Properties

Label 3871.2.a.e.1.8
Level $3871$
Weight $2$
Character 3871.1
Self dual yes
Analytic conductor $30.910$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,2,Mod(1,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3871.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,3,-3,7,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9100906224\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 7x^{6} + 24x^{5} + 6x^{4} - 40x^{3} + 6x^{2} + 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 553)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.58125\) of defining polynomial
Character \(\chi\) \(=\) 3871.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58125 q^{2} -1.34420 q^{3} +4.66284 q^{4} +0.561042 q^{5} -3.46973 q^{6} +6.87345 q^{8} -1.19311 q^{9} +1.44819 q^{10} -4.22461 q^{11} -6.26781 q^{12} -2.71008 q^{13} -0.754156 q^{15} +8.41639 q^{16} -0.917226 q^{17} -3.07972 q^{18} -6.85309 q^{19} +2.61605 q^{20} -10.9048 q^{22} +0.979795 q^{23} -9.23932 q^{24} -4.68523 q^{25} -6.99538 q^{26} +5.63640 q^{27} -1.52445 q^{29} -1.94666 q^{30} +8.40354 q^{31} +7.97789 q^{32} +5.67874 q^{33} -2.36759 q^{34} -5.56330 q^{36} -9.29422 q^{37} -17.6895 q^{38} +3.64290 q^{39} +3.85629 q^{40} -2.23217 q^{41} -4.72010 q^{43} -19.6987 q^{44} -0.669387 q^{45} +2.52909 q^{46} -10.1995 q^{47} -11.3133 q^{48} -12.0937 q^{50} +1.23294 q^{51} -12.6367 q^{52} +10.1168 q^{53} +14.5490 q^{54} -2.37018 q^{55} +9.21196 q^{57} -3.93499 q^{58} -5.81954 q^{59} -3.51651 q^{60} -1.21993 q^{61} +21.6916 q^{62} +3.76013 q^{64} -1.52047 q^{65} +14.6582 q^{66} +12.6580 q^{67} -4.27688 q^{68} -1.31704 q^{69} -0.171320 q^{71} -8.20080 q^{72} +8.12529 q^{73} -23.9907 q^{74} +6.29791 q^{75} -31.9549 q^{76} +9.40323 q^{78} +1.00000 q^{79} +4.72195 q^{80} -3.99714 q^{81} -5.76178 q^{82} +1.55215 q^{83} -0.514603 q^{85} -12.1837 q^{86} +2.04917 q^{87} -29.0376 q^{88} -12.3567 q^{89} -1.72785 q^{90} +4.56862 q^{92} -11.2961 q^{93} -26.3274 q^{94} -3.84487 q^{95} -10.7239 q^{96} +6.82458 q^{97} +5.04043 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 3 q^{3} + 7 q^{4} - 4 q^{5} - 6 q^{6} + 6 q^{8} - q^{9} - 10 q^{10} + 3 q^{11} - 10 q^{12} - 3 q^{13} + 11 q^{15} + 13 q^{16} - 14 q^{17} + 4 q^{18} - 12 q^{19} - 12 q^{20} - 15 q^{22}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58125 1.82522 0.912609 0.408834i \(-0.134064\pi\)
0.912609 + 0.408834i \(0.134064\pi\)
\(3\) −1.34420 −0.776077 −0.388039 0.921643i \(-0.626847\pi\)
−0.388039 + 0.921643i \(0.626847\pi\)
\(4\) 4.66284 2.33142
\(5\) 0.561042 0.250906 0.125453 0.992100i \(-0.459962\pi\)
0.125453 + 0.992100i \(0.459962\pi\)
\(6\) −3.46973 −1.41651
\(7\) 0 0
\(8\) 6.87345 2.43013
\(9\) −1.19311 −0.397704
\(10\) 1.44819 0.457958
\(11\) −4.22461 −1.27377 −0.636883 0.770960i \(-0.719777\pi\)
−0.636883 + 0.770960i \(0.719777\pi\)
\(12\) −6.26781 −1.80936
\(13\) −2.71008 −0.751640 −0.375820 0.926693i \(-0.622639\pi\)
−0.375820 + 0.926693i \(0.622639\pi\)
\(14\) 0 0
\(15\) −0.754156 −0.194722
\(16\) 8.41639 2.10410
\(17\) −0.917226 −0.222460 −0.111230 0.993795i \(-0.535479\pi\)
−0.111230 + 0.993795i \(0.535479\pi\)
\(18\) −3.07972 −0.725897
\(19\) −6.85309 −1.57221 −0.786104 0.618095i \(-0.787905\pi\)
−0.786104 + 0.618095i \(0.787905\pi\)
\(20\) 2.61605 0.584966
\(21\) 0 0
\(22\) −10.9048 −2.32490
\(23\) 0.979795 0.204301 0.102151 0.994769i \(-0.467428\pi\)
0.102151 + 0.994769i \(0.467428\pi\)
\(24\) −9.23932 −1.88597
\(25\) −4.68523 −0.937046
\(26\) −6.99538 −1.37191
\(27\) 5.63640 1.08473
\(28\) 0 0
\(29\) −1.52445 −0.283083 −0.141542 0.989932i \(-0.545206\pi\)
−0.141542 + 0.989932i \(0.545206\pi\)
\(30\) −1.94666 −0.355410
\(31\) 8.40354 1.50932 0.754660 0.656116i \(-0.227802\pi\)
0.754660 + 0.656116i \(0.227802\pi\)
\(32\) 7.97789 1.41030
\(33\) 5.67874 0.988541
\(34\) −2.36759 −0.406038
\(35\) 0 0
\(36\) −5.56330 −0.927216
\(37\) −9.29422 −1.52796 −0.763980 0.645240i \(-0.776757\pi\)
−0.763980 + 0.645240i \(0.776757\pi\)
\(38\) −17.6895 −2.86962
\(39\) 3.64290 0.583331
\(40\) 3.85629 0.609734
\(41\) −2.23217 −0.348606 −0.174303 0.984692i \(-0.555767\pi\)
−0.174303 + 0.984692i \(0.555767\pi\)
\(42\) 0 0
\(43\) −4.72010 −0.719809 −0.359904 0.932989i \(-0.617191\pi\)
−0.359904 + 0.932989i \(0.617191\pi\)
\(44\) −19.6987 −2.96968
\(45\) −0.669387 −0.0997863
\(46\) 2.52909 0.372894
\(47\) −10.1995 −1.48775 −0.743874 0.668319i \(-0.767014\pi\)
−0.743874 + 0.668319i \(0.767014\pi\)
\(48\) −11.3133 −1.63294
\(49\) 0 0
\(50\) −12.0937 −1.71031
\(51\) 1.23294 0.172646
\(52\) −12.6367 −1.75239
\(53\) 10.1168 1.38965 0.694823 0.719181i \(-0.255483\pi\)
0.694823 + 0.719181i \(0.255483\pi\)
\(54\) 14.5490 1.97986
\(55\) −2.37018 −0.319595
\(56\) 0 0
\(57\) 9.21196 1.22015
\(58\) −3.93499 −0.516689
\(59\) −5.81954 −0.757640 −0.378820 0.925470i \(-0.623670\pi\)
−0.378820 + 0.925470i \(0.623670\pi\)
