Properties

Label 3822.2.c.i.883.3
Level $3822$
Weight $2$
Character 3822.883
Analytic conductor $30.519$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3822,2,Mod(883,3822)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3822.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3822, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,-6,0,0,0,0,6,-4,0,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.3
Root \(0.254102i\) of defining polynomial
Character \(\chi\) \(=\) 3822.883
Dual form 3822.2.c.i.883.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.68133i q^{5} +1.00000i q^{6} +1.00000i q^{8} +1.00000 q^{9} +1.68133 q^{10} +2.18953i q^{11} +1.00000 q^{12} +(1.68133 - 3.18953i) q^{13} -1.68133i q^{15} +1.00000 q^{16} -4.18953 q^{17} -1.00000i q^{18} +1.17313i q^{19} -1.68133i q^{20} +2.18953 q^{22} -5.68133 q^{23} -1.00000i q^{24} +2.17313 q^{25} +(-3.18953 - 1.68133i) q^{26} -1.00000 q^{27} +2.69774 q^{29} -1.68133 q^{30} -7.36266i q^{31} -1.00000i q^{32} -2.18953i q^{33} +4.18953i q^{34} -1.00000 q^{36} -3.68133i q^{37} +1.17313 q^{38} +(-1.68133 + 3.18953i) q^{39} -1.68133 q^{40} -9.36266i q^{41} +12.9149 q^{43} -2.18953i q^{44} +1.68133i q^{45} +5.68133i q^{46} +2.37907i q^{47} -1.00000 q^{48} -2.17313i q^{50} +4.18953 q^{51} +(-1.68133 + 3.18953i) q^{52} -3.01641 q^{53} +1.00000i q^{54} -3.68133 q^{55} -1.17313i q^{57} -2.69774i q^{58} +5.36266i q^{59} +1.68133i q^{60} -0.697737 q^{61} -7.36266 q^{62} -1.00000 q^{64} +(5.36266 + 2.82687i) q^{65} -2.18953 q^{66} +15.1044i q^{67} +4.18953 q^{68} +5.68133 q^{69} +5.01641i q^{71} +1.00000i q^{72} +3.81047i q^{73} -3.68133 q^{74} -2.17313 q^{75} -1.17313i q^{76} +(3.18953 + 1.68133i) q^{78} +8.37907 q^{79} +1.68133i q^{80} +1.00000 q^{81} -9.36266 q^{82} -3.01641i q^{83} -7.04399i q^{85} -12.9149i q^{86} -2.69774 q^{87} -2.18953 q^{88} +3.01641i q^{89} +1.68133 q^{90} +5.68133 q^{92} +7.36266i q^{93} +2.37907 q^{94} -1.97241 q^{95} +1.00000i q^{96} +2.00000i q^{97} +2.18953i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} - 6 q^{4} + 6 q^{9} - 4 q^{10} + 6 q^{12} - 4 q^{13} + 6 q^{16} - 8 q^{17} - 4 q^{22} - 20 q^{23} + 2 q^{25} - 2 q^{26} - 6 q^{27} - 4 q^{29} + 4 q^{30} - 6 q^{36} - 4 q^{38} + 4 q^{39} + 4 q^{40}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) 1.68133i 0.751914i 0.926637 + 0.375957i \(0.122686\pi\)
−0.926637 + 0.375957i \(0.877314\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 1.68133 0.531683
\(11\) 2.18953i 0.660169i 0.943951 + 0.330085i \(0.107077\pi\)
−0.943951 + 0.330085i \(0.892923\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.68133 3.18953i 0.466317 0.884618i
\(14\) 0 0
\(15\) 1.68133i 0.434118i
