Properties

Label 3872.2.a.bd.1.3
Level $3872$
Weight $2$
Character 3872.1
Self dual yes
Analytic conductor $30.918$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3872,2,Mod(1,3872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3872.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,4,0,7,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.65544\) of defining polynomial
Character \(\chi\) \(=\) 3872.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.05137 q^{3} -4.05137 q^{5} +2.25951 q^{7} +6.31088 q^{9} -3.25951 q^{13} -12.3623 q^{15} -1.79186 q^{17} +7.05137 q^{19} +6.89461 q^{21} +2.25951 q^{23} +11.4136 q^{25} +10.1027 q^{27} +7.36226 q^{29} -4.36226 q^{31} -9.15412 q^{35} +1.25951 q^{37} -9.94599 q^{39} +5.10275 q^{41} -2.10275 q^{43} -25.5678 q^{45} -1.74049 q^{47} -1.89461 q^{49} -5.46765 q^{51} -1.94863 q^{53} +21.5164 q^{57} -3.48098 q^{59} +6.00000 q^{61} +14.2595 q^{63} +13.2055 q^{65} -13.6731 q^{67} +6.89461 q^{69} +8.00000 q^{71} +12.8946 q^{73} +34.8273 q^{75} +13.9460 q^{79} +11.8946 q^{81} +8.63510 q^{83} +7.25951 q^{85} +22.4650 q^{87} +12.3109 q^{89} -7.36490 q^{91} -13.3109 q^{93} -28.5678 q^{95} +9.37559 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 4 q^{7} + 7 q^{9} - 7 q^{13} - 16 q^{15} + q^{17} + 12 q^{19} - 4 q^{21} + 4 q^{23} + 4 q^{25} + 12 q^{27} + q^{29} + 8 q^{31} + q^{37} + 4 q^{39} - 3 q^{41} + 12 q^{43} - 19 q^{45} - 8 q^{47}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.05137 1.76171 0.880856 0.473385i \(-0.156968\pi\)
0.880856 + 0.473385i \(0.156968\pi\)
\(4\) 0 0
\(5\) −4.05137 −1.81183 −0.905915 0.423460i \(-0.860815\pi\)
−0.905915 + 0.423460i \(0.860815\pi\)
\(6\) 0 0
\(7\) 2.25951 0.854015 0.427007 0.904248i \(-0.359568\pi\)
0.427007 + 0.904248i \(0.359568\pi\)
\(8\) 0 0
\(9\) 6.31088 2.10363
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.25951 −0.904026 −0.452013 0.892011i \(-0.649294\pi\)
−0.452013 + 0.892011i \(0.649294\pi\)
\(14\) 0 0
\(15\) −12.3623 −3.19192
\(16\) 0 0
\(17\) −1.79186 −0.434591 −0.217295 0.976106i \(-0.569723\pi\)
−0.217295 + 0.976106i \(0.569723\pi\)
\(18\) 0 0
\(19\) 7.05137 1.61770 0.808848 0.588018i \(-0.200091\pi\)
0.808848 + 0.588018i \(0.200091\pi\)
\(20\) 0 0
\(21\) 6.89461 1.50453
\(22\) 0 0
\(23\) 2.25951 0.471141 0.235570 0.971857i \(-0.424304\pi\)
0.235570 + 0.971857i \(0.424304\pi\)
\(24\) 0 0
\(25\) 11.4136 2.28273
\(26\) 0 0
\(27\) 10.1027 1.94427
\(28\) 0 0
\(29\) 7.36226 1.36714 0.683569 0.729886i \(-0.260427\pi\)
0.683569 + 0.729886i \(0.260427\pi\)
\(30\) 0 0
\(31\) −4.36226 −0.783485 −0.391742 0.920075i \(-0.628128\pi\)
−0.391742 + 0.920075i \(0.628128\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.15412 −1.54733
\(36\) 0 0
\(37\) 1.25951 0.207062 0.103531 0.994626i \(-0.466986\pi\)
0.103531 + 0.994626i \(0.466986\pi\)
\(38\) 0 0
\(39\) −9.94599 −1.59263
\(40\) 0 0
\(41\) 5.10275 0.796915 0.398458 0.917187i \(-0.369546\pi\)
0.398458 + 0.917187i \(0.369546\pi\)
\(42\) 0 0
\(43\) −2.10275 −0.320666 −0.160333 0.987063i \(-0.551257\pi\)
−0.160333 + 0.987063i \(0.551257\pi\)
\(44\) 0 0
\(45\) −25.5678 −3.81142
\(46\) 0 0
\(47\) −1.74049 −0.253876 −0.126938 0.991911i \(-0.540515\pi\)
−0.126938 + 0.991911i \(0.540515\pi\)
\(48\) 0 0
\(49\) −1.89461 −0.270659
\(50\) 0 0
\(51\) −5.46765 −0.765624
\(52\) 0 0
\(53\) −1.94863 −0.267664 −0.133832 0.991004i \(-0.542728\pi\)
−0.133832 + 0.991004i \(0.542728\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 21.5164 2.84991
\(58\) 0 0
\(59\) −3.48098 −0.453185 −0.226592 0.973990i \(-0.572759\pi\)
−0.226592 + 0.973990i \(0.572759\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 14.2595 1.79653
\(64\) 0 0
\(65\) 13.2055 1.63794
\(66\) 0 0
\(67\) −13.6731 −1.67044 −0.835220 0.549916i \(-0.814660\pi\)
−0.835220 + 0.549916i \(0.814660\pi\)
\(68\) 0 0
\(69\) 6.89461 0.830014
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 12.8946 1.50920 0.754600 0.656185i \(-0.227831\pi\)
0.754600 + 0.656185i \(0.227831\pi\)
\(74\) 0 0
\(75\) 34.8273 4.02151
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.9460 1.56905 0.784523 0.620100i \(-0.212908\pi\)