\(60\) −3.51651 −0.453979
\(61\) −1.21993 −0.156196 −0.0780978 0.996946i \(-0.524885\pi\)
−0.0780978 + 0.996946i \(0.524885\pi\)
\(62\) 21.6916 2.75484
\(63\) 0 0
\(64\) 3.76013 0.470016
\(65\) −1.52047 −0.188591
\(66\) 14.6582 1.80430
\(67\) 12.6580 1.54643 0.773213 0.634146i \(-0.218648\pi\)
0.773213 + 0.634146i \(0.218648\pi\)
\(68\) −4.27688 −0.518648
\(69\) −1.31704 −0.158554
\(70\) 0 0
\(71\) −0.171320 −0.0203319 −0.0101660 0.999948i \(-0.503236\pi\)
−0.0101660 + 0.999948i \(0.503236\pi\)
\(72\) −8.20080 −0.966474
\(73\) 8.12529 0.950994 0.475497 0.879717i \(-0.342268\pi\)
0.475497 + 0.879717i \(0.342268\pi\)
\(74\) −23.9907 −2.78886
\(75\) 6.29791 0.727220
\(76\) −31.9549 −3.66547
\(77\) 0 0
\(78\) 9.40323 1.06471
\(79\) 1.00000 0.112509
\(80\) 4.72195 0.527930
\(81\) −3.99714 −0.444127
\(82\) −5.76178 −0.636282
\(83\) 1.55215 0.170371 0.0851853 0.996365i \(-0.472852\pi\)
0.0851853 + 0.996365i \(0.472852\pi\)
\(84\) 0 0
\(85\) −0.514603 −0.0558165
\(86\) −12.1837 −1.31381
\(87\) 2.04917 0.219695
\(88\) −29.0376 −3.09542
\(89\) −12.3567 −1.30981 −0.654904 0.755712i \(-0.727291\pi\)
−0.654904 + 0.755712i \(0.727291\pi\)
\(90\) −1.72785 −0.182132
\(91\) 0 0
\(92\) 4.56862 0.476312
\(93\) −11.2961 −1.17135
\(94\) −26.3274 −2.71547
\(95\) −3.84487 −0.394476
\(96\) −10.7239 −1.09451
\(97\) 6.82458 0.692931 0.346465 0.938063i \(-0.387382\pi\)
0.346465 + 0.938063i \(0.387382\pi\)
\(98\) 0 0
\(99\) 5.04043 0.506583
\(100\) −21.8465 −2.18465
\(101\) 8.82730 0.878349 0.439175 0.898402i \(-0.355271\pi\)
0.439175 + 0.898402i \(0.355271\pi\)
\(102\) 3.18252 0.315117
\(103\) −7.94651 −0.782993 −0.391497 0.920180i \(-0.628043\pi\)
−0.391497 + 0.920180i \(0.628043\pi\)
\(104\) −18.6276 −1.82658
\(105\) 0 0
\(106\) 26.1139 2.53641
\(107\) 5.60066 0.541436 0.270718 0.962659i \(-0.412739\pi\)
0.270718 + 0.962659i \(0.412739\pi\)
\(108\) 26.2816 2.52895
\(109\) 5.86221 0.561498 0.280749 0.959781i \(-0.409417\pi\)
0.280749 + 0.959781i \(0.409417\pi\)
\(110\) −6.11803 −0.583331
\(111\) 12.4933 1.18581
\(112\) 0 0
\(113\) 16.3186 1.53513 0.767563 0.640974i \(-0.221469\pi\)
0.767563 + 0.640974i \(0.221469\pi\)
\(114\) 23.7783 2.22705
\(115\) 0.549706 0.0512604
\(116\) −7.10827 −0.659986
\(117\) 3.23343 0.298931
\(118\) −15.0217 −1.38286
\(119\) 0 0
\(120\) −5.18365 −0.473200
\(121\) 6.84729 0.622481
\(122\) −3.14893 −0.285091
\(123\) 3.00049 0.270545
\(124\) 39.1843 3.51886
\(125\) −5.43382 −0.486016
\(126\) 0 0
\(127\) −13.6220 −1.20876 −0.604378 0.796698i \(-0.706578\pi\)
−0.604378 + 0.796698i \(0.706578\pi\)
\(128\) −6.24995 −0.552423
\(129\) 6.34478 0.558627
\(130\) −3.92470 −0.344219
\(131\) −11.4611 −1.00136 −0.500681 0.865632i \(-0.666917\pi\)
−0.500681 + 0.865632i \(0.666917\pi\)
\(132\) 26.4790 2.30470
\(133\) 0 0
\(134\) 32.6735 2.82256
\(135\) 3.16226 0.272164
\(136\) −6.30450 −0.540607
\(137\) −22.5078 −1.92297 −0.961487 0.274849i \(-0.911372\pi\)
−0.961487 + 0.274849i \(0.911372\pi\)
\(138\) −3.39962 −0.289395
\(139\) 11.7916 1.00015 0.500076 0.865982i \(-0.333306\pi\)
0.500076 + 0.865982i \(0.333306\pi\)
\(140\) 0 0
\(141\) 13.7102 1.15461
\(142\) −0.442219 −0.0371102
\(143\) 11.4490 0.957414
\(144\) −10.0417 −0.836809
\(145\) −0.855281 −0.0710273
\(146\) 20.9734 1.73577
\(147\) 0 0
\(148\) −43.3374 −3.56232
\(149\) 14.1468 1.15895 0.579475 0.814990i \(-0.303257\pi\)
0.579475 + 0.814990i \(0.303257\pi\)
\(150\) 16.2565 1.32733
\(151\) 12.7365 1.03648 0.518240 0.855235i \(-0.326588\pi\)
0.518240 + 0.855235i \(0.326588\pi\)
\(152\) −47.1044 −3.82067
\(153\) 1.09435 0.0884733
\(154\) 0 0
\(155\) 4.71474 0.378697
\(156\) 16.9863 1.35999
\(157\) −13.1344 −1.04824 −0.524121 0.851644i \(-0.675606\pi\)
−0.524121 + 0.851644i \(0.675606\pi\)
\(158\) 2.58125 0.205353
\(159\) −13.5990 −1.07847
\(160\) 4.47593 0.353854
\(161\) 0 0
\(162\) −10.3176 −0.810628
\(163\) −11.3164 −0.886367 −0.443184 0.896431i \(-0.646151\pi\)
−0.443184 + 0.896431i \(0.646151\pi\)
\(164\) −10.4082 −0.812747
\(165\) 3.18601 0.248031
\(166\) 4.00648 0.310963
\(167\) 3.38556 0.261982 0.130991 0.991384i \(-0.458184\pi\)
0.130991 + 0.991384i \(0.458184\pi\)
\(168\) 0 0
\(169\) −5.65548 −0.435037
\(170\) −1.32832 −0.101877
\(171\) 8.17652 0.625274
\(172\) −22.0091 −1.67818
\(173\) 4.83074 0.367274 0.183637 0.982994i \(-0.441213\pi\)
0.183637 + 0.982994i \(0.441213\pi\)
\(174\) 5.28943 0.400990
\(175\) 0 0
\(176\) −35.5559 −2.68013
\(177\) 7.82266 0.587987
\(178\) −31.8957 −2.39069
\(179\) −4.75159 −0.355151 −0.177575 0.984107i \(-0.556825\pi\)
−0.177575 + 0.984107i \(0.556825\pi\)
\(180\) −3.12124 −0.232644
\(181\) −10.3047 −0.765942 −0.382971 0.923760i \(-0.625099\pi\)
−0.382971 + 0.923760i \(0.625099\pi\)
\(182\) 0 0
\(183\) 1.63983 0.121220
\(184\) 6.73457 0.496479
\(185\) −5.21445 −0.383374
\(186\) −29.1580 −2.13797
\(187\) 3.87492 0.283362
\(188\) −47.5586 −3.46857
