gp: [N,k,chi] = [3864,1,Mod(587,3864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 11, 11, 11, 20]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3864.587");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [10,1,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3864 Z ) × \left(\mathbb{Z}/3864\mathbb{Z}\right)^\times ( Z / 3 8 6 4 Z ) × .
n n n
967 967 9 6 7
1289 1289 1 2 8 9
1933 1933 1 9 3 3
2761 2761 2 7 6 1
2857 2857 2 8 5 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
− ζ 22 5 -\zeta_{22}^{5} − ζ 2 2 5
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 3864 , [ χ ] ) S_{1}^{\mathrm{new}}(3864, [\chi]) S 1 n e w ( 3 8 6 4 , [ χ ] ) :
T 13 10 + 2 T 13 9 + 4 T 13 8 − 3 T 13 7 − 6 T 13 6 − 12 T 13 5 + 9 T 13 4 + 7 T 13 3 + 14 T 13 2 + 6 T 13 + 1 T_{13}^{10} + 2T_{13}^{9} + 4T_{13}^{8} - 3T_{13}^{7} - 6T_{13}^{6} - 12T_{13}^{5} + 9T_{13}^{4} + 7T_{13}^{3} + 14T_{13}^{2} + 6T_{13} + 1 T 1 3 1 0 + 2 T 1 3 9 + 4 T 1 3 8 − 3 T 1 3 7 − 6 T 1 3 6 − 1 2 T 1 3 5 + 9 T 1 3 4 + 7 T 1 3 3 + 1 4 T 1 3 2 + 6 T 1 3 + 1
T13^10 + 2*T13^9 + 4*T13^8 - 3*T13^7 - 6*T13^6 - 12*T13^5 + 9*T13^4 + 7*T13^3 + 14*T13^2 + 6*T13 + 1
T 17 10 − 2 T 17 9 + 4 T 17 8 + 3 T 17 7 − 6 T 17 6 + 12 T 17 5 + 9 T 17 4 − 7 T 17 3 + 14 T 17 2 − 6 T 17 + 1 T_{17}^{10} - 2T_{17}^{9} + 4T_{17}^{8} + 3T_{17}^{7} - 6T_{17}^{6} + 12T_{17}^{5} + 9T_{17}^{4} - 7T_{17}^{3} + 14T_{17}^{2} - 6T_{17} + 1 T 1 7 1 0 − 2 T 1 7 9 + 4 T 1 7 8 + 3 T 1 7 7 − 6 T 1 7 6 + 1 2 T 1 7 5 + 9 T 1 7 4 − 7 T 1 7 3 + 1 4 T 1 7 2 − 6 T 1 7 + 1
T17^10 - 2*T17^9 + 4*T17^8 + 3*T17^7 - 6*T17^6 + 12*T17^5 + 9*T17^4 - 7*T17^3 + 14*T17^2 - 6*T17 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 10 − T 9 + ⋯ + 1 T^{10} - T^{9} + \cdots + 1 T 1 0 − T 9 + ⋯ + 1
T^10 - T^9 + T^8 - T^7 + T^6 - T^5 + T^4 - T^3 + T^2 - T + 1
3 3 3
T 10 − T 9 + ⋯ + 1 T^{10} - T^{9} + \cdots + 1 T 1 0 − T 9 + ⋯ + 1
T^10 - T^9 + T^8 - T^7 + T^6 - T^5 + T^4 - T^3 + T^2 - T + 1
5 5 5
T 10 T^{10} T 1 0
T^10
7 7 7
T 10 + T 9 + ⋯ + 1 T^{10} + T^{9} + \cdots + 1 T 1 0 + T 9 + ⋯ + 1
T^10 + T^9 + T^8 + T^7 + T^6 + T^5 + T^4 + T^3 + T^2 + T + 1
11 11 1 1
T 10 T^{10} T 1 0
T^10
13 13 1 3
T 10 + 2 T 9 + ⋯ + 1 T^{10} + 2 T^{9} + \cdots + 1 T 1 0 + 2 T 9 + ⋯ + 1
