Properties

Label 396.3.e.a.89.8
Level $396$
Weight $3$
Character 396.89
Analytic conductor $10.790$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,3,Mod(89,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.89"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 396.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7902184687\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 17x^{6} + 22x^{5} + 62x^{4} + 862x^{3} + 1045x^{2} + 5238x + 13491 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.8
Root \(2.95745 - 2.85804i\) of defining polynomial
Character \(\chi\) \(=\) 396.89
Dual form 396.3.e.a.89.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.36495i q^{5} -8.08375 q^{7} -3.31662i q^{11} -19.8173 q^{13} -30.8543i q^{17} +13.9261 q^{19} -24.1582i q^{23} -44.9723 q^{25} +8.62139i q^{29} +46.9816 q^{31} -67.6201i q^{35} -58.1398 q^{37} -12.6279i q^{41} -65.2203 q^{43} +57.8586i q^{47} +16.3470 q^{49} +58.8268i q^{53} +27.7434 q^{55} +77.0781i q^{59} -71.4716 q^{61} -165.771i q^{65} -100.111 q^{67} -24.6395i q^{71} -38.4829 q^{73} +26.8108i q^{77} -10.7777 q^{79} -50.4834i q^{83} +258.095 q^{85} -59.8093i q^{89} +160.198 q^{91} +116.491i q^{95} +44.6662 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{7} - 8 q^{13} + 40 q^{19} - 48 q^{25} + 40 q^{31} - 56 q^{37} + 24 q^{43} + 96 q^{49} + 120 q^{61} - 272 q^{67} - 256 q^{73} + 32 q^{79} + 432 q^{85} - 96 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.36495i 1.67299i 0.547975 + 0.836495i \(0.315399\pi\)
−0.547975 + 0.836495i \(0.684601\pi\)
\(6\) 0 0
\(7\) −8.08375 −1.15482 −0.577410 0.816454i \(-0.695937\pi\)
−0.577410 + 0.816454i \(0.695937\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.31662i − 0.301511i
\(12\) 0 0
\(13\) −19.8173 −1.52441 −0.762205 0.647336i \(-0.775883\pi\)
−0.762205 + 0.647336i \(0.775883\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 30.8543i − 1.81496i −0.420093 0.907481i \(-0.638003\pi\)
0.420093 0.907481i \(-0.361997\pi\)
\(18\) 0 0
\(19\) 13.9261 0.732951 0.366475 0.930428i \(-0.380564\pi\)
0.366475 + 0.930428i \(0.380564\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 24.1582i − 1.05036i −0.850993 0.525178i \(-0.823999\pi\)
0.850993 0.525178i \(-0.176001\pi\)
\(24\) 0 0
\(25\) −44.9723 −1.79889
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.62139i 0.297289i 0.988891 + 0.148645i \(0.0474911\pi\)
−0.988891 + 0.148645i \(0.952509\pi\)
\(30\) 0 0
\(31\) 46.9816 1.51554 0.757768 0.652524i \(-0.226290\pi\)
0.757768 + 0.652524i \(0.226290\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 67.6201i − 1.93200i
\(36\) 0 0
\(37\) −58.1398 −1.57135 −0.785673 0.618642i \(-0.787683\pi\)
−0.785673 + 0.618642i \(0.787683\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 12.6279i − 0.307998i −0.988071 0.153999i \(-0.950785\pi\)
0.988071 0.153999i \(-0.0492152\pi\)
\(42\) 0 0
\(43\) −65.2203 −1.51675 −0.758376 0.651817i \(-0.774007\pi\)
−0.758376 + 0.651817i \(0.774007\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 57.8586i 1.23103i 0.788123 + 0.615517i \(0.211053\pi\)
−0.788123 + 0.615517i \(0.788947\pi\)
\(48\) 0 0
\(49\) 16.3470 0.333612
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 58.8268i 1.10994i 0.831870 + 0.554970i \(0.187270\pi\)
−0.831870 + 0.554970i \(0.812730\pi\)
\(54\) 0 0
\(55\) 27.7434 0.504425
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 77.0781i 1.30641i 0.757181 + 0.653205i \(0.226576\pi\)
−0.757181 + 0.653205i \(0.773424\pi\)
\(60\) 0 0
\(61\) −71.4716 −1.17167 −0.585833 0.810432i \(-0.699232\pi\)
−0.585833 + 0.810432i \(0.699232\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 165.771i − 2.55032i
\(66\) 0 0
\(67\) −100.111 −1.49420 −0.747098 0.664714i \(-0.768553\pi\)
−0.747098 + 0.664714i \(0.768553\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 24.6395i − 0.347035i −0.984831 0.173518i \(-0.944487\pi\)
0.984831 0.173518i \(-0.0555134\pi\)
\(72\) 0 0
\(73\) −38.4829 −0.527162 −0.263581 0.964637i \(-0.584904\pi\)