\(189\) 0 0
\(190\) −9.92457 −0.720004
\(191\) 17.4521 1.26279 0.631393 0.775463i \(-0.282483\pi\)
0.631393 + 0.775463i \(0.282483\pi\)
\(192\) −5.05438 −0.364769
\(193\) −15.5061 −1.11616 −0.558078 0.829789i \(-0.688461\pi\)
−0.558078 + 0.829789i \(0.688461\pi\)
\(194\) 17.6159 1.26475
\(195\) 2.04382 0.146361
\(196\) 0 0
\(197\) 14.6117 1.04104 0.520519 0.853850i \(-0.325738\pi\)
0.520519 + 0.853850i \(0.325738\pi\)
\(198\) 13.0106 0.924624
\(199\) −5.15119 −0.365158 −0.182579 0.983191i \(-0.558445\pi\)
−0.182579 + 0.983191i \(0.558445\pi\)
\(200\) −32.2037 −2.27714
\(201\) −17.0150 −1.20015
\(202\) 22.7854 1.60318
\(203\) 0 0
\(204\) 5.74900 0.402510
\(205\) −1.25234 −0.0874672
\(206\) −20.5119 −1.42913
\(207\) −1.16901 −0.0812516
\(208\) −22.8091 −1.58152
\(209\) 28.9516 2.00262
\(210\) 0 0
\(211\) 7.02148 0.483378 0.241689 0.970354i \(-0.422299\pi\)
0.241689 + 0.970354i \(0.422299\pi\)
\(212\) 47.1729 3.23985
\(213\) 0.230289 0.0157791
\(214\) 14.4567 0.988239
\(215\) −2.64818 −0.180604
\(216\) 38.7415 2.63603
\(217\) 0 0
\(218\) 15.1318 1.02486
\(219\) −10.9221 −0.738044
\(220\) −11.0518 −0.745111
\(221\) 2.48575 0.167210
\(222\) 32.2484 2.16437
\(223\) 0.413867 0.0277146 0.0138573 0.999904i \(-0.495589\pi\)
0.0138573 + 0.999904i \(0.495589\pi\)
\(224\) 0 0
\(225\) 5.59001 0.372668
\(226\) 42.1224 2.80194
\(227\) −10.8012 −0.716900 −0.358450 0.933549i \(-0.616695\pi\)
−0.358450 + 0.933549i \(0.616695\pi\)
\(228\) 42.9539 2.84469
\(229\) 14.8786 0.983206 0.491603 0.870820i \(-0.336411\pi\)
0.491603 + 0.870820i \(0.336411\pi\)
\(230\) 1.41893 0.0935613
\(231\) 0 0
\(232\) −10.4782 −0.687930
\(233\) −14.4241 −0.944957 −0.472479 0.881342i \(-0.656641\pi\)
−0.472479 + 0.881342i \(0.656641\pi\)
\(234\) 8.34628 0.545614
\(235\) −5.72235 −0.373285
\(236\) −27.1356 −1.76638
\(237\) −1.34420 −0.0873155
\(238\) 0 0
\(239\) −18.8811 −1.22132 −0.610658 0.791894i \(-0.709095\pi\)
−0.610658 + 0.791894i \(0.709095\pi\)
\(240\) −6.34727 −0.409714
\(241\) −24.8942 −1.60357 −0.801787 0.597610i \(-0.796117\pi\)
−0.801787 + 0.597610i \(0.796117\pi\)
\(242\) 17.6746 1.13616
\(243\) −11.5362 −0.740050
\(244\) −5.68832 −0.364157
\(245\) 0 0
\(246\) 7.74501 0.493804
\(247\) 18.5724 1.18173
\(248\) 57.7612 3.66784
\(249\) −2.08641 −0.132221
\(250\) −14.0260 −0.887085
\(251\) 23.4440 1.47977 0.739887 0.672731i \(-0.234879\pi\)
0.739887 + 0.672731i \(0.234879\pi\)
\(252\) 0 0
\(253\) −4.13925 −0.260232
\(254\) −35.1617 −2.20624
\(255\) 0.691731 0.0433179
\(256\) −23.6529 −1.47831
\(257\) −15.0310 −0.937611 −0.468805 0.883302i \(-0.655315\pi\)
−0.468805 + 0.883302i \(0.655315\pi\)
\(258\) 16.3775 1.01962
\(259\) 0 0
\(260\) −7.08970 −0.439684
\(261\) 1.81884 0.112584
\(262\) −29.5840 −1.82771
\(263\) −9.96764 −0.614631 −0.307316 0.951608i \(-0.599431\pi\)
−0.307316 + 0.951608i \(0.599431\pi\)
\(264\) 39.0325 2.40228
\(265\) 5.67594 0.348670
\(266\) 0 0
\(267\) 16.6100 1.01651
\(268\) 59.0224 3.60537
\(269\) 15.9710 0.973770 0.486885 0.873466i \(-0.338133\pi\)
0.486885 + 0.873466i \(0.338133\pi\)
\(270\) 8.16258 0.496759
\(271\) 2.33529 0.141859 0.0709294 0.997481i \(-0.477403\pi\)
0.0709294 + 0.997481i \(0.477403\pi\)
\(272\) −7.71973 −0.468077
\(273\) 0 0
\(274\) −58.0983 −3.50985
\(275\) 19.7933 1.19358
\(276\) −6.14117 −0.369655
\(277\) −18.4986 −1.11147 −0.555737 0.831358i \(-0.687564\pi\)
−0.555737 + 0.831358i \(0.687564\pi\)
\(278\) 30.4371 1.82549
\(279\) −10.0264 −0.600263
\(280\) 0 0
\(281\) −28.1409 −1.67875 −0.839374 0.543554i \(-0.817078\pi\)
−0.839374 + 0.543554i \(0.817078\pi\)
\(282\) 35.3894 2.10741
\(283\) 28.6826 1.70500 0.852501 0.522725i \(-0.175085\pi\)
0.852501 + 0.522725i \(0.175085\pi\)
\(284\) −0.798837 −0.0474023
\(285\) 5.16830 0.306144
\(286\) 29.5527 1.74749
\(287\) 0 0
\(288\) −9.51853 −0.560885
\(289\) −16.1587 −0.950512
\(290\) −2.20769 −0.129640
\(291\) −9.17363 −0.537768
\(292\) 37.8869 2.21716
\(293\) 8.20183 0.479156 0.239578 0.970877i \(-0.422991\pi\)
0.239578 + 0.970877i \(0.422991\pi\)
\(294\) 0 0
\(295\) −3.26501 −0.190096
\(296\) −63.8833 −3.71314
\(297\) −23.8116 −1.38169
\(298\) 36.5164 2.11534
\(299\) −2.65532 −0.153561
\(300\) 29.3661 1.69546
\(301\) 0 0
\(302\) 32.8760 1.89180
\(303\) −11.8657 −0.681667
\(304\) −57.6783 −3.30808
\(305\) −0.684430 −0.0391904
\(306\) 2.82480 0.161483
\(307\) −12.6167 −0.720074 −0.360037 0.932938i \(-0.617236\pi\)
−0.360037 + 0.932938i \(0.617236\pi\)
\(308\) 0 0
\(309\) 10.6817 0.607663
\(310\) 12.1699 0.691204
\(311\) −14.0887 −0.798899 −0.399450 0.916755i \(-0.630799\pi\)
−0.399450 + 0.916755i \(0.630799\pi\)
\(312\) 25.0393 1.41757
\(313\) −29.1629 −1.64839 −0.824193 0.566310i \(-0.808371\pi\)
−0.824193 + 0.566310i \(0.808371\pi\)
\(314\) −33.9032 −1.91327
\(315\) 0 0
\(316\) 4.66284 0.262305
\(317\) −5.78458 −0.324895 −0.162447 0.986717i \(-0.551939\pi\)