0.784523 + 0.620100i \(0.212908\pi\)
\(80\) 0 0
\(81\) 11.8946 1.32162
\(82\) 0 0
\(83\) 8.63510 0.947826 0.473913 0.880572i \(-0.342841\pi\)
0.473913 + 0.880572i \(0.342841\pi\)
\(84\) 0 0
\(85\) 7.25951 0.787404
\(86\) 0 0
\(87\) 22.4650 2.40850
\(88\) 0 0
\(89\) 12.3109 1.30495 0.652476 0.757810i \(-0.273730\pi\)
0.652476 + 0.757810i \(0.273730\pi\)
\(90\) 0 0
\(91\) −7.36490 −0.772051
\(92\) 0 0
\(93\) −13.3109 −1.38027
\(94\) 0 0
\(95\) −28.5678 −2.93099
\(96\) 0 0
\(97\) 9.37559 0.951947 0.475974 0.879460i \(-0.342096\pi\)
0.475974 + 0.879460i \(0.342096\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.58373 −0.356594 −0.178297 0.983977i \(-0.557059\pi\)
−0.178297 + 0.983977i \(0.557059\pi\)
\(102\) 0 0
\(103\) 6.62177 0.652462 0.326231 0.945290i \(-0.394221\pi\)
0.326231 + 0.945290i \(0.394221\pi\)
\(104\) 0 0
\(105\) −27.9327 −2.72595
\(106\) 0 0
\(107\) −1.67314 −0.161749 −0.0808745 0.996724i \(-0.525771\pi\)
−0.0808745 + 0.996724i \(0.525771\pi\)
\(108\) 0 0
\(109\) 13.1922 1.26358 0.631790 0.775140i \(-0.282320\pi\)
0.631790 + 0.775140i \(0.282320\pi\)
\(110\) 0 0
\(111\) 3.84324 0.364784
\(112\) 0 0
\(113\) 0.583727 0.0549125 0.0274562 0.999623i \(-0.491259\pi\)
0.0274562 + 0.999623i \(0.491259\pi\)
\(114\) 0 0
\(115\) −9.15412 −0.853626
\(116\) 0 0
\(117\) −20.5704 −1.90173
\(118\) 0 0
\(119\) −4.04873 −0.371147
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 15.5704 1.40394
\(124\) 0 0
\(125\) −25.9840 −2.32408
\(126\) 0 0
\(127\) 7.48098 0.663830 0.331915 0.943309i \(-0.392305\pi\)
0.331915 + 0.943309i \(0.392305\pi\)
\(128\) 0 0
\(129\) −6.41627 −0.564921
\(130\) 0 0
\(131\) −18.8273 −1.64495 −0.822473 0.568804i \(-0.807406\pi\)
−0.822473 + 0.568804i \(0.807406\pi\)
\(132\) 0 0
\(133\) 15.9327 1.38154
\(134\) 0 0
\(135\) −40.9300 −3.52269
\(136\) 0 0
\(137\) −9.93265 −0.848604 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(138\) 0 0
\(139\) 13.6731 1.15974 0.579870 0.814709i \(-0.303103\pi\)
0.579870 + 0.814709i \(0.303103\pi\)
\(140\) 0 0
\(141\) −5.31088 −0.447257
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −29.8273 −2.47702
\(146\) 0 0
\(147\) −5.78117 −0.476823
\(148\) 0 0
\(149\) 5.53235 0.453228 0.226614 0.973985i \(-0.427234\pi\)
0.226614 + 0.973985i \(0.427234\pi\)
\(150\) 0 0
\(151\) 7.48098 0.608793 0.304397 0.952545i \(-0.401545\pi\)
0.304397 + 0.952545i \(0.401545\pi\)
\(152\) 0 0
\(153\) −11.3082 −0.914217
\(154\) 0 0
\(155\) 17.6731 1.41954
\(156\) 0 0
\(157\) −0.894612 −0.0713978 −0.0356989 0.999363i \(-0.511366\pi\)
−0.0356989 + 0.999363i \(0.511366\pi\)
\(158\) 0 0
\(159\) −5.94599 −0.471547
\(160\) 0 0
\(161\) 5.10539 0.402361
\(162\) 0 0
\(163\) 16.6351 1.30296 0.651481 0.758665i \(-0.274148\pi\)
0.651481 + 0.758665i \(0.274148\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.51902 0.659222 0.329611 0.944117i \(-0.393082\pi\)
0.329611 + 0.944117i \(0.393082\pi\)
\(168\) 0 0
\(169\) −2.37559 −0.182738
\(170\) 0 0
\(171\) 44.5004 3.40303
\(172\) 0 0
\(173\) −16.8273 −1.27935 −0.639677 0.768644i \(-0.720932\pi\)
−0.639677 + 0.768644i \(0.720932\pi\)
\(174\) 0 0
\(175\) 25.7892 1.94948
\(176\) 0 0
\(177\) −10.6218 −0.798381
\(178\) 0 0
\(179\) −21.2702 −1.58981 −0.794905 0.606734i \(-0.792479\pi\)
−0.794905 + 0.606734i \(0.792479\pi\)
\(180\) 0 0
\(181\) 0.673144 0.0500344 0.0250172 0.999687i \(-0.492036\pi\)
0.0250172 + 0.999687i \(0.492036\pi\)
\(182\) 0 0
\(183\) 18.3082 1.35338
\(184\) 0 0
\(185\) −5.10275 −0.375162
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 22.8273 1.66044
\(190\) 0 0
\(191\) −16.5190 −1.19527 −0.597637 0.801767i \(-0.703894\pi\)
−0.597637 + 0.801767i \(0.703894\pi\)
\(192\) 0 0
\(193\) 10.4136 0.749590 0.374795 0.927108i \(-0.377713\pi\)
0.374795 + 0.927108i \(0.377713\pi\)
\(194\) 0 0
\(195\) 40.2949 2.88558
\(196\) 0 0
\(197\) −19.9840 −1.42380 −0.711902 0.702279i \(-0.752166\pi\)
−0.711902 + 0.702279i \(0.752166\pi\)
\(198\) 0 0
\(199\) 14.1027 0.999717 0.499859 0.866107i \(-0.333385\pi\)
0.499859 + 0.866107i \(0.333385\pi\)
\(200\) 0 0