−0.263581 + 0.964637i \(0.584904\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 26.8108i 0.348192i
\(78\) 0 0
\(79\) −10.7777 −0.136426 −0.0682131 0.997671i \(-0.521730\pi\)
−0.0682131 + 0.997671i \(0.521730\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 50.4834i − 0.608233i −0.952635 0.304117i \(-0.901639\pi\)
0.952635 0.304117i \(-0.0983613\pi\)
\(84\) 0 0
\(85\) 258.095 3.03641
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 59.8093i − 0.672015i −0.941859 0.336008i \(-0.890923\pi\)
0.941859 0.336008i \(-0.109077\pi\)
\(90\) 0 0
\(91\) 160.198 1.76042
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 116.491i 1.22622i
\(96\) 0 0
\(97\) 44.6662 0.460477 0.230238 0.973134i \(-0.426049\pi\)
0.230238 + 0.973134i \(0.426049\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 104.218i 1.03186i 0.856630 + 0.515932i \(0.172554\pi\)
−0.856630 + 0.515932i \(0.827446\pi\)
\(102\) 0 0
\(103\) 28.0702 0.272526 0.136263 0.990673i \(-0.456491\pi\)
0.136263 + 0.990673i \(0.456491\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14.0098i − 0.130933i −0.997855 0.0654665i \(-0.979146\pi\)
0.997855 0.0654665i \(-0.0208535\pi\)
\(108\) 0 0
\(109\) −69.2977 −0.635758 −0.317879 0.948131i \(-0.602971\pi\)
−0.317879 + 0.948131i \(0.602971\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 0.214655i − 0.00189960i −1.00000 0.000949801i \(-0.999698\pi\)
1.00000 0.000949801i \(-0.000302331\pi\)
\(114\) 0 0
\(115\) 202.082 1.75723
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 249.419i 2.09596i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 167.067i − 1.33654i
\(126\) 0 0
\(127\) 157.887 1.24320 0.621602 0.783333i \(-0.286482\pi\)
0.621602 + 0.783333i \(0.286482\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 94.3295i 0.720073i 0.932938 + 0.360036i \(0.117236\pi\)
−0.932938 + 0.360036i \(0.882764\pi\)
\(132\) 0 0
\(133\) −112.575 −0.846427
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 36.9603i − 0.269783i −0.990860 0.134891i \(-0.956931\pi\)
0.990860 0.134891i \(-0.0430686\pi\)
\(138\) 0 0
\(139\) −92.1371 −0.662857 −0.331429 0.943480i \(-0.607531\pi\)
−0.331429 + 0.943480i \(0.607531\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 65.7266i 0.459627i
\(144\) 0 0
\(145\) −72.1175 −0.497362
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 3.47496i − 0.0233219i −0.999932 0.0116609i \(-0.996288\pi\)
0.999932 0.0116609i \(-0.00371188\pi\)
\(150\) 0 0
\(151\) −59.1323 −0.391605 −0.195802 0.980643i \(-0.562731\pi\)
−0.195802 + 0.980643i \(0.562731\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 392.999i 2.53547i
\(156\) 0 0
\(157\) −290.527 −1.85049 −0.925244 0.379371i \(-0.876140\pi\)
−0.925244 + 0.379371i \(0.876140\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 195.289i 1.21297i
\(162\) 0 0
\(163\) 272.752 1.67332 0.836662 0.547720i \(-0.184504\pi\)
0.836662 + 0.547720i \(0.184504\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 188.581i − 1.12923i −0.825356 0.564613i \(-0.809026\pi\)
0.825356 0.564613i \(-0.190974\pi\)
\(168\) 0 0
\(169\) 223.726 1.32382
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 88.4497i 0.511270i 0.966773 + 0.255635i \(0.0822845\pi\)
−0.966773 + 0.255635i \(0.917716\pi\)
\(174\) 0 0
\(175\) 363.545 2.07740
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.06762i 0.0171375i 0.999963 + 0.00856877i \(0.00272756\pi\)
−0.999963 + 0.00856877i \(0.997272\pi\)
\(180\) 0 0
\(181\) 12.4399 0.0687286 0.0343643 0.999409i \(-0.489059\pi\)
0.0343643 + 0.999409i \(0.489059\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 486.336i − 2.62885i
\(186\) 0 0
\(187\) −102.332 −0.547232
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 114.534i 0.599655i 0.953994 + 0.299827i \(0.0969290\pi\)
−0.953994 + 0.299827i \(0.903071\pi\)
\(192\) 0 0
\(193\) 52.2218 0.270579 0.135290 0.990806i \(-0.456803\pi\)
0.135290 + 0.990806i \(0.456803\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 237.428i − 1.20522i −0.798037 0.602609i \(-0.794128\pi\)
0.798037 0.602609i \(-0.205872\pi\)
\(198\) 0 0