−0.162447 + 0.986717i \(0.551939\pi\)
\(318\) −35.1024 −1.96845
\(319\) 6.44020 0.360582
\(320\) 2.10959 0.117930
\(321\) −7.52844 −0.420196
\(322\) 0 0
\(323\) 6.28583 0.349753
\(324\) −18.6380 −1.03545
\(325\) 12.6973 0.704322
\(326\) −29.2104 −1.61781
\(327\) −7.88001 −0.435766
\(328\) −15.3427 −0.847158
\(329\) 0 0
\(330\) 8.22388 0.452710
\(331\) 15.2466 0.838028 0.419014 0.907980i \(-0.362376\pi\)
0.419014 + 0.907980i \(0.362376\pi\)
\(332\) 7.23742 0.397205
\(333\) 11.0891 0.607677
\(334\) 8.73896 0.478174
\(335\) 7.10170 0.388007
\(336\) 0 0
\(337\) −10.1400 −0.552364 −0.276182 0.961105i \(-0.589069\pi\)
−0.276182 + 0.961105i \(0.589069\pi\)
\(338\) −14.5982 −0.794037
\(339\) −21.9356 −1.19138
\(340\) −2.39951 −0.130132
\(341\) −35.5016 −1.92252
\(342\) 21.1056 1.14126
\(343\) 0 0
\(344\) −32.4434 −1.74923
\(345\) −0.738918 −0.0397820
\(346\) 12.4693 0.670355
\(347\) 7.34908 0.394519 0.197260 0.980351i \(-0.436796\pi\)
0.197260 + 0.980351i \(0.436796\pi\)
\(348\) 9.55497 0.512200
\(349\) 28.2606 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(350\) 0 0
\(351\) −15.2751 −0.815324
\(352\) −33.7034 −1.79640
\(353\) 33.4363 1.77963 0.889817 0.456318i \(-0.150832\pi\)
0.889817 + 0.456318i \(0.150832\pi\)
\(354\) 20.1922 1.07320
\(355\) −0.0961177 −0.00510140
\(356\) −57.6174 −3.05371
\(357\) 0 0
\(358\) −12.2650 −0.648227
\(359\) 32.0780 1.69301 0.846505 0.532381i \(-0.178702\pi\)
0.846505 + 0.532381i \(0.178702\pi\)
\(360\) −4.60100 −0.242494
\(361\) 27.9649 1.47184
\(362\) −26.5990 −1.39801
\(363\) −9.20416 −0.483093
\(364\) 0 0
\(365\) 4.55863 0.238610
\(366\) 4.23281 0.221252
\(367\) −6.42446 −0.335354 −0.167677 0.985842i \(-0.553627\pi\)
−0.167677 + 0.985842i \(0.553627\pi\)
\(368\) 8.24633 0.429870
\(369\) 2.66323 0.138642
\(370\) −13.4598 −0.699741
\(371\) 0 0
\(372\) −52.6718 −2.73090
\(373\) −4.79795 −0.248428 −0.124214 0.992255i \(-0.539641\pi\)
−0.124214 + 0.992255i \(0.539641\pi\)
\(374\) 10.0021 0.517197
\(375\) 7.30417 0.377186
\(376\) −70.1057 −3.61542
\(377\) 4.13138 0.212777
\(378\) 0 0
\(379\) 20.4106 1.04842 0.524211 0.851588i \(-0.324360\pi\)
0.524211 + 0.851588i \(0.324360\pi\)
\(380\) −17.9280 −0.919688
\(381\) 18.3107 0.938088
\(382\) 45.0481 2.30486
\(383\) −17.1778 −0.877743 −0.438871 0.898550i \(-0.644622\pi\)
−0.438871 + 0.898550i \(0.644622\pi\)
\(384\) 8.40122 0.428723
\(385\) 0 0
\(386\) −40.0252 −2.03723
\(387\) 5.63162 0.286271
\(388\) 31.8219 1.61551
\(389\) −3.82464 −0.193917 −0.0969584 0.995288i \(-0.530911\pi\)
−0.0969584 + 0.995288i \(0.530911\pi\)
\(390\) 5.27561 0.267141
\(391\) −0.898693 −0.0454489
\(392\) 0 0
\(393\) 15.4061 0.777135
\(394\) 37.7164 1.90012
\(395\) 0.561042 0.0282291
\(396\) 23.5027 1.18106
\(397\) −3.13287 −0.157234 −0.0786170 0.996905i \(-0.525050\pi\)
−0.0786170 + 0.996905i \(0.525050\pi\)
\(398\) −13.2965 −0.666493
\(399\) 0 0
\(400\) −39.4327 −1.97164
\(401\) −15.2722 −0.762660 −0.381330 0.924439i \(-0.624534\pi\)
−0.381330 + 0.924439i \(0.624534\pi\)
\(402\) −43.9199 −2.19053
\(403\) −22.7742 −1.13447
\(404\) 41.1603 2.04780
\(405\) −2.24256 −0.111434
\(406\) 0 0
\(407\) 39.2644 1.94626
\(408\) 8.47454 0.419552
\(409\) 19.6550 0.971878 0.485939 0.873993i \(-0.338478\pi\)
0.485939 + 0.873993i \(0.338478\pi\)
\(410\) −3.23260 −0.159647
\(411\) 30.2551 1.49238
\(412\) −37.0533 −1.82549
\(413\) 0 0
\(414\) −3.01749 −0.148302
\(415\) 0.870822 0.0427469
\(416\) −21.6207 −1.06004
\(417\) −15.8503 −0.776195
\(418\) 74.7313 3.65523
\(419\) −7.11168 −0.347428 −0.173714 0.984796i \(-0.555577\pi\)
−0.173714 + 0.984796i \(0.555577\pi\)
\(420\) 0 0
\(421\) −33.0992 −1.61316 −0.806578 0.591128i \(-0.798683\pi\)
−0.806578 + 0.591128i \(0.798683\pi\)
\(422\) 18.1242 0.882271
\(423\) 12.1692 0.591684
\(424\) 69.5371 3.37702
\(425\) 4.29742 0.208455
\(426\) 0.594433 0.0288004
\(427\) 0 0
\(428\) 26.1150 1.26232
\(429\) −15.3898 −0.743027
\(430\) −6.83560 −0.329642
\(431\) 6.49998 0.313093 0.156547 0.987671i \(-0.449964\pi\)
0.156547 + 0.987671i \(0.449964\pi\)
\(432\) 47.4382 2.28237
\(433\) 28.0215 1.34663 0.673313 0.739357i \(-0.264871\pi\)
0.673313 + 0.739357i \(0.264871\pi\)
\(434\) 0 0
\(435\) 1.14967 0.0551226
\(436\) 27.3345 1.30909
\(437\) −6.71462 −0.321204
\(438\) −28.1925 −1.34709
\(439\) 4.64973 0.221919 0.110960 0.993825i \(-0.464608\pi\)
0.110960 + 0.993825i \(0.464608\pi\)
\(440\) −16.2913 −0.776658
\(441\) 0 0
\(442\) 6.41635 0.305194
\(443\) −4.82223 −0.229111 −0.114555 0.993417i \(-0.536544\pi\)
−0.114555 + 0.993417i \(0.536544\pi\)
\(444\) 58.2544 2.76463
\(445\) −6.93264 −0.328639
\(446\) 1.06829 0.0505852
\(447\) −19.0162 −0.899435
\(448\) 0 0
\(449\) 8.41292 0.397030 0.198515 0.980098i \(-0.436388\pi\)
0.198515 + 0.980098i \(0.436388\pi\)
\(450\) 14.4292 0.680199
\(451\) 9.43002 0.444043
\(452\) 76.0911 3.57902
\(453\) −17.1204 −0.804388
\(454\) −27.8805 −1.30850