\(16\) 1.00000 0.250000
\(17\) −4.18953 −1.01611 −0.508056 0.861324i \(-0.669636\pi\)
−0.508056 + 0.861324i \(0.669636\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.17313i 0.269134i 0.990905 + 0.134567i \(0.0429643\pi\)
−0.990905 + 0.134567i \(0.957036\pi\)
\(20\) 1.68133i 0.375957i
\(21\) 0 0
\(22\) 2.18953 0.466810
\(23\) −5.68133 −1.18464 −0.592320 0.805703i \(-0.701788\pi\)
−0.592320 + 0.805703i \(0.701788\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 2.17313 0.434625
\(26\) −3.18953 1.68133i −0.625519 0.329736i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.69774 0.500957 0.250479 0.968122i \(-0.419412\pi\)
0.250479 + 0.968122i \(0.419412\pi\)
\(30\) −1.68133 −0.306968
\(31\) 7.36266i 1.32237i −0.750222 0.661187i \(-0.770053\pi\)
0.750222 0.661187i \(-0.229947\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.18953i 0.381149i
\(34\) 4.18953i 0.718499i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 3.68133i 0.605207i −0.953117 0.302604i \(-0.902144\pi\)
0.953117 0.302604i \(-0.0978558\pi\)
\(38\) 1.17313 0.190306
\(39\) −1.68133 + 3.18953i −0.269228 + 0.510734i
\(40\) −1.68133 −0.265842
\(41\) 9.36266i 1.46220i −0.682269 0.731101i \(-0.739007\pi\)
0.682269 0.731101i \(-0.260993\pi\)
\(42\) 0 0
\(43\) 12.9149 1.96950 0.984749 0.173983i \(-0.0556639\pi\)
0.984749 + 0.173983i \(0.0556639\pi\)
\(44\) 2.18953i 0.330085i
\(45\) 1.68133i 0.250638i
\(46\) 5.68133i 0.837667i
\(47\) 2.37907i 0.347023i 0.984832 + 0.173511i \(0.0555113\pi\)
−0.984832 + 0.173511i \(0.944489\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 2.17313i 0.307327i
\(51\) 4.18953 0.586652
\(52\) −1.68133 + 3.18953i −0.233159 + 0.442309i
\(53\) −3.01641 −0.414335 −0.207168 0.978305i \(-0.566425\pi\)
−0.207168 + 0.978305i \(0.566425\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −3.68133 −0.496391
\(56\) 0 0
\(57\) 1.17313i 0.155385i
\(58\) 2.69774i 0.354230i
\(59\) 5.36266i 0.698159i 0.937093 + 0.349080i \(0.113506\pi\)
−0.937093 + 0.349080i \(0.886494\pi\)
\(60\) 1.68133i 0.217059i
\(61\) −0.697737 −0.0893361 −0.0446681 0.999002i \(-0.514223\pi\)
−0.0446681 + 0.999002i \(0.514223\pi\)
\(62\) −7.36266 −0.935059
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 5.36266 + 2.82687i 0.665156 + 0.350630i
\(66\) −2.18953 −0.269513
\(67\) 15.1044i 1.84530i 0.385644 + 0.922648i \(0.373979\pi\)
−0.385644 + 0.922648i \(0.626021\pi\)
\(68\) 4.18953 0.508056
\(69\) 5.68133 0.683952
\(70\) 0 0
\(71\) 5.01641i 0.595338i 0.954669 + 0.297669i \(0.0962092\pi\)
−0.954669 + 0.297669i \(0.903791\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 3.81047i 0.445981i 0.974821 + 0.222991i \(0.0715819\pi\)
−0.974821 + 0.222991i \(0.928418\pi\)