\(201\) −41.7219 −2.94283
\(202\) 0 0
\(203\) 16.6351 1.16756
\(204\) 0 0
\(205\) −20.6731 −1.44387
\(206\) 0 0
\(207\) 14.2595 0.991104
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −13.2435 −0.911723 −0.455861 0.890051i \(-0.650669\pi\)
−0.455861 + 0.890051i \(0.650669\pi\)
\(212\) 0 0
\(213\) 24.4110 1.67261
\(214\) 0 0
\(215\) 8.51902 0.580992
\(216\) 0 0
\(217\) −9.85657 −0.669108
\(218\) 0 0
\(219\) 39.3463 2.65878
\(220\) 0 0
\(221\) 5.84060 0.392881
\(222\) 0 0
\(223\) 10.8273 0.725047 0.362524 0.931975i \(-0.381915\pi\)
0.362524 + 0.931975i \(0.381915\pi\)
\(224\) 0 0
\(225\) 72.0301 4.80201
\(226\) 0 0
\(227\) 23.3463 1.54955 0.774774 0.632239i \(-0.217864\pi\)
0.774774 + 0.632239i \(0.217864\pi\)
\(228\) 0 0
\(229\) −21.6351 −1.42969 −0.714844 0.699284i \(-0.753502\pi\)
−0.714844 + 0.699284i \(0.753502\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.20550 −0.0789747 −0.0394874 0.999220i \(-0.512572\pi\)
−0.0394874 + 0.999220i \(0.512572\pi\)
\(234\) 0 0
\(235\) 7.05137 0.459981
\(236\) 0 0
\(237\) 42.5544 2.76421
\(238\) 0 0
\(239\) −8.04873 −0.520629 −0.260315 0.965524i \(-0.583826\pi\)
−0.260315 + 0.965524i \(0.583826\pi\)
\(240\) 0 0
\(241\) −0.894612 −0.0576270 −0.0288135 0.999585i \(-0.509173\pi\)
−0.0288135 + 0.999585i \(0.509173\pi\)
\(242\) 0 0
\(243\) 5.98667 0.384045
\(244\) 0 0
\(245\) 7.67578 0.490388
\(246\) 0 0
\(247\) −22.9840 −1.46244
\(248\) 0 0
\(249\) 26.3489 1.66980
\(250\) 0 0
\(251\) −22.7112 −1.43352 −0.716759 0.697321i \(-0.754375\pi\)
−0.716759 + 0.697321i \(0.754375\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 22.1515 1.38718
\(256\) 0 0
\(257\) 5.68912 0.354877 0.177439 0.984132i \(-0.443219\pi\)
0.177439 + 0.984132i \(0.443219\pi\)
\(258\) 0 0
\(259\) 2.84588 0.176834
\(260\) 0 0
\(261\) 46.4624 2.87595
\(262\) 0 0
\(263\) −20.0487 −1.23626 −0.618129 0.786077i \(-0.712109\pi\)
−0.618129 + 0.786077i \(0.712109\pi\)
\(264\) 0 0
\(265\) 7.89461 0.484962
\(266\) 0 0
\(267\) 37.5651 2.29895
\(268\) 0 0
\(269\) −0.118720 −0.00723848 −0.00361924 0.999993i \(-0.501152\pi\)
−0.00361924 + 0.999993i \(0.501152\pi\)
\(270\) 0 0
\(271\) −6.62177 −0.402244 −0.201122 0.979566i \(-0.564459\pi\)
−0.201122 + 0.979566i \(0.564459\pi\)
\(272\) 0 0
\(273\) −22.4731 −1.36013
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.19216 −0.432135 −0.216068 0.976378i \(-0.569323\pi\)
−0.216068 + 0.976378i \(0.569323\pi\)
\(278\) 0 0
\(279\) −27.5297 −1.64816
\(280\) 0 0
\(281\) −2.06735 −0.123328 −0.0616638 0.998097i \(-0.519641\pi\)
−0.0616638 + 0.998097i \(0.519641\pi\)
\(282\) 0 0
\(283\) 0.313524 0.0186371 0.00931854 0.999957i \(-0.497034\pi\)
0.00931854 + 0.999957i \(0.497034\pi\)
\(284\) 0 0
\(285\) −87.1709 −5.16356
\(286\) 0 0
\(287\) 11.5297 0.680577
\(288\) 0 0
\(289\) −13.7892 −0.811131
\(290\) 0 0
\(291\) 28.6084 1.67706
\(292\) 0 0
\(293\) −23.2188 −1.35646 −0.678229 0.734850i \(-0.737252\pi\)
−0.678229 + 0.734850i \(0.737252\pi\)
\(294\) 0 0
\(295\) 14.1027 0.821094
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.36490 −0.425923
\(300\) 0 0
\(301\) −4.75118 −0.273854
\(302\) 0 0
\(303\) −10.9353 −0.628216
\(304\) 0 0
\(305\) −24.3082 −1.39189
\(306\) 0 0
\(307\) 25.6731 1.46524 0.732622 0.680636i \(-0.238296\pi\)
0.732622 + 0.680636i \(0.238296\pi\)
\(308\) 0 0
\(309\) 20.2055 1.14945
\(310\) 0 0
\(311\) −27.3463 −1.55067 −0.775333 0.631553i \(-0.782418\pi\)
−0.775333 + 0.631553i \(0.782418\pi\)
\(312\) 0 0
\(313\) 8.62441 0.487480 0.243740 0.969841i \(-0.421626\pi\)
0.243740 + 0.969841i \(0.421626\pi\)
\(314\) 0 0
\(315\) −57.7706 −3.25501
\(316\) 0 0
\(317\) 28.8273 1.61910 0.809550 0.587051i \(-0.199711\pi\)
0.809550 + 0.587051i \(0.199711\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −5.10539 −0.284955
\(322\) 0 0
\(323\) −12.6351 −0.703036
\(324\) 0 0
\(325\) −37.2029 −2.06364
\(326\) 0 0
\(327\) 40.2542 2.22606
\(328\) 0 0
\(329\) −3.93265 −0.216814
\(330\) 0 0
\(331\) 4.51902 0.248388 0.124194 0.992258i \(-0.460366\pi\)
0.124194 + 0.992258i \(0.460366\pi\)
\(332\) 0 0
\(333\) 7.94863 0.435582
\(334\) 0 0
\(335\) 55.3950 3.02655