\(199\) 30.7193 0.154368 0.0771841 0.997017i \(-0.475407\pi\)
0.0771841 + 0.997017i \(0.475407\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 69.6932i − 0.343316i
\(204\) 0 0
\(205\) 105.632 0.515277
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 46.1875i − 0.220993i
\(210\) 0 0
\(211\) 9.25072 0.0438423 0.0219211 0.999760i \(-0.493022\pi\)
0.0219211 + 0.999760i \(0.493022\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 545.565i − 2.53751i
\(216\) 0 0
\(217\) −379.787 −1.75017
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 611.451i 2.76674i
\(222\) 0 0
\(223\) 209.727 0.940482 0.470241 0.882538i \(-0.344167\pi\)
0.470241 + 0.882538i \(0.344167\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 197.712i − 0.870978i −0.900194 0.435489i \(-0.856575\pi\)
0.900194 0.435489i \(-0.143425\pi\)
\(228\) 0 0
\(229\) −365.590 −1.59646 −0.798230 0.602352i \(-0.794230\pi\)
−0.798230 + 0.602352i \(0.794230\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 261.121i 1.12069i 0.828259 + 0.560345i \(0.189332\pi\)
−0.828259 + 0.560345i \(0.810668\pi\)
\(234\) 0 0
\(235\) −483.984 −2.05951
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 203.712i − 0.852350i −0.904641 0.426175i \(-0.859861\pi\)
0.904641 0.426175i \(-0.140139\pi\)
\(240\) 0 0
\(241\) 89.4943 0.371346 0.185673 0.982612i \(-0.440554\pi\)
0.185673 + 0.982612i \(0.440554\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 136.741i 0.558128i
\(246\) 0 0
\(247\) −275.977 −1.11732
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 487.339i − 1.94159i −0.239912 0.970795i \(-0.577118\pi\)
0.239912 0.970795i \(-0.422882\pi\)
\(252\) 0 0
\(253\) −80.1236 −0.316694
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 131.452i 0.511485i 0.966745 + 0.255743i \(0.0823199\pi\)
−0.966745 + 0.255743i \(0.917680\pi\)
\(258\) 0 0
\(259\) 469.987 1.81462
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 265.186i 1.00831i 0.863613 + 0.504156i \(0.168196\pi\)
−0.863613 + 0.504156i \(0.831804\pi\)
\(264\) 0 0
\(265\) −492.083 −1.85692
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 366.503i − 1.36246i −0.732068 0.681232i \(-0.761445\pi\)
0.732068 0.681232i \(-0.238555\pi\)
\(270\) 0 0
\(271\) −396.226 −1.46209 −0.731043 0.682331i \(-0.760966\pi\)
−0.731043 + 0.682331i \(0.760966\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 149.156i 0.542387i
\(276\) 0 0
\(277\) 236.697 0.854500 0.427250 0.904133i \(-0.359482\pi\)
0.427250 + 0.904133i \(0.359482\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 383.899i − 1.36619i −0.730331 0.683094i \(-0.760634\pi\)
0.730331 0.683094i \(-0.239366\pi\)
\(282\) 0 0
\(283\) −209.279 −0.739500 −0.369750 0.929131i \(-0.620557\pi\)
−0.369750 + 0.929131i \(0.620557\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 102.081i 0.355682i
\(288\) 0 0
\(289\) −662.991 −2.29409
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 352.123i 1.20179i 0.799330 + 0.600893i \(0.205188\pi\)
−0.799330 + 0.600893i \(0.794812\pi\)
\(294\) 0 0
\(295\) −644.755 −2.18561
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 478.750i 1.60117i
\(300\) 0 0
\(301\) 527.225 1.75158
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 597.856i − 1.96018i
\(306\) 0 0
\(307\) 286.542 0.933362 0.466681 0.884426i \(-0.345450\pi\)
0.466681 + 0.884426i \(0.345450\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 328.791i 1.05721i 0.848869 + 0.528603i \(0.177284\pi\)
−0.848869 + 0.528603i \(0.822716\pi\)
\(312\) 0 0
\(313\) −39.2139 −0.125284 −0.0626420 0.998036i \(-0.519953\pi\)
−0.0626420 + 0.998036i \(0.519953\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 144.471i 0.455744i 0.973691 + 0.227872i \(0.0731768\pi\)
−0.973691 + 0.227872i \(0.926823\pi\)
\(318\) 0 0
\(319\) 28.5939 0.0896361
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 429.680i − 1.33028i
\(324\) 0 0
\(325\) 891.231 2.74225
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 467.714i − 1.42162i
\(330\) 0 0
\(331\) −156.879 −0.473953 −0.236977 0.971515i \(-0.576157\pi\)