\(74\) −3.68133 −0.427946
\(75\) −2.17313 −0.250931
\(76\) 1.17313i 0.134567i
\(77\) 0 0
\(78\) 3.18953 + 1.68133i 0.361144 + 0.190373i
\(79\) 8.37907 0.942719 0.471359 0.881941i \(-0.343763\pi\)
0.471359 + 0.881941i \(0.343763\pi\)
\(80\) 1.68133i 0.187978i
\(81\) 1.00000 0.111111
\(82\) −9.36266 −1.03393
\(83\) 3.01641i 0.331094i −0.986202 0.165547i \(-0.947061\pi\)
0.986202 0.165547i \(-0.0529389\pi\)
\(84\) 0 0
\(85\) 7.04399i 0.764028i
\(86\) 12.9149i 1.39264i
\(87\) −2.69774 −0.289228
\(88\) −2.18953 −0.233405
\(89\) 3.01641i 0.319738i 0.987138 + 0.159869i \(0.0511073\pi\)
−0.987138 + 0.159869i \(0.948893\pi\)
\(90\) 1.68133 0.177228
\(91\) 0 0
\(92\) 5.68133 0.592320
\(93\) 7.36266i 0.763472i
\(94\) 2.37907 0.245382
\(95\) −1.97241 −0.202365
\(96\) 1.00000i 0.102062i
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 2.18953i 0.220056i
\(100\) −2.17313 −0.217313
\(101\) −9.36266 −0.931620 −0.465810 0.884885i \(-0.654237\pi\)
−0.465810 + 0.884885i \(0.654237\pi\)
\(102\) 4.18953i 0.414826i
\(103\) −12.4395 −1.22570 −0.612849 0.790200i \(-0.709976\pi\)
−0.612849 + 0.790200i \(0.709976\pi\)
\(104\) 3.18953 + 1.68133i 0.312760 + 0.164868i
\(105\) 0 0
\(106\) 3.01641i 0.292979i
\(107\) 13.1044 1.26685 0.633425 0.773804i \(-0.281649\pi\)
0.633425 + 0.773804i \(0.281649\pi\)
\(108\) 1.00000 0.0962250
\(109\) 7.04399i 0.674692i 0.941381 + 0.337346i \(0.109529\pi\)
−0.941381 + 0.337346i \(0.890471\pi\)
\(110\) 3.68133i 0.351001i
\(111\) 3.68133i 0.349416i
\(112\) 0 0
\(113\) 7.39547 0.695708 0.347854 0.937549i \(-0.386911\pi\)
0.347854 + 0.937549i \(0.386911\pi\)
\(114\) −1.17313 −0.109873
\(115\) 9.55220i 0.890747i
\(116\) −2.69774 −0.250479
\(117\) 1.68133 3.18953i 0.155439 0.294873i
\(118\) 5.36266 0.493673
\(119\) 0 0
\(120\) 1.68133 0.153484
\(121\) 6.20594 0.564176
\(122\) 0.697737i 0.0631702i
\(123\) 9.36266i 0.844203i
\(124\) 7.36266i 0.661187i
\(125\) 12.0604i 1.07871i
\(126\) 0 0
\(127\) 12.1208 1.07555 0.537773 0.843089i \(-0.319266\pi\)
0.537773 + 0.843089i \(0.319266\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −12.9149 −1.13709
\(130\) 2.82687 5.36266i 0.247933 0.470337i
\(131\) 12.6566 1.10581 0.552906 0.833244i \(-0.313519\pi\)
0.552906 + 0.833244i \(0.313519\pi\)
\(132\) 2.18953i 0.190574i
\(133\) 0 0
\(134\) 15.1044 1.30482
\(135\) 1.68133i 0.144706i
\(136\) 4.18953i 0.359250i
\(137\) 9.58501i 0.818903i 0.912332 + 0.409451i \(0.134280\pi\)
−0.912332 + 0.409451i \(0.865720\pi\)
\(138\) 5.68133i 0.483627i
\(139\) 19.7417 1.67447 0.837236 0.546842i \(-0.184170\pi\)
0.837236 + 0.546842i \(0.184170\pi\)
\(140\) 0 0
\(141\) 2.37907i 0.200354i
\(142\) 5.01641 0.420968