\(336\) 0 0
\(337\) −27.7599 −1.51218 −0.756090 0.654468i \(-0.772893\pi\)
−0.756090 + 0.654468i \(0.772893\pi\)
\(338\) 0 0
\(339\) 1.78117 0.0967399
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0975 −1.08516
\(344\) 0 0
\(345\) −27.9327 −1.50384
\(346\) 0 0
\(347\) −30.3082 −1.62703 −0.813516 0.581543i \(-0.802449\pi\)
−0.813516 + 0.581543i \(0.802449\pi\)
\(348\) 0 0
\(349\) −2.67314 −0.143090 −0.0715451 0.997437i \(-0.522793\pi\)
−0.0715451 + 0.997437i \(0.522793\pi\)
\(350\) 0 0
\(351\) −32.9300 −1.75767
\(352\) 0 0
\(353\) 19.2055 1.02221 0.511103 0.859520i \(-0.329237\pi\)
0.511103 + 0.859520i \(0.329237\pi\)
\(354\) 0 0
\(355\) −32.4110 −1.72020
\(356\) 0 0
\(357\) −12.3542 −0.653854
\(358\) 0 0
\(359\) −18.7785 −0.991093 −0.495546 0.868581i \(-0.665032\pi\)
−0.495546 + 0.868581i \(0.665032\pi\)
\(360\) 0 0
\(361\) 30.7219 1.61694
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −52.2409 −2.73441
\(366\) 0 0
\(367\) 14.2595 0.744340 0.372170 0.928165i \(-0.378614\pi\)
0.372170 + 0.928165i \(0.378614\pi\)
\(368\) 0 0
\(369\) 32.2029 1.67641
\(370\) 0 0
\(371\) −4.40294 −0.228589
\(372\) 0 0
\(373\) 15.0380 0.778640 0.389320 0.921103i \(-0.372710\pi\)
0.389320 + 0.921103i \(0.372710\pi\)
\(374\) 0 0
\(375\) −79.2870 −4.09436
\(376\) 0 0
\(377\) −23.9974 −1.23593
\(378\) 0 0
\(379\) −30.6218 −1.57293 −0.786467 0.617632i \(-0.788092\pi\)
−0.786467 + 0.617632i \(0.788092\pi\)
\(380\) 0 0
\(381\) 22.8273 1.16948
\(382\) 0 0
\(383\) 19.3463 0.988549 0.494275 0.869306i \(-0.335434\pi\)
0.494275 + 0.869306i \(0.335434\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −13.2702 −0.674562
\(388\) 0 0
\(389\) 4.94599 0.250771 0.125386 0.992108i \(-0.459983\pi\)
0.125386 + 0.992108i \(0.459983\pi\)
\(390\) 0 0
\(391\) −4.04873 −0.204753
\(392\) 0 0
\(393\) −57.4490 −2.89792
\(394\) 0 0
\(395\) −56.5004 −2.84284
\(396\) 0 0
\(397\) 26.4624 1.32811 0.664054 0.747685i \(-0.268834\pi\)
0.664054 + 0.747685i \(0.268834\pi\)
\(398\) 0 0
\(399\) 48.6165 2.43387
\(400\) 0 0
\(401\) −5.72452 −0.285869 −0.142934 0.989732i \(-0.545654\pi\)
−0.142934 + 0.989732i \(0.545654\pi\)
\(402\) 0 0
\(403\) 14.2188 0.708290
\(404\) 0 0
\(405\) −48.1895 −2.39456
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −11.3082 −0.559157 −0.279578 0.960123i \(-0.590195\pi\)
−0.279578 + 0.960123i \(0.590195\pi\)
\(410\) 0 0
\(411\) −30.3082 −1.49500
\(412\) 0 0
\(413\) −7.86531 −0.387027
\(414\) 0 0
\(415\) −34.9840 −1.71730
\(416\) 0 0
\(417\) 41.7219 2.04313
\(418\) 0 0
\(419\) −27.2302 −1.33028 −0.665141 0.746717i \(-0.731629\pi\)
−0.665141 + 0.746717i \(0.731629\pi\)
\(420\) 0 0
\(421\) −38.0868 −1.85624 −0.928118 0.372286i \(-0.878574\pi\)
−0.928118 + 0.372286i \(0.878574\pi\)
\(422\) 0 0
\(423\) −10.9840 −0.534062
\(424\) 0 0
\(425\) −20.4517 −0.992052
\(426\) 0 0
\(427\) 13.5571 0.656072
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.3082 −1.26722 −0.633612 0.773651i \(-0.718428\pi\)
−0.633612 + 0.773651i \(0.718428\pi\)
\(432\) 0 0
\(433\) 18.4136 0.884903 0.442451 0.896792i \(-0.354109\pi\)
0.442451 + 0.896792i \(0.354109\pi\)
\(434\) 0 0
\(435\) −91.0142 −4.36379
\(436\) 0 0
\(437\) 15.9327 0.762162
\(438\) 0 0
\(439\) 11.8432 0.565247 0.282623 0.959231i \(-0.408795\pi\)
0.282623 + 0.959231i \(0.408795\pi\)
\(440\) 0 0
\(441\) −11.9567 −0.569366
\(442\) 0 0
\(443\) 3.48098 0.165386 0.0826932 0.996575i \(-0.473648\pi\)
0.0826932 + 0.996575i \(0.473648\pi\)
\(444\) 0 0
\(445\) −49.8760 −2.36435
\(446\) 0 0
\(447\) 16.8813 0.798457
\(448\) 0 0
\(449\) 35.9974 1.69882 0.849410 0.527733i \(-0.176958\pi\)
0.849410 + 0.527733i \(0.176958\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 22.8273 1.07252
\(454\) 0 0
\(455\) 29.8380 1.39883
\(456\) 0 0
\(457\) −1.58637 −0.0742071 −0.0371036 0.999311i \(-0.511813\pi\)
−0.0371036 + 0.999311i \(0.511813\pi\)
\(458\) 0 0
\(459\) −18.1027 −0.844964
\(460\) 0 0
\(461\) 1.98403 0.0924054 0.0462027 0.998932i \(-0.485288\pi\)
0.0462027 + 0.998932i \(0.485288\pi\)
\(462\) 0 0
\(463\) 2.41627 0.112294 0.0561469 0.998423i \(-0.482118\pi\)
