465i \(-0.447570\pi\)
0.163971 + 0.986465i \(0.447570\pi\)
\(942\) −4.41371 −0.143806
\(943\) −52.7442 −1.71759
\(944\) −33.4686 −1.08931
\(945\) 7.24341 0.235628
\(946\) 8.61494 0.280096
\(947\) −9.22460 −0.299759 −0.149880 0.988704i \(-0.547889\pi\)
−0.149880 + 0.988704i \(0.547889\pi\)
\(948\) −0.280098 −0.00909718
\(949\) −3.35888 −0.109034
\(950\) 0 0
\(951\) 3.78338 0.122684
\(952\) 23.8559 0.773175
\(953\) 48.8886 1.58366 0.791829 0.610743i \(-0.209129\pi\)
0.791829 + 0.610743i \(0.209129\pi\)
\(954\) 40.5884 1.31410
\(955\) 66.4458 2.15013
\(956\) −3.50927 −0.113498
\(957\) −0.569176 −0.0183989
\(958\) 47.3254 1.52901
\(959\) 21.7431 0.702121
\(960\) 1.09620 0.0353796
\(961\) −15.7741 −0.508842
\(962\) 14.0350 0.452505
\(963\) −56.5470 −1.82220
\(964\) −10.7734 −0.346989
\(965\) 27.2390 0.876853
\(966\) −3.20068 −0.102980
\(967\) −15.9082 −0.511572 −0.255786 0.966733i \(-0.582334\pi\)
−0.255786 + 0.966733i \(0.582334\pi\)
\(968\) 1.96550 0.0631734
\(969\) 0 0
\(970\) −35.2584 −1.13208
\(971\) 47.1624 1.51351 0.756757 0.653697i \(-0.226783\pi\)
0.756757 + 0.653697i \(0.226783\pi\)
\(972\) 3.25788 0.104497
\(973\) −0.412265 −0.0132166
\(974\) −55.6018 −1.78160
\(975\) −1.88037 −0.0602199
\(976\) 68.1763 2.18227
\(977\) 42.9519 1.37415 0.687077 0.726585i \(-0.258893\pi\)
0.687077 + 0.726585i \(0.258893\pi\)
\(978\) 3.76239 0.120308
\(979\) 1.45068 0.0463638
\(980\) 1.26735 0.0404840
\(981\) −38.3022 −1.22290
\(982\) 38.3456 1.22366
\(983\) 32.3928 1.03317 0.516585 0.856236i \(-0.327203\pi\)
0.516585 + 0.856236i \(0.327203\pi\)
\(984\) 3.20068 0.102034
\(985\) −22.4321 −0.714747
\(986\) −28.9869 −0.923131
\(987\) −3.61957 −0.115212
\(988\) 0 0
\(989\) 24.2758 0.771924
\(990\) 15.1420 0.481245
\(991\) −37.8794 −1.20328 −0.601639 0.798768i \(-0.705485\pi\)
−0.601639 + 0.798768i \(0.705485\pi\)
\(992\) −17.3091 −0.549563
\(993\) −1.74248 −0.0552960
\(994\) 66.5921 2.11217
\(995\) −70.3735 −2.23099
\(996\) 0.979967 0.0310514
\(997\) 2.31900 0.0734435 0.0367218 0.999326i \(-0.488308\pi\)
0.0367218 + 0.999326i \(0.488308\pi\)
\(998\) 71.9125 2.27635
\(999\) −2.34485 −0.0741879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.2.a.t.1.4 21
19.6 even 9 209.2.j.b.188.1 42
19.16 even 9 209.2.j.b.199.1 yes 42
19.18 odd 2 3971.2.a.s.1.18 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.j.b.188.1 42 19.6 even 9
209.2.j.b.199.1 yes 42 19.16 even 9
3971.2.a.s.1.18 21 19.18 odd 2
3971.2.a.t.1.4 21 1.1 even 1 trivial