Properties

Label 385.2.a.f
Level $385$
Weight $2$
Character orbit 385.a
Self dual yes
Analytic conductor $3.074$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [385,2,Mod(1,385)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("385.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(385, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 385 = 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 385.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.07424047782\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_1 - 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} - q^{5} + (\beta_{2} - 2 \beta_1 + 2) q^{6} - q^{7} + (3 \beta_1 - 4) q^{8} + (\beta_{2} - \beta_1) q^{9} + (\beta_{2} + 1) q^{10}+ \cdots + ( - \beta_{2} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 2 q^{3} + 5 q^{4} - 3 q^{5} + 4 q^{6} - 3 q^{7} - 9 q^{8} - q^{9} + 3 q^{10} - 3 q^{11} - 12 q^{12} + 2 q^{13} + 3 q^{14} + 2 q^{15} + 5 q^{16} - 9 q^{18} + 6 q^{19} - 5 q^{20} + 2 q^{21}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
−2.67513 −2.48119 5.15633 −1.00000 6.63752 −1.00000 −8.44358 3.15633 2.67513
1.2 −1.53919 1.17009 0.369102 −1.00000 −1.80098 −1.00000 2.51026 −1.63090 1.53919
1.3 1.21432 −0.688892 −0.525428 −1.00000 −0.836535 −1.00000 −3.06668 −2.52543 −1.21432
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 385.2.a.f 3
3.b odd 2 1 3465.2.a.bh 3
4.b odd 2 1 6160.2.a.bn 3
5.b even 2 1 1925.2.a.v 3
5.c odd 4 2 1925.2.b.n 6
7.b odd 2 1 2695.2.a.g 3
11.b odd 2 1 4235.2.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.2.a.f 3 1.a even 1 1 trivial
1925.2.a.v 3 5.b even 2 1
1925.2.b.n 6 5.c odd 4 2
2695.2.a.g 3 7.b odd 2 1
3465.2.a.bh 3 3.b odd 2 1
4235.2.a.q 3 11.b odd 2 1
6160.2.a.bn 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(385))\):

\( T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 \) Copy content Toggle raw display
\( T_{3}^{3} + 2T_{3}^{2} - 2T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3T^{2} - T - 5 \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$17$ \( T^{3} - 30T + 2 \) Copy content Toggle raw display
$19$ \( T^{3} - 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$23$ \( T^{3} + 10 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$29$ \( T^{3} + 10 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$31$ \( T^{3} + 10 T^{2} + \cdots - 26 \) Copy content Toggle raw display
$37$ \( T^{3} + 16 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$41$ \( T^{3} - 36T - 54 \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots + 268 \) Copy content Toggle raw display
$47$ \( T^{3} + 20 T^{2} + \cdots + 158 \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$59$ \( T^{3} - 14T^{2} + 74 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots - 62 \) Copy content Toggle raw display
$67$ \( T^{3} + 2 T^{2} + \cdots - 172 \) Copy content Toggle raw display
$71$ \( T^{3} + 24 T^{2} + \cdots - 800 \) Copy content Toggle raw display
$73$ \( T^{3} - 4 T^{2} + \cdots + 190 \) Copy content Toggle raw display
$79$ \( T^{3} - 8 T^{2} + \cdots + 244 \) Copy content Toggle raw display
$83$ \( T^{3} + 10 T^{2} + \cdots - 1096 \) Copy content Toggle raw display
$89$ \( T^{3} - 20 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$97$ \( T^{3} - 192T - 160 \) Copy content Toggle raw display
show more
show less