gp: [N,k,chi] = [3920,1,Mod(79,3920)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3920, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 3, 2]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3920.79");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0,0,0,0,2,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3920 Z ) × \left(\mathbb{Z}/3920\mathbb{Z}\right)^\times ( Z / 3 9 2 0 Z ) × .
n n n
981 981 9 8 1
1471 1471 1 4 7 1
3041 3041 3 0 4 1
3137 3137 3 1 3 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
ζ 12 4 \zeta_{12}^{4} ζ 1 2 4
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 3920 , [ χ ] ) S_{1}^{\mathrm{new}}(3920, [\chi]) S 1 n e w ( 3 9 2 0 , [ χ ] ) :
T 3 T_{3} T 3
T3
T 11 T_{11} T 1 1
T11
T 13 2 + 4 T_{13}^{2} + 4 T 1 3 2 + 4
T13^2 + 4
T 41 T_{41} T 4 1
T41
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 T^{4} T 4
T^4
13 13 1 3
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
17 17 1 7
T 4 − 4 T 2 + 16 T^{4} - 4T^{2} + 16 T 4 − 4 T 2 + 1 6
T^4 - 4*T^2 + 16
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 T^{4} T 4
T^4
29 29 2 9
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 T^{4} T 4
T^4
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
T 4 T^{4} T 4
T^4
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
T 4 T^{4} T 4
T^4
59 59 5 9
T 4 T^{4} T 4
T^4
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
T 4 − 4 T 2 + 16 T^{4} - 4T^{2} + 16 T 4 − 4 T 2 + 1 6
T^4 - 4*T^2 + 16
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
T 4 T^{4} T 4
T^4
97 97 9 7
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
show more
show less