\(455\) 0 0
\(456\) 63.3179 2.96513
\(457\) −11.9418 −0.558615 −0.279307 0.960202i \(-0.590105\pi\)
−0.279307 + 0.960202i \(0.590105\pi\)
\(458\) 38.4054 1.79456
\(459\) −5.16986 −0.241308
\(460\) 2.56319 0.119509
\(461\) −37.0289 −1.72461 −0.862304 0.506391i \(-0.830979\pi\)
−0.862304 + 0.506391i \(0.830979\pi\)
\(462\) 0 0
\(463\) 28.8634 1.34140 0.670698 0.741731i \(-0.265995\pi\)
0.670698 + 0.741731i \(0.265995\pi\)
\(464\) −12.8304 −0.595635
\(465\) −6.33757 −0.293898
\(466\) −37.2323 −1.72475
\(467\) 20.8245 0.963641 0.481820 0.876270i \(-0.339976\pi\)
0.481820 + 0.876270i \(0.339976\pi\)
\(468\) 15.0770 0.696933
\(469\) 0 0
\(470\) −14.7708 −0.681326
\(471\) 17.6554 0.813517
\(472\) −40.0003 −1.84116
\(473\) 19.9406 0.916868
\(474\) −3.46973 −0.159370
\(475\) 32.1083 1.47323
\(476\) 0 0
\(477\) −12.0705 −0.552668
\(478\) −48.7368 −2.22917
\(479\) −11.0241 −0.503702 −0.251851 0.967766i \(-0.581039\pi\)
−0.251851 + 0.967766i \(0.581039\pi\)
\(480\) −6.01657 −0.274618
\(481\) 25.1881 1.14848
\(482\) −64.2580 −2.92687
\(483\) 0 0
\(484\) 31.9278 1.45126
\(485\) 3.82888 0.173860
\(486\) −29.7779 −1.35075
\(487\) 10.3815 0.470431 0.235215 0.971943i \(-0.424420\pi\)
0.235215 + 0.971943i \(0.424420\pi\)
\(488\) −8.38510 −0.379576
\(489\) 15.2115 0.687889
\(490\) 0 0
\(491\) 36.7965 1.66060 0.830301 0.557316i \(-0.188169\pi\)
0.830301 + 0.557316i \(0.188169\pi\)
\(492\) 13.9908 0.630754
\(493\) 1.39827 0.0629747
\(494\) 47.9400 2.15692
\(495\) 2.82790 0.127104
\(496\) 70.7274 3.17575
\(497\) 0 0
\(498\) −5.38553 −0.241332
\(499\) 39.9364 1.78780 0.893899 0.448269i \(-0.147959\pi\)
0.893899 + 0.448269i \(0.147959\pi\)
\(500\) −25.3370 −1.13311
\(501\) −4.55088 −0.203318
\(502\) 60.5149 2.70091
\(503\) −34.2923 −1.52902 −0.764508 0.644614i \(-0.777018\pi\)
−0.764508 + 0.644614i \(0.777018\pi\)
\(504\) 0 0
\(505\) 4.95249 0.220383
\(506\) −10.6844 −0.474980
\(507\) 7.60212 0.337622
\(508\) −63.5171 −2.81812
\(509\) 5.88004 0.260628 0.130314 0.991473i \(-0.458401\pi\)
0.130314 + 0.991473i \(0.458401\pi\)
\(510\) 1.78553 0.0790646
\(511\) 0 0
\(512\) −48.5542 −2.14581
\(513\) −38.6268 −1.70541
\(514\) −38.7988 −1.71134
\(515\) −4.45833 −0.196457
\(516\) 29.5847 1.30239
\(517\) 43.0888 1.89504
\(518\) 0 0
\(519\) −6.49350 −0.285033
\(520\) −10.4509 −0.458300
\(521\) 29.6440 1.29873 0.649363 0.760479i \(-0.275036\pi\)
0.649363 + 0.760479i \(0.275036\pi\)
\(522\) 4.69488 0.205489
\(523\) 41.9543 1.83454 0.917268 0.398271i \(-0.130390\pi\)
0.917268 + 0.398271i \(0.130390\pi\)
\(524\) −53.4414 −2.33460
\(525\) 0 0
\(526\) −25.7290 −1.12184
\(527\) −7.70794 −0.335763
\(528\) 47.7944 2.07999
\(529\) −22.0400 −0.958261
\(530\) 14.6510 0.636399
\(531\) 6.94338 0.301317
\(532\) 0 0
\(533\) 6.04935 0.262026
\(534\) 42.8744 1.85536
\(535\) 3.14221 0.135850
\(536\) 87.0044 3.75802
\(537\) 6.38711 0.275624
\(538\) 41.2252 1.77734
\(539\) 0 0
\(540\) 14.7451 0.634529
\(541\) −21.0921 −0.906822 −0.453411 0.891302i \(-0.649793\pi\)
−0.453411 + 0.891302i \(0.649793\pi\)
\(542\) 6.02796 0.258923
\(543\) 13.8516 0.594430
\(544\) −7.31753 −0.313736
\(545\) 3.28895 0.140883
\(546\) 0 0
\(547\) 29.7466 1.27187 0.635936 0.771742i \(-0.280614\pi\)
0.635936 + 0.771742i \(0.280614\pi\)
\(548\) −104.950 −4.48326
\(549\) 1.45551 0.0621197
\(550\) 51.0913 2.17854
\(551\) 10.4472 0.445066
\(552\) −9.05264 −0.385306
\(553\) 0 0
\(554\) −47.7495 −2.02868
\(555\) 7.00929 0.297528
\(556\) 54.9824 2.33177
\(557\) −0.784565 −0.0332431 −0.0166215 0.999862i \(-0.505291\pi\)
−0.0166215 + 0.999862i \(0.505291\pi\)
\(558\) −25.8805 −1.09561
\(559\) 12.7918 0.541037
\(560\) 0 0
\(561\) −5.20868 −0.219911
\(562\) −72.6387 −3.06408
\(563\) 36.5778 1.54157 0.770786 0.637095i \(-0.219864\pi\)
0.770786 + 0.637095i \(0.219864\pi\)
\(564\) 63.9285 2.69187
\(565\) 9.15543 0.385172
\(566\) 74.0368 3.11200
\(567\) 0 0
\(568\) −1.17756 −0.0494093
\(569\) 13.7388 0.575959 0.287979 0.957637i \(-0.407017\pi\)
0.287979 + 0.957637i \(0.407017\pi\)
\(570\) 13.3407 0.558779
\(571\) −41.9699 −1.75639 −0.878194 0.478305i \(-0.841251\pi\)
−0.878194 + 0.478305i \(0.841251\pi\)
\(572\) 53.3849 2.23213
\(573\) −23.4591 −0.980020
\(574\) 0 0
\(575\) −4.59057 −0.191440
\(576\) −4.48626 −0.186927
\(577\) −14.7980 −0.616047 −0.308024 0.951379i \(-0.599668\pi\)
−0.308024 + 0.951379i \(0.599668\pi\)
\(578\) −41.7096 −1.73489
\(579\) 20.8434 0.866223
\(580\) −3.98804 −0.165594
\(581\) 0 0
\(582\) −23.6794 −0.981543
\(583\) −42.7394 −1.77008
\(584\) 55.8488 2.31104
\(585\) 1.81409 0.0750034
\(586\) 21.1710 0.874564
\(587\) −9.60442 −0.396417 −0.198208 0.980160i \(-0.563512\pi\)
−0.198208 + 0.980160i \(0.563512\pi\)
\(588\) 0 0
\(589\) −57.5902 −2.37296
\(590\) −8.42780 −0.346967
\(591\) −19.6411 −0.807926
\(592\) −78.2237 −3.21498
\(593\) 20.1858 0.828931 0.414465 0.910065i \(-0.363969\pi\)