\(143\) 6.98359 + 3.68133i 0.583997 + 0.307848i
\(144\) 1.00000 0.0833333
\(145\) 4.53579i 0.376677i
\(146\) 3.81047 0.315356
\(147\) 0 0
\(148\) 3.68133i 0.302604i
\(149\) 23.4506i 1.92115i −0.278018 0.960576i \(-0.589678\pi\)
0.278018 0.960576i \(-0.410322\pi\)
\(150\) 2.17313i 0.177435i
\(151\) 10.0276i 0.816033i −0.912974 0.408017i \(-0.866221\pi\)
0.912974 0.408017i \(-0.133779\pi\)
\(152\) −1.17313 −0.0951532
\(153\) −4.18953 −0.338704
\(154\) 0 0
\(155\) 12.3791 0.994311
\(156\) 1.68133 3.18953i 0.134614 0.255367i
\(157\) 18.0932 1.44400 0.721998 0.691895i \(-0.243224\pi\)
0.721998 + 0.691895i \(0.243224\pi\)
\(158\) 8.37907i 0.666603i
\(159\) 3.01641 0.239217
\(160\) 1.68133 0.132921
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 10.0328i 0.785831i 0.919575 + 0.392915i \(0.128533\pi\)
−0.919575 + 0.392915i \(0.871467\pi\)
\(164\) 9.36266i 0.731101i
\(165\) 3.68133 0.286591
\(166\) −3.01641 −0.234119
\(167\) 4.66492i 0.360983i 0.983577 + 0.180491i \(0.0577688\pi\)
−0.983577 + 0.180491i \(0.942231\pi\)
\(168\) 0 0
\(169\) −7.34625 10.7253i −0.565097 0.825025i
\(170\) −7.04399 −0.540250
\(171\) 1.17313i 0.0897113i
\(172\) −12.9149 −0.984749
\(173\) 15.0716 1.14587 0.572935 0.819601i \(-0.305805\pi\)
0.572935 + 0.819601i \(0.305805\pi\)
\(174\) 2.69774i 0.204515i
\(175\) 0 0
\(176\) 2.18953i 0.165042i
\(177\) 5.36266i 0.403082i
\(178\) 3.01641 0.226089
\(179\) 9.10439 0.680494 0.340247 0.940336i \(-0.389489\pi\)
0.340247 + 0.940336i \(0.389489\pi\)
\(180\) 1.68133i 0.125319i
\(181\) −9.32985 −0.693482 −0.346741 0.937961i \(-0.612712\pi\)
−0.346741 + 0.937961i \(0.612712\pi\)
\(182\) 0 0
\(183\) 0.697737 0.0515782
\(184\) 5.68133i 0.418833i
\(185\) 6.18953 0.455064
\(186\) 7.36266 0.539857
\(187\) 9.17313i 0.670806i
\(188\) 2.37907i 0.173511i
\(189\) 0 0
\(190\) 1.97241i 0.143094i
\(191\) 6.43947 0.465943 0.232972 0.972484i \(-0.425155\pi\)
0.232972 + 0.972484i \(0.425155\pi\)
\(192\) 1.00000 0.0721688
\(193\) 3.10439i 0.223459i 0.993739 + 0.111729i \(0.0356390\pi\)
−0.993739 + 0.111729i \(0.964361\pi\)
\(194\) 2.00000 0.143592
\(195\) −5.36266 2.82687i −0.384028 0.202437i
\(196\) 0 0
\(197\) 6.12080i 0.436089i −0.975939 0.218044i \(-0.930032\pi\)
0.975939 0.218044i \(-0.0699678\pi\)
\(198\) 2.18953 0.155603
\(199\) 13.7141 0.972170 0.486085 0.873912i \(-0.338425\pi\)
0.486085 + 0.873912i \(0.338425\pi\)
\(200\) 2.17313i 0.153663i
\(201\) 15.1044i 1.06538i
\(202\) 9.36266i 0.658755i
\(203\) 0 0
\(204\) −4.18953 −0.293326
\(205\) 15.7417 1.09945
\(206\) 12.4395i 0.866699i
\(207\) −5.68133 −0.394880
\(208\) 1.68133 3.18953i 0.116579 0.221154i
\(209\) −2.56860 −0.177674
\(210\) 0 0
\(211\) 3.46421 0.238486 0.119243 0.992865i \(-0.461953\pi\)