0.0561469 + 0.998423i \(0.482118\pi\)
\(464\) 0 0
\(465\) 53.9274 2.50082
\(466\) 0 0
\(467\) −5.55706 −0.257150 −0.128575 0.991700i \(-0.541040\pi\)
−0.128575 + 0.991700i \(0.541040\pi\)
\(468\) 0 0
\(469\) −30.8946 −1.42658
\(470\) 0 0
\(471\) −2.72980 −0.125782
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 80.4818 3.69276
\(476\) 0 0
\(477\) −12.2976 −0.563066
\(478\) 0 0
\(479\) 2.82727 0.129181 0.0645906 0.997912i \(-0.479426\pi\)
0.0645906 + 0.997912i \(0.479426\pi\)
\(480\) 0 0
\(481\) −4.10539 −0.187190
\(482\) 0 0
\(483\) 15.5784 0.708844
\(484\) 0 0
\(485\) −37.9840 −1.72477
\(486\) 0 0
\(487\) 29.6058 1.34157 0.670783 0.741653i \(-0.265958\pi\)
0.670783 + 0.741653i \(0.265958\pi\)
\(488\) 0 0
\(489\) 50.7599 2.29544
\(490\) 0 0
\(491\) −32.5004 −1.46672 −0.733361 0.679839i \(-0.762050\pi\)
−0.733361 + 0.679839i \(0.762050\pi\)
\(492\) 0 0
\(493\) −13.1922 −0.594145
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.0761 0.810823
\(498\) 0 0
\(499\) −12.9300 −0.578827 −0.289413 0.957204i \(-0.593460\pi\)
−0.289413 + 0.957204i \(0.593460\pi\)
\(500\) 0 0
\(501\) 25.9947 1.16136
\(502\) 0 0
\(503\) 34.1248 1.52155 0.760775 0.649015i \(-0.224819\pi\)
0.760775 + 0.649015i \(0.224819\pi\)
\(504\) 0 0
\(505\) 14.5190 0.646088
\(506\) 0 0
\(507\) −7.24882 −0.321931
\(508\) 0 0
\(509\) −12.0761 −0.535263 −0.267632 0.963521i \(-0.586241\pi\)
−0.267632 + 0.963521i \(0.586241\pi\)
\(510\) 0 0
\(511\) 29.1355 1.28888
\(512\) 0 0
\(513\) 71.2383 3.14525
\(514\) 0 0
\(515\) −26.8273 −1.18215
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −51.3463 −2.25385
\(520\) 0 0
\(521\) −23.7219 −1.03927 −0.519637 0.854387i \(-0.673933\pi\)
−0.519637 + 0.854387i \(0.673933\pi\)
\(522\) 0 0
\(523\) 24.0000 1.04945 0.524723 0.851273i \(-0.324169\pi\)
0.524723 + 0.851273i \(0.324169\pi\)
\(524\) 0 0
\(525\) 78.6926 3.43443
\(526\) 0 0
\(527\) 7.81657 0.340495
\(528\) 0 0
\(529\) −17.8946 −0.778027
\(530\) 0 0
\(531\) −21.9681 −0.953332
\(532\) 0 0
\(533\) −16.6325 −0.720432
\(534\) 0 0
\(535\) 6.77853 0.293061
\(536\) 0 0
\(537\) −64.9034 −2.80079
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 44.7599 1.92438 0.962190 0.272380i \(-0.0878109\pi\)
0.962190 + 0.272380i \(0.0878109\pi\)
\(542\) 0 0
\(543\) 2.05401 0.0881462
\(544\) 0 0
\(545\) −53.4464 −2.28939
\(546\) 0 0
\(547\) −19.4810 −0.832947 −0.416473 0.909148i \(-0.636734\pi\)
−0.416473 + 0.909148i \(0.636734\pi\)
\(548\) 0 0
\(549\) 37.8653 1.61605
\(550\) 0 0
\(551\) 51.9140 2.21161
\(552\) 0 0
\(553\) 31.5111 1.33999
\(554\) 0 0
\(555\) −15.5704 −0.660926
\(556\) 0 0
\(557\) 10.7512 0.455542 0.227771 0.973715i \(-0.426856\pi\)
0.227771 + 0.973715i \(0.426856\pi\)
\(558\) 0 0
\(559\) 6.85393 0.289890
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.116081 0.00489222 0.00244611 0.999997i \(-0.499221\pi\)
0.00244611 + 0.999997i \(0.499221\pi\)
\(564\) 0 0
\(565\) −2.36490 −0.0994920
\(566\) 0 0
\(567\) 26.8760 1.12869
\(568\) 0 0
\(569\) 3.85657 0.161676 0.0808379 0.996727i \(-0.474240\pi\)
0.0808379 + 0.996727i \(0.474240\pi\)
\(570\) 0 0
\(571\) 4.63510 0.193973 0.0969865 0.995286i \(-0.469080\pi\)
0.0969865 + 0.995286i \(0.469080\pi\)
\(572\) 0 0
\(573\) −50.4057 −2.10573
\(574\) 0 0
\(575\) 25.7892 1.07549
\(576\) 0 0
\(577\) −5.97070 −0.248563 −0.124282 0.992247i \(-0.539663\pi\)
−0.124282 + 0.992247i \(0.539663\pi\)
\(578\) 0 0
\(579\) 31.7759 1.32056
\(580\) 0 0
\(581\) 19.5111 0.809457
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 83.3384 3.44562
\(586\) 0 0
\(587\) −18.9433 −0.781876 −0.390938 0.920417i \(-0.627849\pi\)
−0.390938 + 0.920417i \(0.627849\pi\)
\(588\) 0 0
\(589\) −30.7599 −1.26744
\(590\) 0 0
\(591\) −60.9787 −2.50833
\(592\) 0 0
\(593\) −23.6891 −0.972795 −0.486398 0.873738i \(-0.661689\pi\)
−0.486398 + 0.873738i \(0.661689\pi\)
\(594\) 0 0
\(595\) 16.4029 0.672455
\(596\) 0 0
\(597\) 43.0328 1.76121
\(598\) 0 0
\(599\) −4.70245 −0.192137 −0.0960684 0.995375i \(-0.530627\pi\)
−0.0960684 + 0.995375i \(0.530627\pi\)
\(600\) 0 0
\(601\) −5.00000 −0.203954 −0.101977 0.994787i \(-0.532517\pi\)