0.414465 + 0.910065i \(0.363969\pi\)
\(594\) −61.4636 −2.52188
\(595\) 0 0
\(596\) 65.9642 2.70200
\(597\) 6.92425 0.283391
\(598\) −6.85404 −0.280282
\(599\) −5.62946 −0.230014 −0.115007 0.993365i \(-0.536689\pi\)
−0.115007 + 0.993365i \(0.536689\pi\)
\(600\) 43.2883 1.76724
\(601\) −32.3588 −1.31994 −0.659971 0.751291i \(-0.729431\pi\)
−0.659971 + 0.751291i \(0.729431\pi\)
\(602\) 0 0
\(603\) −15.1025 −0.615021
\(604\) 59.3881 2.41647
\(605\) 3.84162 0.156184
\(606\) −30.6283 −1.24419
\(607\) −20.5879 −0.835638 −0.417819 0.908530i \(-0.637205\pi\)
−0.417819 + 0.908530i \(0.637205\pi\)
\(608\) −54.6732 −2.21729
\(609\) 0 0
\(610\) −1.76668 −0.0715309
\(611\) 27.6414 1.11825
\(612\) 5.10280 0.206268
\(613\) −16.5257 −0.667467 −0.333734 0.942667i \(-0.608309\pi\)
−0.333734 + 0.942667i \(0.608309\pi\)
\(614\) −32.5669 −1.31429
\(615\) 1.68340 0.0678813
\(616\) 0 0
\(617\) −32.6876 −1.31595 −0.657976 0.753039i \(-0.728587\pi\)
−0.657976 + 0.753039i \(0.728587\pi\)
\(618\) 27.5722 1.10912
\(619\) 29.2252 1.17466 0.587331 0.809347i \(-0.300179\pi\)
0.587331 + 0.809347i \(0.300179\pi\)
\(620\) 21.9841 0.882901
\(621\) 5.52252 0.221611
\(622\) −36.3665 −1.45816
\(623\) 0 0
\(624\) 30.6601 1.22738
\(625\) 20.3776 0.815102
\(626\) −75.2767 −3.00866
\(627\) −38.9169 −1.55419
\(628\) −61.2438 −2.44389
\(629\) 8.52490 0.339910
\(630\) 0 0
\(631\) −30.7169 −1.22282 −0.611409 0.791314i \(-0.709397\pi\)
−0.611409 + 0.791314i \(0.709397\pi\)
\(632\) 6.87345 0.273411
\(633\) −9.43830 −0.375139
\(634\) −14.9314 −0.593003
\(635\) −7.64251 −0.303284
\(636\) −63.4100 −2.51437
\(637\) 0 0
\(638\) 16.6238 0.658141
\(639\) 0.204404 0.00808610
\(640\) −3.50649 −0.138606
\(641\) −24.0275 −0.949028 −0.474514 0.880248i \(-0.657376\pi\)
−0.474514 + 0.880248i \(0.657376\pi\)
\(642\) −19.4328 −0.766950
\(643\) 43.9357 1.73266 0.866328 0.499476i \(-0.166474\pi\)
0.866328 + 0.499476i \(0.166474\pi\)
\(644\) 0 0
\(645\) 3.55969 0.140163
\(646\) 16.2253 0.638376
\(647\) −15.5049 −0.609561 −0.304780 0.952423i \(-0.598583\pi\)
−0.304780 + 0.952423i \(0.598583\pi\)
\(648\) −27.4741 −1.07929
\(649\) 24.5853 0.965057
\(650\) 32.7750 1.28554
\(651\) 0 0
\(652\) −52.7664 −2.06649
\(653\) 6.34795 0.248415 0.124207 0.992256i \(-0.460361\pi\)
0.124207 + 0.992256i \(0.460361\pi\)
\(654\) −20.3403 −0.795367
\(655\) −6.43017 −0.251248
\(656\) −18.7868 −0.733501
\(657\) −9.69440 −0.378214
\(658\) 0 0
\(659\) −37.9331 −1.47766 −0.738832 0.673890i \(-0.764622\pi\)
−0.738832 + 0.673890i \(0.764622\pi\)
\(660\) 14.8559 0.578263
\(661\) −26.4586 −1.02912 −0.514561 0.857454i \(-0.672045\pi\)
−0.514561 + 0.857454i \(0.672045\pi\)
\(662\) 39.3552 1.52958
\(663\) −3.34136 −0.129768
\(664\) 10.6686 0.414023
\(665\) 0 0
\(666\) 28.6236 1.10914
\(667\) −1.49365 −0.0578343
\(668\) 15.7863 0.610790
\(669\) −0.556323 −0.0215087
\(670\) 18.3312 0.708198
\(671\) 5.15371 0.198957
\(672\) 0 0
\(673\) −7.42610 −0.286255 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(674\) −26.1740 −1.00818
\(675\) −26.4079 −1.01644
\(676\) −26.3706 −1.01425
\(677\) −43.3125 −1.66463 −0.832317 0.554300i \(-0.812986\pi\)
−0.832317 + 0.554300i \(0.812986\pi\)
\(678\) −56.6211 −2.17452
\(679\) 0 0
\(680\) −3.53709 −0.135641
\(681\) 14.5190 0.556369
\(682\) −91.6385 −3.50902
\(683\) −13.4607 −0.515059 −0.257530 0.966270i \(-0.582909\pi\)
−0.257530 + 0.966270i \(0.582909\pi\)
\(684\) 38.1258 1.45778
\(685\) −12.6278 −0.482485
\(686\) 0 0
\(687\) −19.9999 −0.763043
\(688\) −39.7262 −1.51455
\(689\) −27.4172 −1.04451
\(690\) −1.90733 −0.0726108
\(691\) −32.7765 −1.24688 −0.623438 0.781873i \(-0.714265\pi\)
−0.623438 + 0.781873i \(0.714265\pi\)
\(692\) 22.5249 0.856270
\(693\) 0 0
\(694\) 18.9698 0.720083
\(695\) 6.61559 0.250944
\(696\) 14.0849 0.533886
\(697\) 2.04740 0.0775509
\(698\) 72.9476 2.76111
\(699\) 19.3890 0.733359
\(700\) 0 0
\(701\) 37.6433 1.42177 0.710884 0.703309i \(-0.248295\pi\)
0.710884 + 0.703309i \(0.248295\pi\)
\(702\) −39.4288 −1.48814
\(703\) 63.6941 2.40227
\(704\) −15.8851 −0.598691
\(705\) 7.69201 0.289698
\(706\) 86.3073 3.24822
\(707\) 0 0
\(708\) 36.4758 1.37084
\(709\) 26.4030 0.991585 0.495793 0.868441i \(-0.334878\pi\)
0.495793 + 0.868441i \(0.334878\pi\)
\(710\) −0.248104 −0.00931116
\(711\) −1.19311 −0.0447452
\(712\) −84.9332 −3.18301
\(713\) 8.23374 0.308356
\(714\) 0 0
\(715\) 6.42338 0.240221
\(716\) −22.1559 −0.828005
\(717\) 25.3800 0.947835
\(718\) 82.8012 3.09011
\(719\) −15.7490 −0.587340 −0.293670 0.955907i \(-0.594877\pi\)
−0.293670 + 0.955907i \(0.594877\pi\)
\(720\) −5.63382 −0.209960
\(721\) 0 0
\(722\) 72.1843 2.68642
\(723\) 33.4628 1.24450
\(724\) −48.0491 −1.78573
\(725\) 7.14241 0.265262
\(726\) −23.7582 −0.881750
\(727\) 28.3361 1.05093 0.525463 0.850816i \(-0.323892\pi\)
0.525463 + 0.850816i \(0.323892\pi\)
\(728\) 0 0
\(729\) 27.4985 1.01846