0.119243 + 0.992865i \(0.461953\pi\)
\(212\) 3.01641 0.207168
\(213\) 5.01641i 0.343719i
\(214\) 13.1044i 0.895798i
\(215\) 21.7141i 1.48089i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) 7.04399 0.477079
\(219\) 3.81047i 0.257487i
\(220\) 3.68133 0.248195
\(221\) −7.04399 + 13.3627i −0.473830 + 0.898870i
\(222\) 3.68133 0.247075
\(223\) 0.258271i 0.0172951i −0.999963 0.00864754i \(-0.997247\pi\)
0.999963 0.00864754i \(-0.00275263\pi\)
\(224\) 0 0
\(225\) 2.17313 0.144875
\(226\) 7.39547i 0.491940i
\(227\) 2.25827i 0.149887i −0.997188 0.0749433i \(-0.976122\pi\)
0.997188 0.0749433i \(-0.0238776\pi\)
\(228\) 1.17313i 0.0776923i
\(229\) 18.3791i 1.21452i −0.794502 0.607262i \(-0.792268\pi\)
0.794502 0.607262i \(-0.207732\pi\)
\(230\) −9.55220 −0.629853
\(231\) 0 0
\(232\) 2.69774i 0.177115i
\(233\) 17.7417 1.16230 0.581150 0.813797i \(-0.302603\pi\)
0.581150 + 0.813797i \(0.302603\pi\)
\(234\) −3.18953 1.68133i −0.208506 0.109912i
\(235\) −4.00000 −0.260931
\(236\) 5.36266i 0.349080i
\(237\) −8.37907 −0.544279
\(238\) 0 0
\(239\) 17.0716i 1.10427i −0.833755 0.552134i \(-0.813814\pi\)
0.833755 0.552134i \(-0.186186\pi\)
\(240\) 1.68133i 0.108529i
\(241\) 11.4506i 0.737601i −0.929509 0.368800i \(-0.879769\pi\)
0.929509 0.368800i \(-0.120231\pi\)
\(242\) 6.20594i 0.398933i
\(243\) −1.00000 −0.0641500
\(244\) 0.697737 0.0446681
\(245\) 0 0
\(246\) 9.36266 0.596941
\(247\) 3.74173 + 1.97241i 0.238081 + 0.125502i
\(248\) 7.36266 0.467529
\(249\) 3.01641i 0.191157i
\(250\) 12.0604 0.762767
\(251\) 2.82687 0.178431 0.0892153 0.996012i \(-0.471564\pi\)
0.0892153 + 0.996012i \(0.471564\pi\)
\(252\) 0 0
\(253\) 12.4395i 0.782063i
\(254\) 12.1208i 0.760526i
\(255\) 7.04399i 0.441112i
\(256\) 1.00000 0.0625000
\(257\) 4.03281 0.251560 0.125780 0.992058i \(-0.459857\pi\)
0.125780 + 0.992058i \(0.459857\pi\)
\(258\) 12.9149i 0.804044i
\(259\) 0 0
\(260\) −5.36266 2.82687i −0.332578 0.175315i
\(261\) 2.69774 0.166986
\(262\) 12.6566i 0.781926i
\(263\) −15.8297 −0.976102 −0.488051 0.872815i \(-0.662292\pi\)
−0.488051 + 0.872815i \(0.662292\pi\)
\(264\) 2.18953 0.134757
\(265\) 5.07158i 0.311545i
\(266\) 0 0
\(267\) 3.01641i 0.184601i
\(268\) 15.1044i 0.922648i
\(269\) −18.7581 −1.14370 −0.571852 0.820357i \(-0.693775\pi\)
−0.571852 + 0.820357i \(0.693775\pi\)
\(270\) −1.68133 −0.102323
\(271\) 7.62093i 0.462939i 0.972842 + 0.231469i \(0.0743533\pi\)
−0.972842 + 0.231469i \(0.925647\pi\)
\(272\) −4.18953 −0.254028
\(273\) 0 0
\(274\) 9.58501 0.579052
\(275\) 4.75814i 0.286926i
\(276\) −5.68133 −0.341976
\(277\) 18.4342 1.10761 0.553803 0.832648i \(-0.313176\pi\)
0.553803 + 0.832648i \(0.313176\pi\)
\(278\) 19.7417i 1.18403i