T^10 + 2*T^9 + 4*T^8 - 3*T^7 - 6*T^6 - 12*T^5 + 9*T^4 + 7*T^3 + 14*T^2 + 6*T + 1
17 17 1 7
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 + 3*T^7 - 6*T^6 + 12*T^5 + 9*T^4 - 7*T^3 + 14*T^2 - 6*T + 1
19 19 1 9
T 10 T^{10} T 1 0
T^10
23 23 2 3
T 10 − T 9 + ⋯ + 1 T^{10} - T^{9} + \cdots + 1 T 1 0 − T 9 + ⋯ + 1
T^10 - T^9 + T^8 - T^7 + T^6 - T^5 + T^4 - T^3 + T^2 - T + 1
29 29 2 9
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 16*T^6 - 32*T^5 + 53*T^4 - 51*T^3 + 25*T^2 - 6*T + 1
31 31 3 1
T 10 + 2 T 9 + ⋯ + 1 T^{10} + 2 T^{9} + \cdots + 1 T 1 0 + 2 T 9 + ⋯ + 1
T^10 + 2*T^9 + 4*T^8 - 3*T^7 - 6*T^6 - 12*T^5 + 9*T^4 + 7*T^3 + 14*T^2 + 6*T + 1
37 37 3 7
T 10 T^{10} T 1 0
T^10
41 41 4 1
T 10 + 9 T 9 + ⋯ + 1 T^{10} + 9 T^{9} + \cdots + 1 T 1 0 + 9 T 9 + ⋯ + 1
T^10 + 9*T^9 + 37*T^8 + 91*T^7 + 148*T^6 + 166*T^5 + 130*T^4 + 70*T^3 + 25*T^2 + 5*T + 1
43 43 4 3
T 10 − 9 T 9 + ⋯ + 1 T^{10} - 9 T^{9} + \cdots + 1 T 1 0 − 9 T 9 + ⋯ + 1
T^10 - 9*T^9 + 37*T^8 - 91*T^7 + 148*T^6 - 166*T^5 + 130*T^4 - 70*T^3 + 25*T^2 - 5*T + 1
47 47 4 7
T 10 T^{10} T 1 0
T^10
53 53 5 3
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 16*T^6 - 10*T^5 + 20*T^4 - 7*T^3 + 3*T^2 + 5*T + 1
59 59 5 9
T 10 + 9 T 9 + ⋯ + 1 T^{10} + 9 T^{9} + \cdots + 1 T 1 0 + 9 T 9 + ⋯ + 1
T^10 + 9*T^9 + 37*T^8 + 91*T^7 + 148*T^6 + 166*T^5 + 130*T^4 + 70*T^3 + 25*T^2 + 5*T + 1
61 61 6 1
T 10 + 2 T 9 + ⋯ + 1 T^{10} + 2 T^{9} + \cdots + 1 T 1 0 + 2 T 9 + ⋯ + 1
T^10 + 2*T^9 + 4*T^8 + 8*T^7 + 16*T^6 + 10*T^5 + 20*T^4 + 7*T^3 + 3*T^2 - 5*T + 1
67 67 6 7
T 10 + 2 T 9 + ⋯ + 1 T^{10} + 2 T^{9} + \cdots + 1 T 1 0 + 2 T 9 + ⋯ + 1
T^10 + 2*T^9 + 4*T^8 + 8*T^7 + 16*T^6 + 32*T^5 + 53*T^4 + 51*T^3 + 25*T^2 + 6*T + 1
71 71 7 1
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 16*T^6 - 32*T^5 + 53*T^4 - 51*T^3 + 25*T^2 - 6*T + 1
73 73 7 3
T 10 T^{10} T 1 0
T^10
79 79 7 9
T 10 T^{10} T 1 0
T^10
83 83 8 3
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 - 8*T^7 + 5*T^6 + T^5 - 2*T^4 + 4*T^3 + 14*T^2 + 5*T + 1
89 89 8 9
T 10 − 2 T 9 + ⋯ + 1 T^{10} - 2 T^{9} + \cdots + 1 T 1 0 − 2 T 9 + ⋯ + 1
T^10 - 2*T^9 + 4*T^8 + 3*T^7 - 6*T^6 + 12*T^5 + 9*T^4 - 7*T^3 + 14*T^2 - 6*T + 1
97 97 9 7
T 10 T^{10} T 1 0
T^10
show more
show less