−0.236977 + 0.971515i \(0.576157\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 837.424i − 2.49977i
\(336\) 0 0
\(337\) −292.034 −0.866568 −0.433284 0.901257i \(-0.642645\pi\)
−0.433284 + 0.901257i \(0.642645\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 155.820i − 0.456951i
\(342\) 0 0
\(343\) 263.959 0.769559
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 611.742i 1.76295i 0.472235 + 0.881473i \(0.343448\pi\)
−0.472235 + 0.881473i \(0.656552\pi\)
\(348\) 0 0
\(349\) 348.789 0.999394 0.499697 0.866200i \(-0.333445\pi\)
0.499697 + 0.866200i \(0.333445\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 203.747i 0.577186i 0.957452 + 0.288593i \(0.0931874\pi\)
−0.957452 + 0.288593i \(0.906813\pi\)
\(354\) 0 0
\(355\) 206.108 0.580586
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 476.892i 1.32839i 0.747560 + 0.664195i \(0.231225\pi\)
−0.747560 + 0.664195i \(0.768775\pi\)
\(360\) 0 0
\(361\) −167.065 −0.462783
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 321.907i − 0.881937i
\(366\) 0 0
\(367\) −440.813 −1.20112 −0.600562 0.799578i \(-0.705057\pi\)
−0.600562 + 0.799578i \(0.705057\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 475.541i − 1.28178i
\(372\) 0 0
\(373\) 378.883 1.01577 0.507886 0.861424i \(-0.330427\pi\)
0.507886 + 0.861424i \(0.330427\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 170.853i − 0.453191i
\(378\) 0 0
\(379\) 518.418 1.36786 0.683929 0.729549i \(-0.260270\pi\)
0.683929 + 0.729549i \(0.260270\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 143.249i − 0.374019i −0.982358 0.187009i \(-0.940121\pi\)
0.982358 0.187009i \(-0.0598795\pi\)
\(384\) 0 0
\(385\) −224.271 −0.582521
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 384.073i 0.987334i 0.869651 + 0.493667i \(0.164344\pi\)
−0.869651 + 0.493667i \(0.835656\pi\)
\(390\) 0 0
\(391\) −745.385 −1.90635
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 90.1547i − 0.228240i
\(396\) 0 0
\(397\) −10.6192 −0.0267486 −0.0133743 0.999911i \(-0.504257\pi\)
−0.0133743 + 0.999911i \(0.504257\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 399.582i 0.996463i 0.867044 + 0.498232i \(0.166017\pi\)
−0.867044 + 0.498232i \(0.833983\pi\)
\(402\) 0 0
\(403\) −931.049 −2.31030
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 192.828i 0.473779i
\(408\) 0 0
\(409\) 83.8067 0.204906 0.102453 0.994738i \(-0.467331\pi\)
0.102453 + 0.994738i \(0.467331\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 623.080i − 1.50867i
\(414\) 0 0
\(415\) 422.291 1.01757
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 650.655i 1.55288i 0.630193 + 0.776439i \(0.282976\pi\)
−0.630193 + 0.776439i \(0.717024\pi\)
\(420\) 0 0
\(421\) 306.792 0.728721 0.364360 0.931258i \(-0.381288\pi\)
0.364360 + 0.931258i \(0.381288\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1387.59i 3.26492i
\(426\) 0 0
\(427\) 577.758 1.35306
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 489.357i − 1.13540i −0.823236 0.567700i \(-0.807833\pi\)
0.823236 0.567700i \(-0.192167\pi\)
\(432\) 0 0
\(433\) 55.1279 0.127316 0.0636581 0.997972i \(-0.479723\pi\)
0.0636581 + 0.997972i \(0.479723\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 336.428i − 0.769859i
\(438\) 0 0
\(439\) 755.916 1.72190 0.860952 0.508687i \(-0.169869\pi\)
0.860952 + 0.508687i \(0.169869\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 378.747i 0.854960i 0.904025 + 0.427480i \(0.140599\pi\)
−0.904025 + 0.427480i \(0.859401\pi\)
\(444\) 0 0
\(445\) 500.302 1.12427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 735.364i 1.63778i 0.573948 + 0.818891i \(0.305411\pi\)
−0.573948 + 0.818891i \(0.694589\pi\)
\(450\) 0 0
\(451\) −41.8820 −0.0928648
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1340.05i 2.94516i
\(456\) 0 0
\(457\) −127.051 −0.278011 −0.139006 0.990292i \(-0.544391\pi\)
−0.139006 + 0.990292i \(0.544391\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 130.097i 0.282206i 0.989995 + 0.141103i \(0.0450649\pi\)
−0.989995 + 0.141103i \(0.954935\pi\)
\(462\) 0 0