\(279\) 7.36266i 0.440791i
\(280\) 0 0
\(281\) 8.03281i 0.479197i −0.970872 0.239599i \(-0.922984\pi\)
0.970872 0.239599i \(-0.0770159\pi\)
\(282\) −2.37907 −0.141671
\(283\) 14.8461 0.882510 0.441255 0.897382i \(-0.354533\pi\)
0.441255 + 0.897382i \(0.354533\pi\)
\(284\) 5.01641i 0.297669i
\(285\) 1.97241 0.116836
\(286\) 3.68133 6.98359i 0.217682 0.412949i
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 0.552195 0.0324821
\(290\) 4.53579 0.266351
\(291\) 2.00000i 0.117242i
\(292\) 3.81047i 0.222991i
\(293\) 21.7417i 1.27017i 0.772444 + 0.635083i \(0.219034\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(294\) 0 0
\(295\) −9.01641 −0.524955
\(296\) 3.68133 0.213973
\(297\) 2.18953i 0.127050i
\(298\) −23.4506 −1.35846
\(299\) −9.55220 + 18.1208i −0.552418 + 1.04795i
\(300\) 2.17313 0.125466
\(301\) 0 0
\(302\) −10.0276 −0.577023
\(303\) 9.36266 0.537871
\(304\) 1.17313i 0.0672835i
\(305\) 1.17313i 0.0671731i
\(306\) 4.18953i 0.239500i
\(307\) 27.4835i 1.56856i −0.620405 0.784282i \(-0.713032\pi\)
0.620405 0.784282i \(-0.286968\pi\)
\(308\) 0 0
\(309\) 12.4395 0.707657
\(310\) 12.3791i 0.703084i
\(311\) −6.29108 −0.356735 −0.178367 0.983964i \(-0.557082\pi\)
−0.178367 + 0.983964i \(0.557082\pi\)
\(312\) −3.18953 1.68133i −0.180572 0.0951866i
\(313\) −32.4342 −1.83329 −0.916646 0.399701i \(-0.869114\pi\)
−0.916646 + 0.399701i \(0.869114\pi\)
\(314\) 18.0932i 1.02106i
\(315\) 0 0
\(316\) −8.37907 −0.471359
\(317\) 29.7417i 1.67046i 0.549899 + 0.835231i \(0.314666\pi\)
−0.549899 + 0.835231i \(0.685334\pi\)
\(318\) 3.01641i 0.169152i
\(319\) 5.90679i 0.330717i
\(320\) 1.68133i 0.0939892i
\(321\) −13.1044 −0.731416
\(322\) 0 0
\(323\) 4.91486i 0.273470i
\(324\) −1.00000 −0.0555556
\(325\) 3.65375 6.93126i 0.202673 0.384477i
\(326\) 10.0328 0.555666
\(327\) 7.04399i 0.389534i
\(328\) 9.36266 0.516966
\(329\) 0 0
\(330\) 3.68133i 0.202651i
\(331\) 25.3955i 1.39586i 0.716165 + 0.697931i \(0.245896\pi\)
−0.716165 + 0.697931i \(0.754104\pi\)
\(332\) 3.01641i 0.165547i
\(333\) 3.68133i 0.201736i
\(334\) 4.66492 0.255253
\(335\) −25.3955 −1.38750
\(336\) 0 0
\(337\) 10.4806 0.570916 0.285458 0.958391i \(-0.407854\pi\)
0.285458 + 0.958391i \(0.407854\pi\)
\(338\) −10.7253 + 7.34625i −0.583381 + 0.399584i
\(339\) −7.39547 −0.401667
\(340\) 7.04399i 0.382014i
\(341\) 16.1208 0.872990
\(342\) 1.17313 0.0634355
\(343\) 0 0
\(344\) 12.9149i 0.696322i
\(345\) 9.55220i 0.514273i
\(346\) 15.0716i 0.810253i
\(347\) 19.7089 1.05803 0.529015 0.848612i \(-0.322562\pi\)
0.529015 + 0.848612i \(0.322562\pi\)
\(348\) 2.69774 0.144614
\(349\) 0.467052i 0.0250007i −0.999922 0.0125004i \(-0.996021\pi\)
0.999922 0.0125004i \(-0.00397909\pi\)