\(730\) 11.7670 0.435515
\(731\) 4.32940 0.160129
\(732\) 7.64627 0.282614
\(733\) −23.7282 −0.876421 −0.438210 0.898872i \(-0.644388\pi\)
−0.438210 + 0.898872i \(0.644388\pi\)
\(734\) −16.5831 −0.612094
\(735\) 0 0
\(736\) 7.81669 0.288127
\(737\) −53.4752 −1.96979
\(738\) 6.87445 0.253052
\(739\) 7.34954 0.270357 0.135179 0.990821i \(-0.456839\pi\)
0.135179 + 0.990821i \(0.456839\pi\)
\(740\) −24.3141 −0.893805
\(741\) −24.9651 −0.917117
\(742\) 0 0
\(743\) 43.1316 1.58234 0.791172 0.611594i \(-0.209471\pi\)
0.791172 + 0.611594i \(0.209471\pi\)
\(744\) −77.6429 −2.84653
\(745\) 7.93695 0.290787
\(746\) −12.3847 −0.453436
\(747\) −1.85189 −0.0677571
\(748\) 18.0681 0.660636
\(749\) 0 0
\(750\) 18.8539 0.688446
\(751\) 17.1766 0.626785 0.313392 0.949624i \(-0.398535\pi\)
0.313392 + 0.949624i \(0.398535\pi\)
\(752\) −85.8429 −3.13037
\(753\) −31.5136 −1.14842
\(754\) 10.6641 0.388364
\(755\) 7.14570 0.260059
\(756\) 0 0
\(757\) 21.6086 0.785379 0.392689 0.919671i \(-0.371545\pi\)
0.392689 + 0.919671i \(0.371545\pi\)
\(758\) 52.6848 1.91360
\(759\) 5.56399 0.201960
\(760\) −26.4275 −0.958627
\(761\) −31.6890 −1.14873 −0.574363 0.818601i \(-0.694750\pi\)
−0.574363 + 0.818601i \(0.694750\pi\)
\(762\) 47.2646 1.71221
\(763\) 0 0
\(764\) 81.3762 2.94409
\(765\) 0.613979 0.0221985
\(766\) −44.3401 −1.60207
\(767\) 15.7714 0.569473
\(768\) 31.7944 1.14728
\(769\) 4.99916 0.180274 0.0901371 0.995929i \(-0.471269\pi\)
0.0901371 + 0.995929i \(0.471269\pi\)
\(770\) 0 0
\(771\) 20.2048 0.727658
\(772\) −72.3026 −2.60223
\(773\) −1.86671 −0.0671410 −0.0335705 0.999436i \(-0.510688\pi\)
−0.0335705 + 0.999436i \(0.510688\pi\)
\(774\) 14.5366 0.522507
\(775\) −39.3725 −1.41430
\(776\) 46.9084 1.68391
\(777\) 0 0
\(778\) −9.87233 −0.353940
\(779\) 15.2972 0.548081
\(780\) 9.53001 0.341229
\(781\) 0.723759 0.0258981
\(782\) −2.31975 −0.0829541
\(783\) −8.59242 −0.307068
\(784\) 0 0
\(785\) −7.36897 −0.263010
\(786\) 39.7669 1.41844
\(787\) −19.1046 −0.681005 −0.340502 0.940244i \(-0.610597\pi\)
−0.340502 + 0.940244i \(0.610597\pi\)
\(788\) 68.1319 2.42710
\(789\) 13.3986 0.477001
\(790\) 1.44819 0.0515242
\(791\) 0 0
\(792\) 34.6451 1.23106
\(793\) 3.30610 0.117403
\(794\) −8.08670 −0.286986
\(795\) −7.62962 −0.270595
\(796\) −24.0192 −0.851336
\(797\) −9.33694 −0.330731 −0.165366 0.986232i \(-0.552880\pi\)
−0.165366 + 0.986232i \(0.552880\pi\)
\(798\) 0 0
\(799\) 9.35524 0.330965
\(800\) −37.3783 −1.32152
\(801\) 14.7430 0.520917
\(802\) −39.4215 −1.39202
\(803\) −34.3262 −1.21134
\(804\) −79.3382 −2.79804
\(805\) 0 0
\(806\) −58.7859 −2.07065
\(807\) −21.4683 −0.755721
\(808\) 60.6740 2.13450
\(809\) −45.7286 −1.60773 −0.803865 0.594812i \(-0.797227\pi\)
−0.803865 + 0.594812i \(0.797227\pi\)
\(810\) −5.78861 −0.203391
\(811\) −12.0671 −0.423732 −0.211866 0.977299i \(-0.567954\pi\)
−0.211866 + 0.977299i \(0.567954\pi\)
\(812\) 0 0
\(813\) −3.13911 −0.110093
\(814\) 101.351 3.55236
\(815\) −6.34897 −0.222395
\(816\) 10.3769 0.363264
\(817\) 32.3473 1.13169
\(818\) 50.7344 1.77389
\(819\) 0 0
\(820\) −5.83946 −0.203923
\(821\) −46.2328 −1.61354 −0.806768 0.590869i \(-0.798785\pi\)
−0.806768 + 0.590869i \(0.798785\pi\)
\(822\) 78.0960 2.72391
\(823\) 3.51542 0.122540 0.0612700 0.998121i \(-0.480485\pi\)
0.0612700 + 0.998121i \(0.480485\pi\)
\(824\) −54.6199 −1.90278
\(825\) −26.6062 −0.926309
\(826\) 0 0
\(827\) 52.1132 1.81216 0.906078 0.423112i \(-0.139062\pi\)
0.906078 + 0.423112i \(0.139062\pi\)
\(828\) −5.45089 −0.189431
\(829\) −14.2537 −0.495051 −0.247526 0.968881i \(-0.579617\pi\)
−0.247526 + 0.968881i \(0.579617\pi\)
\(830\) 2.24781 0.0780225
\(831\) 24.8659 0.862589
\(832\) −10.1902 −0.353283
\(833\) 0 0
\(834\) −40.9137 −1.41672
\(835\) 1.89944 0.0657328
\(836\) 134.997 4.66896
\(837\) 47.3657 1.63720
\(838\) −18.3570 −0.634132
\(839\) −44.8944 −1.54993 −0.774964 0.632006i \(-0.782232\pi\)
−0.774964 + 0.632006i \(0.782232\pi\)
\(840\) 0 0
\(841\) −26.6760 −0.919864
\(842\) −85.4372 −2.94436
\(843\) 37.8272 1.30284
\(844\) 32.7400 1.12696
\(845\) −3.17296 −0.109153
\(846\) 31.4116 1.07995
\(847\) 0 0
\(848\) 85.1467 2.92395
\(849\) −38.5553 −1.32321
\(850\) 11.0927 0.380476
\(851\) −9.10643 −0.312164
\(852\) 1.07380 0.0367878
\(853\) −11.8835 −0.406885 −0.203442 0.979087i \(-0.565213\pi\)
−0.203442 + 0.979087i \(0.565213\pi\)
\(854\) 0 0
\(855\) 4.58737 0.156885
\(856\) 38.4959 1.31576
\(857\) 40.9638 1.39930 0.699649 0.714487i \(-0.253340\pi\)
0.699649 + 0.714487i \(0.253340\pi\)
\(858\) −39.7249 −1.35619
\(859\) 48.4730 1.65388 0.826938 0.562292i \(-0.190080\pi\)
0.826938 + 0.562292i \(0.190080\pi\)
\(860\) −12.3480 −0.421064
\(861\) 0 0
\(862\) 16.7781 0.571463
\(863\) 17.0772 0.581314 0.290657 0.956827i \(-0.406126\pi\)
0.290657 + 0.956827i \(0.406126\pi\)
\(864\) 44.9666 1.52979
\(865\) 2.71025 0.0921512
\(866\) 72.3304 2.45789