\(463\) 349.830 0.755572 0.377786 0.925893i \(-0.376686\pi\)
0.377786 + 0.925893i \(0.376686\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 165.590i − 0.354582i −0.984158 0.177291i \(-0.943267\pi\)
0.984158 0.177291i \(-0.0567334\pi\)
\(468\) 0 0
\(469\) 809.273 1.72553
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 216.311i 0.457318i
\(474\) 0 0
\(475\) −626.287 −1.31850
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 417.551i − 0.871713i −0.900016 0.435857i \(-0.856446\pi\)
0.900016 0.435857i \(-0.143554\pi\)
\(480\) 0 0
\(481\) 1152.18 2.39537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 373.631i 0.770373i
\(486\) 0 0
\(487\) −928.868 −1.90733 −0.953664 0.300875i \(-0.902721\pi\)
−0.953664 + 0.300875i \(0.902721\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 515.364i − 1.04962i −0.851219 0.524811i \(-0.824136\pi\)
0.851219 0.524811i \(-0.175864\pi\)
\(492\) 0 0
\(493\) 266.008 0.539569
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 199.180i 0.400764i
\(498\) 0 0
\(499\) −264.718 −0.530497 −0.265248 0.964180i \(-0.585454\pi\)
−0.265248 + 0.964180i \(0.585454\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 381.801i − 0.759048i −0.925182 0.379524i \(-0.876088\pi\)
0.925182 0.379524i \(-0.123912\pi\)
\(504\) 0 0
\(505\) −871.779 −1.72630
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 111.470i 0.218998i 0.993987 + 0.109499i \(0.0349246\pi\)
−0.993987 + 0.109499i \(0.965075\pi\)
\(510\) 0 0
\(511\) 311.086 0.608778
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 234.806i 0.455933i
\(516\) 0 0
\(517\) 191.895 0.371171
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 778.379i − 1.49401i −0.664819 0.747005i \(-0.731491\pi\)
0.664819 0.747005i \(-0.268509\pi\)
\(522\) 0 0
\(523\) 820.611 1.56905 0.784523 0.620100i \(-0.212908\pi\)
0.784523 + 0.620100i \(0.212908\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1449.59i − 2.75064i
\(528\) 0 0
\(529\) −54.6170 −0.103246
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 250.251i 0.469514i
\(534\) 0 0
\(535\) 117.191 0.219049
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 54.2167i − 0.100588i
\(540\) 0 0
\(541\) 75.9969 0.140475 0.0702374 0.997530i \(-0.477624\pi\)
0.0702374 + 0.997530i \(0.477624\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 579.671i − 1.06362i
\(546\) 0 0
\(547\) −11.9476 −0.0218420 −0.0109210 0.999940i \(-0.503476\pi\)
−0.0109210 + 0.999940i \(0.503476\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 120.062i 0.217899i
\(552\) 0 0
\(553\) 87.1240 0.157548
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 272.715i 0.489614i 0.969572 + 0.244807i \(0.0787246\pi\)
−0.969572 + 0.244807i \(0.921275\pi\)
\(558\) 0 0
\(559\) 1292.49 2.31215
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 908.020i − 1.61282i −0.591353 0.806412i \(-0.701406\pi\)
0.591353 0.806412i \(-0.298594\pi\)
\(564\) 0 0
\(565\) 1.79558 0.00317801
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 761.146i 1.33769i 0.743401 + 0.668846i \(0.233211\pi\)
−0.743401 + 0.668846i \(0.766789\pi\)
\(570\) 0 0
\(571\) −412.359 −0.722169 −0.361085 0.932533i \(-0.617593\pi\)
−0.361085 + 0.932533i \(0.617593\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1086.45i 1.88948i
\(576\) 0 0
\(577\) −65.3523 −0.113262 −0.0566311 0.998395i \(-0.518036\pi\)
−0.0566311 + 0.998395i \(0.518036\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 408.095i 0.702401i
\(582\) 0 0
\(583\) 195.107 0.334660
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 782.957i − 1.33383i −0.745134 0.666914i \(-0.767615\pi\)
0.745134 0.666914i \(-0.232385\pi\)
\(588\) 0 0
\(589\) 654.269 1.11081
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 422.167i 0.711917i 0.934502 + 0.355958i \(0.115845\pi\)
−0.934502 + 0.355958i \(0.884155\pi\)
\(594\) 0 0
\(595\) −2086.37 −3.50651
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 255.374i − 0.426334i −0.977016 0.213167i \(-0.931622\pi\)
0.977016 0.213167i \(-0.0683778\pi\)
\(600\) 0 0