−0.101977 + 0.994787i \(0.532517\pi\)
\(602\) 0 0
\(603\) −86.2896 −3.51399
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11.8432 0.480702 0.240351 0.970686i \(-0.422737\pi\)
0.240351 + 0.970686i \(0.422737\pi\)
\(608\) 0 0
\(609\) 50.7599 2.05690
\(610\) 0 0
\(611\) 5.67314 0.229511
\(612\) 0 0
\(613\) −43.8087 −1.76941 −0.884707 0.466147i \(-0.845642\pi\)
−0.884707 + 0.466147i \(0.845642\pi\)
\(614\) 0 0
\(615\) −63.0815 −2.54369
\(616\) 0 0
\(617\) 8.65107 0.348279 0.174140 0.984721i \(-0.444286\pi\)
0.174140 + 0.984721i \(0.444286\pi\)
\(618\) 0 0
\(619\) 18.1922 0.731205 0.365602 0.930771i \(-0.380863\pi\)
0.365602 + 0.930771i \(0.380863\pi\)
\(620\) 0 0
\(621\) 22.8273 0.916027
\(622\) 0 0
\(623\) 27.8166 1.11445
\(624\) 0 0
\(625\) 48.2029 1.92811
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.25687 −0.0899873
\(630\) 0 0
\(631\) 43.0107 1.71223 0.856114 0.516786i \(-0.172872\pi\)
0.856114 + 0.516786i \(0.172872\pi\)
\(632\) 0 0
\(633\) −40.4110 −1.60619
\(634\) 0 0
\(635\) −30.3082 −1.20275
\(636\) 0 0
\(637\) 6.17551 0.244683
\(638\) 0 0
\(639\) 50.4871 1.99724
\(640\) 0 0
\(641\) 3.31352 0.130876 0.0654382 0.997857i \(-0.479155\pi\)
0.0654382 + 0.997857i \(0.479155\pi\)
\(642\) 0 0
\(643\) −19.2835 −0.760468 −0.380234 0.924890i \(-0.624157\pi\)
−0.380234 + 0.924890i \(0.624157\pi\)
\(644\) 0 0
\(645\) 25.9947 1.02354
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −30.0761 −1.17877
\(652\) 0 0
\(653\) 44.7599 1.75159 0.875796 0.482682i \(-0.160337\pi\)
0.875796 + 0.482682i \(0.160337\pi\)
\(654\) 0 0
\(655\) 76.2763 2.98036
\(656\) 0 0
\(657\) 81.3764 3.17480
\(658\) 0 0
\(659\) 23.2302 0.904920 0.452460 0.891785i \(-0.350546\pi\)
0.452460 + 0.891785i \(0.350546\pi\)
\(660\) 0 0
\(661\) −14.0868 −0.547912 −0.273956 0.961742i \(-0.588332\pi\)
−0.273956 + 0.961742i \(0.588332\pi\)
\(662\) 0 0
\(663\) 17.8219 0.692143
\(664\) 0 0
\(665\) −64.5491 −2.50311
\(666\) 0 0
\(667\) 16.6351 0.644114
\(668\) 0 0
\(669\) 33.0380 1.27732
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −47.7219 −1.83954 −0.919772 0.392454i \(-0.871626\pi\)
−0.919772 + 0.392454i \(0.871626\pi\)
\(674\) 0 0
\(675\) 115.309 4.43825
\(676\) 0 0
\(677\) 43.7466 1.68132 0.840659 0.541565i \(-0.182168\pi\)
0.840659 + 0.541565i \(0.182168\pi\)
\(678\) 0 0
\(679\) 21.1842 0.812977
\(680\) 0 0
\(681\) 71.2383 2.72986
\(682\) 0 0
\(683\) 19.9814 0.764567 0.382283 0.924045i \(-0.375138\pi\)
0.382283 + 0.924045i \(0.375138\pi\)
\(684\) 0 0
\(685\) 40.2409 1.53753
\(686\) 0 0
\(687\) −66.0168 −2.51870
\(688\) 0 0
\(689\) 6.35157 0.241975
\(690\) 0 0
\(691\) −49.4757 −1.88214 −0.941072 0.338206i \(-0.890180\pi\)
−0.941072 + 0.338206i \(0.890180\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −55.3950 −2.10125
\(696\) 0 0
\(697\) −9.14343 −0.346332
\(698\) 0 0
\(699\) −3.67842 −0.139131
\(700\) 0 0
\(701\) −25.6758 −0.969761 −0.484880 0.874580i \(-0.661137\pi\)
−0.484880 + 0.874580i \(0.661137\pi\)
\(702\) 0 0
\(703\) 8.88128 0.334964
\(704\) 0 0
\(705\) 21.5164 0.810354
\(706\) 0 0
\(707\) −8.09747 −0.304537
\(708\) 0 0
\(709\) −45.5784 −1.71173 −0.855867 0.517196i \(-0.826976\pi\)
−0.855867 + 0.517196i \(0.826976\pi\)
\(710\) 0 0
\(711\) 88.0115 3.30069
\(712\) 0 0
\(713\) −9.85657 −0.369131
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.5597 −0.917199
\(718\) 0 0
\(719\) −18.7785 −0.700321 −0.350161 0.936690i \(-0.613873\pi\)
−0.350161 + 0.936690i \(0.613873\pi\)
\(720\) 0 0
\(721\) 14.9620 0.557212
\(722\) 0 0
\(723\) −2.72980 −0.101522
\(724\) 0 0
\(725\) 84.0301 3.12080
\(726\) 0 0
\(727\) −31.3950 −1.16438 −0.582188 0.813054i \(-0.697803\pi\)
−0.582188 + 0.813054i \(0.697803\pi\)
\(728\) 0 0
\(729\) −17.4163 −0.645047
\(730\) 0 0
\(731\) 3.76784 0.139359
\(732\) 0 0
\(733\) 6.29755 0.232605 0.116303 0.993214i \(-0.462896\pi\)
0.116303 + 0.993214i \(0.462896\pi\)
\(734\) 0 0
\(735\) 23.4217 0.863922
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.6465 0.649136 0.324568 0.945862i \(-0.394781\pi\)
0.324568 + 0.945862i \(0.394781\pi\)
\(740\) 0 0
\(741\) −70.1329 −2.57640