\(350\) 0 0
\(351\) −1.68133 + 3.18953i −0.0897428 + 0.170245i
\(352\) 2.18953 0.116703
\(353\) 31.1372i 1.65727i 0.559792 + 0.828633i \(0.310881\pi\)
−0.559792 + 0.828633i \(0.689119\pi\)
\(354\) −5.36266 −0.285022
\(355\) −8.43424 −0.447643
\(356\) 3.01641i 0.159869i
\(357\) 0 0
\(358\) 9.10439i 0.481182i
\(359\) 8.12080i 0.428599i 0.976768 + 0.214300i \(0.0687469\pi\)
−0.976768 + 0.214300i \(0.931253\pi\)
\(360\) −1.68133 −0.0886139
\(361\) 17.6238 0.927567
\(362\) 9.32985i 0.490366i
\(363\) −6.20594 −0.325727
\(364\) 0 0
\(365\) −6.40665 −0.335340
\(366\) 0.697737i 0.0364713i
\(367\) 11.4835 0.599432 0.299716 0.954029i \(-0.403108\pi\)
0.299716 + 0.954029i \(0.403108\pi\)
\(368\) −5.68133 −0.296160
\(369\) 9.36266i 0.487401i
\(370\) 6.18953i 0.321779i
\(371\) 0 0
\(372\) 7.36266i 0.381736i
\(373\) −11.3955 −0.590035 −0.295018 0.955492i \(-0.595326\pi\)
−0.295018 + 0.955492i \(0.595326\pi\)
\(374\) −9.17313 −0.474331
\(375\) 12.0604i 0.622796i
\(376\) −2.37907 −0.122691
\(377\) 4.53579 8.60453i 0.233605 0.443156i
\(378\) 0 0
\(379\) 14.3463i 0.736918i −0.929644 0.368459i \(-0.879886\pi\)
0.929644 0.368459i \(-0.120114\pi\)
\(380\) 1.97241 0.101183
\(381\) −12.1208 −0.620967
\(382\) 6.43947i 0.329472i
\(383\) 5.36789i 0.274286i 0.990551 + 0.137143i \(0.0437920\pi\)
−0.990551 + 0.137143i \(0.956208\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) 3.10439 0.158009
\(387\) 12.9149 0.656499
\(388\) 2.00000i 0.101535i
\(389\) −14.4342 −0.731845 −0.365922 0.930645i \(-0.619246\pi\)
−0.365922 + 0.930645i \(0.619246\pi\)
\(390\) −2.82687 + 5.36266i −0.143144 + 0.271549i
\(391\) 23.8021 1.20373
\(392\) 0 0
\(393\) −12.6566 −0.638440
\(394\) −6.12080 −0.308361
\(395\) 14.0880i 0.708843i
\(396\) 2.18953i 0.110028i
\(397\) 12.6045i 0.632603i 0.948659 + 0.316301i \(0.102441\pi\)
−0.948659 + 0.316301i \(0.897559\pi\)
\(398\) 13.7141i 0.687428i
\(399\) 0 0
\(400\) 2.17313 0.108656
\(401\) 4.72532i 0.235971i 0.993015 + 0.117986i \(0.0376437\pi\)
−0.993015 + 0.117986i \(0.962356\pi\)
\(402\) −15.1044 −0.753339
\(403\) −23.4835 12.3791i −1.16979 0.616645i
\(404\) 9.36266 0.465810
\(405\) 1.68133i 0.0835460i
\(406\) 0 0
\(407\) 8.06040 0.399539
\(408\) 4.18953i 0.207413i
\(409\) 31.6074i 1.56288i −0.623978 0.781442i \(-0.714485\pi\)
0.623978 0.781442i \(-0.285515\pi\)
\(410\) 15.7417i 0.777429i
\(411\) 9.58501i 0.472794i
\(412\) 12.4395 0.612849
\(413\) 0 0
\(414\) 5.68133i 0.279222i
\(415\) 5.07158 0.248954
\(416\) −3.18953 1.68133i −0.156380 0.0824340i
\(417\) −19.7417 −0.966757
\(418\) 2.56860i 0.125634i
\(419\) −21.9313 −1.07141 −0.535706 0.844404i \(-0.679955\pi\)
−0.535706 + 0.844404i \(0.679955\pi\)
\(420\) 0 0