\(867\) 21.7206 0.737670
\(868\) 0 0
\(869\) −4.22461 −0.143310
\(870\) 2.96759 0.100611
\(871\) −34.3043 −1.16236
\(872\) 40.2936 1.36451
\(873\) −8.14250 −0.275582
\(874\) −17.3321 −0.586267
\(875\) 0 0
\(876\) −50.9278 −1.72069
\(877\) −38.9785 −1.31621 −0.658106 0.752926i \(-0.728642\pi\)
−0.658106 + 0.752926i \(0.728642\pi\)
\(878\) 12.0021 0.405051
\(879\) −11.0249 −0.371862
\(880\) −19.9484 −0.672459
\(881\) −8.10231 −0.272974 −0.136487 0.990642i \(-0.543581\pi\)
−0.136487 + 0.990642i \(0.543581\pi\)
\(882\) 0 0
\(883\) −9.89363 −0.332947 −0.166474 0.986046i \(-0.553238\pi\)
−0.166474 + 0.986046i \(0.553238\pi\)
\(884\) 11.5907 0.389836
\(885\) 4.38884 0.147529
\(886\) −12.4474 −0.418177
\(887\) −43.3446 −1.45537 −0.727684 0.685913i \(-0.759403\pi\)
−0.727684 + 0.685913i \(0.759403\pi\)
\(888\) 85.8722 2.88168
\(889\) 0 0
\(890\) −17.8949 −0.599837
\(891\) 16.8863 0.565714
\(892\) 1.92980 0.0646144
\(893\) 69.8981 2.33905
\(894\) −49.0855 −1.64166
\(895\) −2.66584 −0.0891094
\(896\) 0 0
\(897\) 3.56929 0.119175
\(898\) 21.7158 0.724667
\(899\) −12.8108 −0.427263
\(900\) 26.0653 0.868844
\(901\) −9.27937 −0.309141
\(902\) 24.3412 0.810474
\(903\) 0 0
\(904\) 112.165 3.73056
\(905\) −5.78137 −0.192179
\(906\) −44.1921 −1.46818
\(907\) 3.09162 0.102655 0.0513277 0.998682i \(-0.483655\pi\)
0.0513277 + 0.998682i \(0.483655\pi\)
\(908\) −50.3642 −1.67139
\(909\) −10.5320 −0.349323
\(910\) 0 0
\(911\) −51.3384 −1.70092 −0.850458 0.526043i \(-0.823675\pi\)
−0.850458 + 0.526043i \(0.823675\pi\)
\(912\) 77.5314 2.56732
\(913\) −6.55722 −0.217012
\(914\) −30.8248 −1.01959
\(915\) 0.920014 0.0304147
\(916\) 69.3765 2.29226
\(917\) 0 0
\(918\) −13.3447 −0.440440
\(919\) 2.36061 0.0778692 0.0389346 0.999242i \(-0.487604\pi\)
0.0389346 + 0.999242i \(0.487604\pi\)
\(920\) 3.77838 0.124569
\(921\) 16.9594 0.558833
\(922\) −95.5807 −3.14778
\(923\) 0.464290 0.0152823
\(924\) 0 0
\(925\) 43.5456 1.43177
\(926\) 74.5036 2.44834
\(927\) 9.48109 0.311400
\(928\) −12.1619 −0.399234
\(929\) −32.1347 −1.05431 −0.527153 0.849770i \(-0.676740\pi\)
−0.527153 + 0.849770i \(0.676740\pi\)
\(930\) −16.3588 −0.536428
\(931\) 0 0
\(932\) −67.2575 −2.20309
\(933\) 18.9381 0.620007
\(934\) 53.7531 1.75885
\(935\) 2.17399 0.0710972
\(936\) 22.2248 0.726441
\(937\) 7.75488 0.253341 0.126670 0.991945i \(-0.459571\pi\)
0.126670 + 0.991945i \(0.459571\pi\)
\(938\) 0 0
\(939\) 39.2009 1.27927
\(940\) −26.6824 −0.870283
\(941\) 48.1023 1.56809 0.784045 0.620703i \(-0.213153\pi\)
0.784045 + 0.620703i \(0.213153\pi\)
\(942\) 45.5729 1.48484
\(943\) −2.18707 −0.0712206
\(944\) −48.9795 −1.59415
\(945\) 0 0
\(946\) 51.4715 1.67348
\(947\) 7.10963 0.231032 0.115516 0.993306i \(-0.463148\pi\)
0.115516 + 0.993306i \(0.463148\pi\)
\(948\) −6.26781 −0.203569
\(949\) −22.0202 −0.714805
\(950\) 82.8795 2.68897
\(951\) 7.77566 0.252143
\(952\) 0 0
\(953\) −33.3566 −1.08053 −0.540264 0.841496i \(-0.681675\pi\)
−0.540264 + 0.841496i \(0.681675\pi\)
\(954\) −31.1568 −1.00874
\(955\) 9.79134 0.316840
\(956\) −88.0395 −2.84740
\(957\) −8.65695 −0.279840
\(958\) −28.4558 −0.919365
\(959\) 0 0
\(960\) −2.83572 −0.0915225
\(961\) 39.6194 1.27805
\(962\) 65.0166 2.09622
\(963\) −6.68223 −0.215332
\(964\) −116.077 −3.73860
\(965\) −8.69960 −0.280050
\(966\) 0 0
\(967\) 40.4562 1.30098 0.650492 0.759513i \(-0.274563\pi\)
0.650492 + 0.759513i \(0.274563\pi\)
\(968\) 47.0645 1.51271
\(969\) −8.44945 −0.271435
\(970\) 9.88328 0.317333
\(971\) −22.7548 −0.730236 −0.365118 0.930961i \(-0.618971\pi\)
−0.365118 + 0.930961i \(0.618971\pi\)
\(972\) −53.7916 −1.72537
\(973\) 0 0
\(974\) 26.7972 0.858639
\(975\) −17.0678 −0.546608
\(976\) −10.2674 −0.328651
\(977\) 6.38128 0.204155 0.102078 0.994776i \(-0.467451\pi\)
0.102078 + 0.994776i \(0.467451\pi\)
\(978\) 39.2647 1.25555
\(979\) 52.2022 1.66839
\(980\) 0 0
\(981\) −6.99428 −0.223310
\(982\) 94.9808 3.03096
\(983\) −53.6034 −1.70968 −0.854841 0.518889i \(-0.826346\pi\)
−0.854841 + 0.518889i \(0.826346\pi\)
\(984\) 20.6237 0.657460
\(985\) 8.19777 0.261203
\(986\) 3.60927 0.114943
\(987\) 0 0
\(988\) 86.6002 2.75512
\(989\) −4.62473 −0.147058
\(990\) 7.29950 0.231993
\(991\) 4.52460 0.143729 0.0718644 0.997414i \(-0.477105\pi\)
0.0718644 + 0.997414i \(0.477105\pi\)
\(992\) 67.0425 2.12860
\(993\) −20.4945 −0.650374
\(994\) 0 0
\(995\) −2.89003 −0.0916202
\(996\) −9.72858 −0.308262
\(997\) −42.8267 −1.35634 −0.678168 0.734907i \(-0.737226\pi\)
−0.678168 + 0.734907i \(0.737226\pi\)
\(998\) 103.086 3.26312
\(999\) −52.3860 −1.65742
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3871.2.a.e.1.8 8
7.6 odd 2 553.2.a.b.1.8 8
21.20 even 2 4977.2.a.j.1.1 8
28.27 even 2 8848.2.a.s.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
553.2.a.b.1.8 8 7.6 odd 2
3871.2.a.e.1.8 8 1.1 even 1 trivial
4977.2.a.j.1.1 8 21.20 even 2
8848.2.a.s.1.3 8 28.27 even 2