Properties

Label 3864.1.dl.d
Level 38643864
Weight 11
Character orbit 3864.dl
Analytic conductor 1.9281.928
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -168
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3864,1,Mod(587,3864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3864, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 11, 11, 11, 20])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3864.587"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3864=233723 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3864.dl (of order 2222, degree 1010, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.928387208811.92838720881
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ225q2+ζ227q3+ζ2210q4ζ22q6ζ229q7ζ224q8ζ223q9ζ226q12+(ζ228ζ227)q13++ζ22q98+O(q100) q + \zeta_{22}^{5} q^{2} + \zeta_{22}^{7} q^{3} + \zeta_{22}^{10} q^{4} - \zeta_{22} q^{6} - \zeta_{22}^{9} q^{7} - \zeta_{22}^{4} q^{8} - \zeta_{22}^{3} q^{9} - \zeta_{22}^{6} q^{12} + (\zeta_{22}^{8} - \zeta_{22}^{7}) q^{13} + \cdots + \zeta_{22} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+q2+q3q4q6q7+q8q9+q122q13+q14q16+2q17+q18+q21+q23+10q24q25+2q26+q27q28++q98+O(q100) 10 q + q^{2} + q^{3} - q^{4} - q^{6} - q^{7} + q^{8} - q^{9} + q^{12} - 2 q^{13} + q^{14} - q^{16} + 2 q^{17} + q^{18} + q^{21} + q^{23} + 10 q^{24} - q^{25} + 2 q^{26} + q^{27} - q^{28}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3864Z)×\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times.

nn 967967 12891289 19331933 27612761 28572857
χ(n)\chi(n) 1-1 1-1 1-1 1-1 ζ225-\zeta_{22}^{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
587.1
−0.415415 0.909632i
0.959493 + 0.281733i
0.959493 0.281733i
0.654861 0.755750i
0.142315 + 0.989821i
0.654861 + 0.755750i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
−0.841254 0.540641i
0.142315 0.989821i
−0.841254 + 0.540641i 0.142315 0.989821i 0.415415 0.909632i 0 0.415415 + 0.909632i −0.654861 0.755750i 0.142315 + 0.989821i −0.959493 0.281733i 0
923.1 0.142315 + 0.989821i −0.415415 + 0.909632i −0.959493 + 0.281733i 0 −0.959493 0.281733i 0.841254 0.540641i −0.415415 0.909632i −0.654861 0.755750i 0
1595.1 0.142315 0.989821i −0.415415 0.909632i −0.959493 0.281733i 0 −0.959493 + 0.281733i 0.841254 + 0.540641i −0.415415 + 0.909632i −0.654861 + 0.755750i 0
2099.1 −0.415415 + 0.909632i 0.959493 + 0.281733i −0.654861 0.755750i 0 −0.654861 + 0.755750i −0.142315 + 0.989821i 0.959493 0.281733i 0.841254 + 0.540641i 0
2267.1 0.654861 + 0.755750i −0.841254 0.540641i −0.142315 + 0.989821i 0 −0.142315 0.989821i −0.959493 0.281733i −0.841254 + 0.540641i 0.415415 + 0.909632i 0
2603.1 −0.415415 0.909632i 0.959493 0.281733i −0.654861 + 0.755750i 0 −0.654861 0.755750i −0.142315 0.989821i 0.959493 + 0.281733i 0.841254 0.540641i 0
2939.1 0.959493 + 0.281733i 0.654861 0.755750i 0.841254 + 0.540641i 0 0.841254 0.540641i 0.415415 + 0.909632i 0.654861 + 0.755750i −0.142315 0.989821i 0
3107.1 −0.841254 0.540641i 0.142315 + 0.989821i 0.415415 + 0.909632i 0 0.415415 0.909632i −0.654861 + 0.755750i 0.142315 0.989821i −0.959493 + 0.281733i 0
3275.1 0.959493 0.281733i 0.654861 + 0.755750i 0.841254 0.540641i 0 0.841254 + 0.540641i 0.415415 0.909632i 0.654861 0.755750i −0.142315 + 0.989821i 0
3443.1 0.654861 0.755750i −0.841254 + 0.540641i −0.142315 0.989821i 0 −0.142315 + 0.989821i −0.959493 + 0.281733i −0.841254 0.540641i 0.415415 0.909632i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 587.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
168.e odd 2 1 CM by Q(42)\Q(\sqrt{-42})
23.c even 11 1 inner
3864.dl odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3864.1.dl.d yes 10
3.b odd 2 1 3864.1.dl.a 10
7.b odd 2 1 3864.1.dl.c yes 10
8.d odd 2 1 3864.1.dl.b yes 10
21.c even 2 1 3864.1.dl.b yes 10
23.c even 11 1 inner 3864.1.dl.d yes 10
24.f even 2 1 3864.1.dl.c yes 10
56.e even 2 1 3864.1.dl.a 10
69.h odd 22 1 3864.1.dl.a 10
161.l odd 22 1 3864.1.dl.c yes 10
168.e odd 2 1 CM 3864.1.dl.d yes 10
184.k odd 22 1 3864.1.dl.b yes 10
483.v even 22 1 3864.1.dl.b yes 10
552.x even 22 1 3864.1.dl.c yes 10
1288.bo even 22 1 3864.1.dl.a 10
3864.dl odd 22 1 inner 3864.1.dl.d yes 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3864.1.dl.a 10 3.b odd 2 1
3864.1.dl.a 10 56.e even 2 1
3864.1.dl.a 10 69.h odd 22 1
3864.1.dl.a 10 1288.bo even 22 1
3864.1.dl.b yes 10 8.d odd 2 1
3864.1.dl.b yes 10 21.c even 2 1
3864.1.dl.b yes 10 184.k odd 22 1
3864.1.dl.b yes 10 483.v even 22 1
3864.1.dl.c yes 10 7.b odd 2 1
3864.1.dl.c yes 10 24.f even 2 1
3864.1.dl.c yes 10 161.l odd 22 1
3864.1.dl.c yes 10 552.x even 22 1
3864.1.dl.d yes 10 1.a even 1 1 trivial
3864.1.dl.d yes 10 23.c even 11 1 inner
3864.1.dl.d yes 10 168.e odd 2 1 CM
3864.1.dl.d yes 10 3864.dl odd 22 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3864,[χ])S_{1}^{\mathrm{new}}(3864, [\chi]):

