Properties

Label 3920.1.bt.f
Level 39203920
Weight 11
Character orbit 3920.bt
Analytic conductor 1.9561.956
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -4, -35, 140
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3920,1,Mod(79,3920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3920, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3920.79"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3920=24572 3920 = 2^{4} \cdot 5 \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3920.bt (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.956334849521.95633484952
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(i,35)\Q(i, \sqrt{35})
Artin image: D4:C6D_4:C_6
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ12q5ζ124q92ζ123q13+2ζ125q17+ζ122q252q29+ζ125q45+2ζ124q65+2ζ125q73+2ζ123q97+O(q100) q - \zeta_{12} q^{5} - \zeta_{12}^{4} q^{9} - 2 \zeta_{12}^{3} q^{13} + 2 \zeta_{12}^{5} q^{17} + \zeta_{12}^{2} q^{25} - 2 q^{29} + \zeta_{12}^{5} q^{45} + 2 \zeta_{12}^{4} q^{65} + 2 \zeta_{12}^{5} q^{73} + \cdots - 2 \zeta_{12}^{3} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q9+2q258q294q652q81+8q85+O(q100) 4 q + 2 q^{9} + 2 q^{25} - 8 q^{29} - 4 q^{65} - 2 q^{81} + 8 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3920Z)×\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times.

nn 981981 14711471 30413041 31373137
χ(n)\chi(n) 11 1-1 ζ124\zeta_{12}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 0 0 −0.866025 0.500000i 0 0 0 0.500000 0.866025i 0
79.2 0 0 0 0.866025 + 0.500000i 0 0 0 0.500000 0.866025i 0
1439.1 0 0 0 −0.866025 + 0.500000i 0 0 0 0.500000 + 0.866025i 0
1439.2 0 0 0 0.866025 0.500000i 0 0 0 0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
35.c odd 2 1 CM by Q(35)\Q(\sqrt{-35})
140.c even 2 1 RM by Q(35)\Q(\sqrt{35})
5.b even 2 1 inner
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
20.d odd 2 1 inner
28.d even 2 1 inner
28.f even 6 1 inner
28.g odd 6 1 inner
35.i odd 6 1 inner
35.j even 6 1 inner
140.p odd 6 1 inner
140.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3920.1.bt.f 4
4.b odd 2 1 CM 3920.1.bt.f 4
5.b even 2 1 inner 3920.1.bt.f 4
7.b odd 2 1 inner 3920.1.bt.f 4
7.c even 3 1 3920.1.j.c 2
7.c even 3 1 inner 3920.1.bt.f 4
7.d odd 6 1 3920.1.j.c 2
7.d odd 6 1 inner 3920.1.bt.f 4
20.d odd 2 1 inner 3920.1.bt.f 4
28.d even 2 1 inner 3920.1.bt.f 4
28.f even 6 1 3920.1.j.c 2
28.f even 6 1 inner 3920.1.bt.f 4
28.g odd 6 1 3920.1.j.c 2
28.g odd 6 1 inner 3920.1.bt.f 4
35.c odd 2 1 CM 3920.1.bt.f 4
35.i odd 6 1 3920.1.j.c 2
35.i odd 6 1 inner 3920.1.bt.f 4
35.j even 6 1 3920.1.j.c 2
35.j even 6 1 inner 3920.1.bt.f 4
140.c even 2 1 RM 3920.1.bt.f 4
140.p odd 6 1 3920.1.j.c 2
140.p odd 6 1 inner 3920.1.bt.f 4
140.s even 6 1 3920.1.j.c 2
140.s even 6 1 inner 3920.1.bt.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3920.1.j.c 2 7.c even 3 1
3920.1.j.c 2 7.d odd 6 1
3920.1.j.c 2 28.f even 6 1
3920.1.j.c 2 28.g odd 6 1
3920.1.j.c 2 35.i odd 6 1
3920.1.j.c 2 35.j even 6 1
3920.1.j.c 2 140.p odd 6 1
3920.1.j.c 2 140.s even 6 1
3920.1.bt.f 4 1.a even 1 1 trivial
3920.1.bt.f 4 4.b odd 2 1 CM
3920.1.bt.f 4 5.b even 2 1 inner
3920.1.bt.f 4 7.b odd 2 1 inner
3920.1.bt.f 4 7.c even 3 1 inner
3920.1.bt.f 4 7.d odd 6 1 inner
3920.1.bt.f 4 20.d odd 2 1 inner
3920.1.bt.f 4 28.d even 2 1 inner
3920.1.bt.f 4 28.f even 6 1 inner
3920.1.bt.f 4 28.g odd 6 1 inner
3920.1.bt.f 4 35.c odd 2 1 CM
3920.1.bt.f 4 35.i odd 6 1 inner
3920.1.bt.f 4 35.j even 6 1 inner
3920.1.bt.f 4 140.c even 2 1 RM
3920.1.bt.f 4 140.p odd 6 1 inner
3920.1.bt.f 4 140.s even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3920,[χ])S_{1}^{\mathrm{new}}(3920, [\chi]):

T3 T_{3} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132+4 T_{13}^{2} + 4 Copy content Toggle raw display
T41 T_{41} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1717 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
show more
show less