\(601\) −1084.17 −1.80395 −0.901976 0.431787i \(-0.857883\pi\)
−0.901976 + 0.431787i \(0.857883\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 92.0144i − 0.152090i
\(606\) 0 0
\(607\) −533.012 −0.878109 −0.439054 0.898460i \(-0.644686\pi\)
−0.439054 + 0.898460i \(0.644686\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1146.60i − 1.87660i
\(612\) 0 0
\(613\) 196.421 0.320426 0.160213 0.987082i \(-0.448782\pi\)
0.160213 + 0.987082i \(0.448782\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 274.696i − 0.445212i −0.974908 0.222606i \(-0.928544\pi\)
0.974908 0.222606i \(-0.0714564\pi\)
\(618\) 0 0
\(619\) 66.3032 0.107113 0.0535567 0.998565i \(-0.482944\pi\)
0.0535567 + 0.998565i \(0.482944\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 483.484i 0.776057i
\(624\) 0 0
\(625\) 273.201 0.437122
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1793.87i 2.85193i
\(630\) 0 0
\(631\) 33.3690 0.0528828 0.0264414 0.999650i \(-0.491582\pi\)
0.0264414 + 0.999650i \(0.491582\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1320.72i 2.07987i
\(636\) 0 0
\(637\) −323.953 −0.508560
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 173.753i 0.271066i 0.990773 + 0.135533i \(0.0432747\pi\)
−0.990773 + 0.135533i \(0.956725\pi\)
\(642\) 0 0
\(643\) 186.297 0.289732 0.144866 0.989451i \(-0.453725\pi\)
0.144866 + 0.989451i \(0.453725\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 389.830i − 0.602519i −0.953542 0.301260i \(-0.902593\pi\)
0.953542 0.301260i \(-0.0974071\pi\)
\(648\) 0 0
\(649\) 255.639 0.393897
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 825.230i 1.26375i 0.775069 + 0.631876i \(0.217715\pi\)
−0.775069 + 0.631876i \(0.782285\pi\)
\(654\) 0 0
\(655\) −789.061 −1.20467
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 889.786i − 1.35021i −0.737723 0.675103i \(-0.764099\pi\)
0.737723 0.675103i \(-0.235901\pi\)
\(660\) 0 0
\(661\) −1178.02 −1.78217 −0.891087 0.453832i \(-0.850057\pi\)
−0.891087 + 0.453832i \(0.850057\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 941.682i − 1.41606i
\(666\) 0 0
\(667\) 208.277 0.312259
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 237.044i 0.353270i
\(672\) 0 0
\(673\) 74.0154 0.109978 0.0549892 0.998487i \(-0.482488\pi\)
0.0549892 + 0.998487i \(0.482488\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 747.194i − 1.10368i −0.833949 0.551842i \(-0.813925\pi\)
0.833949 0.551842i \(-0.186075\pi\)
\(678\) 0 0
\(679\) −361.071 −0.531768
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 522.059i − 0.764362i −0.924087 0.382181i \(-0.875173\pi\)
0.924087 0.382181i \(-0.124827\pi\)
\(684\) 0 0
\(685\) 309.170 0.451344
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1165.79i − 1.69200i
\(690\) 0 0
\(691\) −540.788 −0.782617 −0.391309 0.920260i \(-0.627977\pi\)
−0.391309 + 0.920260i \(0.627977\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 770.722i − 1.10895i
\(696\) 0 0
\(697\) −389.626 −0.559004
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 733.604i 1.04651i 0.852176 + 0.523256i \(0.175283\pi\)
−0.852176 + 0.523256i \(0.824717\pi\)
\(702\) 0 0
\(703\) −809.659 −1.15172
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 842.473i − 1.19162i
\(708\) 0 0
\(709\) 796.503 1.12342 0.561709 0.827335i \(-0.310144\pi\)
0.561709 + 0.827335i \(0.310144\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 1134.99i − 1.59185i
\(714\) 0 0
\(715\) −549.800 −0.768950
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 38.3230i − 0.0533004i −0.999645 0.0266502i \(-0.991516\pi\)
0.999645 0.0266502i \(-0.00848403\pi\)
\(720\) 0 0
\(721\) −226.912 −0.314719
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 387.724i − 0.534792i
\(726\) 0 0
\(727\) −277.210 −0.381307 −0.190654 0.981657i \(-0.561061\pi\)
−0.190654 + 0.981657i \(0.561061\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2012.33i 2.75285i
\(732\) 0 0
\(733\) −554.360 −0.756289 −0.378145 0.925747i \(-0.623438\pi\)
−0.378145 + 0.925747i \(0.623438\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 332.031i 0.450517i