\(742\) 0 0
\(743\) −18.7785 −0.688918 −0.344459 0.938801i \(-0.611938\pi\)
−0.344459 + 0.938801i \(0.611938\pi\)
\(744\) 0 0
\(745\) −22.4136 −0.821172
\(746\) 0 0
\(747\) 54.4951 1.99387
\(748\) 0 0
\(749\) −3.78049 −0.138136
\(750\) 0 0
\(751\) −37.2435 −1.35904 −0.679518 0.733659i \(-0.737811\pi\)
−0.679518 + 0.733659i \(0.737811\pi\)
\(752\) 0 0
\(753\) −69.3003 −2.52544
\(754\) 0 0
\(755\) −30.3082 −1.10303
\(756\) 0 0
\(757\) 16.6058 0.603548 0.301774 0.953379i \(-0.402421\pi\)
0.301774 + 0.953379i \(0.402421\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.2169 −0.950361 −0.475180 0.879888i \(-0.657617\pi\)
−0.475180 + 0.879888i \(0.657617\pi\)
\(762\) 0 0
\(763\) 29.8078 1.07912
\(764\) 0 0
\(765\) 45.8139 1.65641
\(766\) 0 0
\(767\) 11.3463 0.409691
\(768\) 0 0
\(769\) −37.4517 −1.35054 −0.675271 0.737570i \(-0.735973\pi\)
−0.675271 + 0.737570i \(0.735973\pi\)
\(770\) 0 0
\(771\) 17.3596 0.625191
\(772\) 0 0
\(773\) 31.8600 1.14593 0.572963 0.819581i \(-0.305794\pi\)
0.572963 + 0.819581i \(0.305794\pi\)
\(774\) 0 0
\(775\) −49.7892 −1.78848
\(776\) 0 0
\(777\) 8.68384 0.311531
\(778\) 0 0
\(779\) 35.9814 1.28917
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 74.3791 2.65809
\(784\) 0 0
\(785\) 3.62441 0.129361
\(786\) 0 0
\(787\) 33.0380 1.17768 0.588840 0.808250i \(-0.299585\pi\)
0.588840 + 0.808250i \(0.299585\pi\)
\(788\) 0 0
\(789\) −61.1762 −2.17793
\(790\) 0 0
\(791\) 1.31894 0.0468960
\(792\) 0 0
\(793\) −19.5571 −0.694492
\(794\) 0 0
\(795\) 24.0894 0.854364
\(796\) 0 0
\(797\) 6.54569 0.231860 0.115930 0.993257i \(-0.463015\pi\)
0.115930 + 0.993257i \(0.463015\pi\)
\(798\) 0 0
\(799\) 3.11872 0.110332
\(800\) 0 0
\(801\) 77.6926 2.74513
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −20.6838 −0.729009
\(806\) 0 0
\(807\) −0.362259 −0.0127521
\(808\) 0 0
\(809\) −30.2728 −1.06434 −0.532168 0.846639i \(-0.678623\pi\)
−0.532168 + 0.846639i \(0.678623\pi\)
\(810\) 0 0
\(811\) −19.4810 −0.684070 −0.342035 0.939687i \(-0.611116\pi\)
−0.342035 + 0.939687i \(0.611116\pi\)
\(812\) 0 0
\(813\) −20.2055 −0.708638
\(814\) 0 0
\(815\) −67.3950 −2.36074
\(816\) 0 0
\(817\) −14.8273 −0.518740
\(818\) 0 0
\(819\) −46.4790 −1.62411
\(820\) 0 0
\(821\) −40.8273 −1.42488 −0.712441 0.701732i \(-0.752410\pi\)
−0.712441 + 0.701732i \(0.752410\pi\)
\(822\) 0 0
\(823\) −30.8539 −1.07550 −0.537750 0.843104i \(-0.680726\pi\)
−0.537750 + 0.843104i \(0.680726\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.4624 0.537679 0.268840 0.963185i \(-0.413360\pi\)
0.268840 + 0.963185i \(0.413360\pi\)
\(828\) 0 0
\(829\) −40.9140 −1.42100 −0.710502 0.703695i \(-0.751532\pi\)
−0.710502 + 0.703695i \(0.751532\pi\)
\(830\) 0 0
\(831\) −21.9460 −0.761298
\(832\) 0 0
\(833\) 3.39489 0.117626
\(834\) 0 0
\(835\) −34.5137 −1.19440
\(836\) 0 0
\(837\) −44.0708 −1.52331
\(838\) 0 0
\(839\) 4.18343 0.144428 0.0722140 0.997389i \(-0.476994\pi\)
0.0722140 + 0.997389i \(0.476994\pi\)
\(840\) 0 0
\(841\) 25.2029 0.869064
\(842\) 0 0
\(843\) −6.30825 −0.217268
\(844\) 0 0
\(845\) 9.62441 0.331090
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.956679 0.0328331
\(850\) 0 0
\(851\) 2.84588 0.0975554
\(852\) 0 0
\(853\) −35.4243 −1.21291 −0.606453 0.795119i \(-0.707408\pi\)
−0.606453 + 0.795119i \(0.707408\pi\)
\(854\) 0 0
\(855\) −180.288 −6.16571
\(856\) 0 0
\(857\) 22.2055 0.758525 0.379263 0.925289i \(-0.376178\pi\)
0.379263 + 0.925289i \(0.376178\pi\)
\(858\) 0 0
\(859\) 38.6484 1.31867 0.659334 0.751850i \(-0.270838\pi\)
0.659334 + 0.751850i \(0.270838\pi\)
\(860\) 0 0
\(861\) 35.1815 1.19898
\(862\) 0 0
\(863\) −8.33559 −0.283747 −0.141873 0.989885i \(-0.545313\pi\)
−0.141873 + 0.989885i \(0.545313\pi\)
\(864\) 0 0
\(865\) 68.1736 2.31797
\(866\) 0 0
\(867\) −42.0761 −1.42898
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 44.5678 1.51012
\(872\) 0 0
\(873\) 59.1683 2.00254
\(874\) 0 0
\(875\) −58.7112 −1.98480
\(876\) 0 0
\(877\) 20.6731 0.698082 0.349041 0.937107i \(-0.386507\pi\)
0.349041 + 0.937107i \(0.386507\pi\)
\(878\) 0 0
\(879\) −70.8493 −2.38969
\(880\) 0 0