T1310+2T139+4T1383T1376T13612T135+9T134+7T133+14T132+6T13+1 T_{13}^{10} + 2T_{13}^{9} + 4T_{13}^{8} - 3T_{13}^{7} - 6T_{13}^{6} - 12T_{13}^{5} + 9T_{13}^{4} + 7T_{13}^{3} + 14T_{13}^{2} + 6T_{13} + 1 Copy content Toggle raw display
T17102T179+4T178+3T1776T176+12T175+9T1747T173+14T1726T17+1 T_{17}^{10} - 2T_{17}^{9} + 4T_{17}^{8} + 3T_{17}^{7} - 6T_{17}^{6} + 12T_{17}^{5} + 9T_{17}^{4} - 7T_{17}^{3} + 14T_{17}^{2} - 6T_{17} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10T9++1 T^{10} - T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10T9++1 T^{10} - T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
1111 T10 T^{10} Copy content Toggle raw display
1313 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1717 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1919 T10 T^{10} Copy content Toggle raw display
2323 T10T9++1 T^{10} - T^{9} + \cdots + 1 Copy content Toggle raw display
2929 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3131 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 T10 T^{10} Copy content Toggle raw display
4141 T10+9T9++1 T^{10} + 9 T^{9} + \cdots + 1 Copy content Toggle raw display
4343 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
4747 T10 T^{10} Copy content Toggle raw display
5353 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
5959 T10+9T9++1 T^{10} + 9 T^{9} + \cdots + 1 Copy content Toggle raw display
6161 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
6767 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7171 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T10 T^{10} Copy content Toggle raw display
8383 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8989 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
9797 T10 T^{10} Copy content Toggle raw display
show more
show less