\(738\) 0 0
\(739\) 99.0236 0.133997 0.0669983 0.997753i \(-0.478658\pi\)
0.0669983 + 0.997753i \(0.478658\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1262.93i 1.69977i 0.526966 + 0.849886i \(0.323329\pi\)
−0.526966 + 0.849886i \(0.676671\pi\)
\(744\) 0 0
\(745\) 29.0678 0.0390172
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 113.252i 0.151204i
\(750\) 0 0
\(751\) 831.309 1.10694 0.553468 0.832871i \(-0.313304\pi\)
0.553468 + 0.832871i \(0.313304\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 494.638i − 0.655150i
\(756\) 0 0
\(757\) 435.307 0.575042 0.287521 0.957774i \(-0.407169\pi\)
0.287521 + 0.957774i \(0.407169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1419.98i − 1.86594i −0.359959 0.932968i \(-0.617209\pi\)
0.359959 0.932968i \(-0.382791\pi\)
\(762\) 0 0
\(763\) 560.185 0.734187
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1527.48i − 1.99150i
\(768\) 0 0
\(769\) −650.386 −0.845755 −0.422878 0.906187i \(-0.638980\pi\)
−0.422878 + 0.906187i \(0.638980\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 565.764i − 0.731907i −0.930633 0.365953i \(-0.880743\pi\)
0.930633 0.365953i \(-0.119257\pi\)
\(774\) 0 0
\(775\) −2112.87 −2.72629
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 175.857i − 0.225747i
\(780\) 0 0
\(781\) −81.7200 −0.104635
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2430.24i − 3.09585i
\(786\) 0 0
\(787\) −350.192 −0.444970 −0.222485 0.974936i \(-0.571417\pi\)
−0.222485 + 0.974936i \(0.571417\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.73522i 0.00219370i
\(792\) 0 0
\(793\) 1416.38 1.78610
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1424.25i − 1.78702i −0.449044 0.893510i \(-0.648235\pi\)
0.449044 0.893510i \(-0.351765\pi\)
\(798\) 0 0
\(799\) 1785.19 2.23428
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 127.633i 0.158945i
\(804\) 0 0
\(805\) −1633.58 −2.02929
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 77.3959i 0.0956686i 0.998855 + 0.0478343i \(0.0152319\pi\)
−0.998855 + 0.0478343i \(0.984768\pi\)
\(810\) 0 0
\(811\) 61.4997 0.0758320 0.0379160 0.999281i \(-0.487928\pi\)
0.0379160 + 0.999281i \(0.487928\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2281.55i 2.79945i
\(816\) 0 0
\(817\) −908.263 −1.11170
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 589.940i 0.718562i 0.933229 + 0.359281i \(0.116978\pi\)
−0.933229 + 0.359281i \(0.883022\pi\)
\(822\) 0 0
\(823\) 393.084 0.477623 0.238811 0.971066i \(-0.423242\pi\)
0.238811 + 0.971066i \(0.423242\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 848.031i 1.02543i 0.858559 + 0.512715i \(0.171360\pi\)
−0.858559 + 0.512715i \(0.828640\pi\)
\(828\) 0 0
\(829\) 156.415 0.188680 0.0943398 0.995540i \(-0.469926\pi\)
0.0943398 + 0.995540i \(0.469926\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 504.375i − 0.605492i
\(834\) 0 0
\(835\) 1577.47 1.88918
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1166.87i − 1.39079i −0.718628 0.695395i \(-0.755230\pi\)
0.718628 0.695395i \(-0.244770\pi\)
\(840\) 0 0
\(841\) 766.672 0.911619
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1871.46i 2.21474i
\(846\) 0 0
\(847\) 88.9212 0.104984
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1404.55i 1.65047i
\(852\) 0 0
\(853\) −325.508 −0.381604 −0.190802 0.981629i \(-0.561109\pi\)
−0.190802 + 0.981629i \(0.561109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1584.94i 1.84940i 0.380693 + 0.924701i \(0.375685\pi\)
−0.380693 + 0.924701i \(0.624315\pi\)
\(858\) 0 0
\(859\) −77.1665 −0.0898329 −0.0449165 0.998991i \(-0.514302\pi\)
−0.0449165 + 0.998991i \(0.514302\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 290.286i 0.336369i 0.985756 + 0.168184i \(0.0537904\pi\)
−0.985756 + 0.168184i \(0.946210\pi\)
\(864\) 0 0
\(865\) −739.877 −0.855349
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 35.7455i 0.0411341i
\(870\) 0 0
\(871\) 1983.93 2.27776
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1350.53i 1.54346i
\(876\) 0 0