\(881\) 28.5164 0.960741 0.480371 0.877066i \(-0.340502\pi\)
0.480371 + 0.877066i \(0.340502\pi\)
\(882\) 0 0
\(883\) −18.0761 −0.608309 −0.304154 0.952623i \(-0.598374\pi\)
−0.304154 + 0.952623i \(0.598374\pi\)
\(884\) 0 0
\(885\) 43.0328 1.44653
\(886\) 0 0
\(887\) −10.1248 −0.339958 −0.169979 0.985448i \(-0.554370\pi\)
−0.169979 + 0.985448i \(0.554370\pi\)
\(888\) 0 0
\(889\) 16.9034 0.566920
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.2728 −0.410695
\(894\) 0 0
\(895\) 86.1736 2.88046
\(896\) 0 0
\(897\) −22.4731 −0.750354
\(898\) 0 0
\(899\) −32.1161 −1.07113
\(900\) 0 0
\(901\) 3.49167 0.116324
\(902\) 0 0
\(903\) −14.4976 −0.482451
\(904\) 0 0
\(905\) −2.72716 −0.0906538
\(906\) 0 0
\(907\) 15.0328 0.499155 0.249577 0.968355i \(-0.419708\pi\)
0.249577 + 0.968355i \(0.419708\pi\)
\(908\) 0 0
\(909\) −22.6165 −0.750142
\(910\) 0 0
\(911\) −23.7131 −0.785651 −0.392826 0.919613i \(-0.628502\pi\)
−0.392826 + 0.919613i \(0.628502\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −74.1736 −2.45210
\(916\) 0 0
\(917\) −42.5404 −1.40481
\(918\) 0 0
\(919\) −6.38961 −0.210774 −0.105387 0.994431i \(-0.533608\pi\)
−0.105387 + 0.994431i \(0.533608\pi\)
\(920\) 0 0
\(921\) 78.3384 2.58134
\(922\) 0 0
\(923\) −26.0761 −0.858305
\(924\) 0 0
\(925\) 14.3756 0.472667
\(926\) 0 0
\(927\) 41.7892 1.37254
\(928\) 0 0
\(929\) 39.1115 1.28321 0.641603 0.767037i \(-0.278270\pi\)
0.641603 + 0.767037i \(0.278270\pi\)
\(930\) 0 0
\(931\) −13.3596 −0.437844
\(932\) 0 0
\(933\) −83.4438 −2.73183
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −13.6838 −0.447031 −0.223516 0.974700i \(-0.571753\pi\)
−0.223516 + 0.974700i \(0.571753\pi\)
\(938\) 0 0
\(939\) 26.3163 0.858800
\(940\) 0 0
\(941\) 38.2569 1.24714 0.623569 0.781768i \(-0.285682\pi\)
0.623569 + 0.781768i \(0.285682\pi\)
\(942\) 0 0
\(943\) 11.5297 0.375459
\(944\) 0 0
\(945\) −92.4818 −3.00843
\(946\) 0 0
\(947\) −37.9053 −1.23176 −0.615878 0.787841i \(-0.711199\pi\)
−0.615878 + 0.787841i \(0.711199\pi\)
\(948\) 0 0
\(949\) −42.0301 −1.36436
\(950\) 0 0
\(951\) 87.9628 2.85239
\(952\) 0 0
\(953\) −13.7919 −0.446762 −0.223381 0.974731i \(-0.571709\pi\)
−0.223381 + 0.974731i \(0.571709\pi\)
\(954\) 0 0
\(955\) 66.9247 2.16563
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −22.4429 −0.724720
\(960\) 0 0
\(961\) −11.9707 −0.386151
\(962\) 0 0
\(963\) −10.5590 −0.340260
\(964\) 0 0
\(965\) −42.1895 −1.35813
\(966\) 0 0
\(967\) −16.0487 −0.516093 −0.258046 0.966133i \(-0.583079\pi\)
−0.258046 + 0.966133i \(0.583079\pi\)
\(968\) 0 0
\(969\) −38.5544 −1.23855
\(970\) 0 0
\(971\) 33.1541 1.06397 0.531983 0.846755i \(-0.321447\pi\)
0.531983 + 0.846755i \(0.321447\pi\)
\(972\) 0 0
\(973\) 30.8946 0.990436
\(974\) 0 0
\(975\) −113.520 −3.63554
\(976\) 0 0
\(977\) −23.8006 −0.761449 −0.380724 0.924689i \(-0.624325\pi\)
−0.380724 + 0.924689i \(0.624325\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 83.2542 2.65810
\(982\) 0 0
\(983\) −1.78922 −0.0570674 −0.0285337 0.999593i \(-0.509084\pi\)
−0.0285337 + 0.999593i \(0.509084\pi\)
\(984\) 0 0
\(985\) 80.9628 2.57969
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) −4.75118 −0.151079
\(990\) 0 0
\(991\) 27.5784 0.876058 0.438029 0.898961i \(-0.355677\pi\)
0.438029 + 0.898961i \(0.355677\pi\)
\(992\) 0 0
\(993\) 13.7892 0.437588
\(994\) 0 0
\(995\) −57.1355 −1.81132
\(996\) 0 0
\(997\) 33.2595 1.05334 0.526670 0.850070i \(-0.323440\pi\)
0.526670 + 0.850070i \(0.323440\pi\)
\(998\) 0 0
\(999\) 12.7245 0.402586
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.a.bd.1.3 yes 3
4.3 odd 2 3872.2.a.bb.1.1 3
8.3 odd 2 7744.2.a.de.1.3 3
8.5 even 2 7744.2.a.dg.1.1 3
11.10 odd 2 3872.2.a.bc.1.3 yes 3
44.43 even 2 3872.2.a.be.1.1 yes 3
88.21 odd 2 7744.2.a.dd.1.1 3
88.43 even 2 7744.2.a.df.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3872.2.a.bb.1.1 3 4.3 odd 2
3872.2.a.bc.1.3 yes 3 11.10 odd 2
3872.2.a.bd.1.3 yes 3 1.1 even 1 trivial
3872.2.a.be.1.1 yes 3 44.43 even 2
7744.2.a.dd.1.1 3 88.21 odd 2
7744.2.a.de.1.3 3 8.3 odd 2
7744.2.a.df.1.3 3 88.43 even 2
7744.2.a.dg.1.1 3 8.5 even 2