\(877\) −1401.69 −1.59828 −0.799139 0.601146i \(-0.794711\pi\)
−0.799139 + 0.601146i \(0.794711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 242.922i − 0.275734i −0.990451 0.137867i \(-0.955975\pi\)
0.990451 0.137867i \(-0.0440247\pi\)
\(882\) 0 0
\(883\) −503.337 −0.570031 −0.285015 0.958523i \(-0.591999\pi\)
−0.285015 + 0.958523i \(0.591999\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.3501i 0.0218153i 0.999941 + 0.0109076i \(0.00347208\pi\)
−0.999941 + 0.0109076i \(0.996528\pi\)
\(888\) 0 0
\(889\) −1276.32 −1.43568
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 805.743i 0.902288i
\(894\) 0 0
\(895\) −25.6605 −0.0286709
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 405.047i 0.450553i
\(900\) 0 0
\(901\) 1815.06 2.01450
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 104.059i 0.114982i
\(906\) 0 0
\(907\) −18.4644 −0.0203577 −0.0101788 0.999948i \(-0.503240\pi\)
−0.0101788 + 0.999948i \(0.503240\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 210.717i − 0.231303i −0.993290 0.115652i \(-0.963104\pi\)
0.993290 0.115652i \(-0.0368956\pi\)
\(912\) 0 0
\(913\) −167.434 −0.183389
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 762.536i − 0.831555i
\(918\) 0 0
\(919\) −1208.94 −1.31549 −0.657746 0.753240i \(-0.728490\pi\)
−0.657746 + 0.753240i \(0.728490\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 488.289i 0.529024i
\(924\) 0 0
\(925\) 2614.68 2.82668
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 592.318i − 0.637586i −0.947824 0.318793i \(-0.896722\pi\)
0.947824 0.318793i \(-0.103278\pi\)
\(930\) 0 0
\(931\) 227.649 0.244521
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 856.004i − 0.915512i
\(936\) 0 0
\(937\) −1610.35 −1.71862 −0.859309 0.511456i \(-0.829106\pi\)
−0.859309 + 0.511456i \(0.829106\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 334.091i 0.355038i 0.984117 + 0.177519i \(0.0568072\pi\)
−0.984117 + 0.177519i \(0.943193\pi\)
\(942\) 0 0
\(943\) −305.067 −0.323507
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1384.23i − 1.46170i −0.682538 0.730851i \(-0.739124\pi\)
0.682538 0.730851i \(-0.260876\pi\)
\(948\) 0 0
\(949\) 762.627 0.803611
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1378.46i 1.44645i 0.690615 + 0.723223i \(0.257340\pi\)
−0.690615 + 0.723223i \(0.742660\pi\)
\(954\) 0 0
\(955\) −958.071 −1.00322
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 298.777i 0.311551i
\(960\) 0 0
\(961\) 1246.27 1.29685
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 436.833i 0.452676i
\(966\) 0 0
\(967\) −1296.49 −1.34074 −0.670368 0.742029i \(-0.733864\pi\)
−0.670368 + 0.742029i \(0.733864\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 955.174i − 0.983701i −0.870680 0.491850i \(-0.836321\pi\)
0.870680 0.491850i \(-0.163679\pi\)
\(972\) 0 0
\(973\) 744.813 0.765481
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1295.70i − 1.32620i −0.748529 0.663102i \(-0.769239\pi\)
0.748529 0.663102i \(-0.230761\pi\)
\(978\) 0 0
\(979\) −198.365 −0.202620
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 493.709i 0.502247i 0.967955 + 0.251123i \(0.0808000\pi\)
−0.967955 + 0.251123i \(0.919200\pi\)
\(984\) 0 0
\(985\) 1986.07 2.01632
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1575.60i 1.59313i
\(990\) 0 0
\(991\) 1079.44 1.08924 0.544620 0.838683i \(-0.316674\pi\)
0.544620 + 0.838683i \(0.316674\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 256.965i 0.258256i
\(996\) 0 0
\(997\) −466.892 −0.468297 −0.234149 0.972201i \(-0.575230\pi\)
−0.234149 + 0.972201i \(0.575230\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.3.e.a.89.8 yes 8
3.2 odd 2 inner 396.3.e.a.89.1 8
4.3 odd 2 1584.3.i.c.881.8 8
11.10 odd 2 4356.3.e.f.485.8 8
12.11 even 2 1584.3.i.c.881.1 8
33.32 even 2 4356.3.e.f.485.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.3.e.a.89.1 8 3.2 odd 2 inner
396.3.e.a.89.8 yes 8 1.1 even 1 trivial
1584.3.i.c.881.1 8 12.11 even 2
1584.3.i.c.881.8 8 4.3 odd 2
4356.3.e.f.485.1 8 33.32 even 2
4356.3.e.f.485.8 8 11.10 odd 2