\(421\) 15.4283i 0.751929i −0.926634 0.375964i \(-0.877311\pi\)
0.926634 0.375964i \(-0.122689\pi\)
\(422\) 3.46421i 0.168635i
\(423\) 2.37907i 0.115674i
\(424\) 3.01641i 0.146490i
\(425\) −9.10439 −0.441628
\(426\) −5.01641 −0.243046
\(427\) 0 0
\(428\) −13.1044 −0.633425
\(429\) −6.98359 3.68133i −0.337171 0.177736i
\(430\) 21.7141 1.04715
\(431\) 5.65375i 0.272331i −0.990686 0.136166i \(-0.956522\pi\)
0.990686 0.136166i \(-0.0434779\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 19.7417 0.948727 0.474363 0.880329i \(-0.342678\pi\)
0.474363 + 0.880329i \(0.342678\pi\)
\(434\) 0 0
\(435\) 4.53579i 0.217474i
\(436\) 7.04399i 0.337346i
\(437\) 6.66492i 0.318827i
\(438\) −3.81047 −0.182071
\(439\) 19.7365 0.941972 0.470986 0.882141i \(-0.343898\pi\)
0.470986 + 0.882141i \(0.343898\pi\)
\(440\) 3.68133i 0.175501i
\(441\) 0 0
\(442\) 13.3627 + 7.04399i 0.635597 + 0.335049i
\(443\) 22.4342 1.06588 0.532941 0.846152i \(-0.321087\pi\)
0.532941 + 0.846152i \(0.321087\pi\)
\(444\) 3.68133i 0.174708i
\(445\) −5.07158 −0.240416
\(446\) −0.258271 −0.0122295
\(447\) 23.4506i 1.10918i
\(448\) 0 0
\(449\) 0.447805i 0.0211332i −0.999944 0.0105666i \(-0.996636\pi\)
0.999944 0.0105666i \(-0.00336352\pi\)
\(450\) 2.17313i 0.102442i
\(451\) 20.4999 0.965301
\(452\) −7.39547 −0.347854
\(453\) 10.0276i 0.471137i
\(454\) −2.25827 −0.105986
\(455\) 0 0
\(456\) 1.17313 0.0549367
\(457\) 12.6373i 0.591150i −0.955320 0.295575i \(-0.904489\pi\)
0.955320 0.295575i \(-0.0955112\pi\)
\(458\) −18.3791 −0.858797
\(459\) 4.18953 0.195551
\(460\) 9.55220i 0.445373i
\(461\) 38.5603i 1.79593i 0.440066 + 0.897965i \(0.354955\pi\)
−0.440066 + 0.897965i \(0.645045\pi\)
\(462\) 0 0
\(463\) 40.1156i 1.86433i 0.362036 + 0.932164i \(0.382082\pi\)
−0.362036 + 0.932164i \(0.617918\pi\)
\(464\) 2.69774 0.125239
\(465\) −12.3791 −0.574066
\(466\) 17.7417i 0.821870i
\(467\) 37.7282 1.74585 0.872926 0.487853i \(-0.162220\pi\)
0.872926 + 0.487853i \(0.162220\pi\)
\(468\) −1.68133 + 3.18953i −0.0777195 + 0.147436i
\(469\) 0 0
\(470\) 4.00000i 0.184506i
\(471\) −18.0932 −0.833691
\(472\) −5.36266 −0.246836
\(473\) 28.2775i 1.30020i
\(474\) 8.37907i 0.384863i
\(475\) 2.54935i 0.116972i
\(476\) 0 0
\(477\) −3.01641 −0.138112
\(478\) −17.0716 −0.780836
\(479\) 23.4559i 1.07173i −0.844305 0.535863i \(-0.819986\pi\)
0.844305 0.535863i \(-0.180014\pi\)
\(480\) −1.68133 −0.0767419
\(481\) −11.7417 6.18953i −0.535377 0.282218i
\(482\) −11.4506 −0.521563
\(483\) 0 0
\(484\) −6.20594 −0.282088
\(485\) −3.36266 −0.152691
\(486\) 1.00000i 0.0453609i
\(487\) 11.4835i 0.520365i 0.965559 + 0.260183i \(0.0837828\pi\)
−0.965559 + 0.260183i \(0.916217\pi\)
\(488\) 0.697737i 0.0315851i
\(489\) 10.0328i 0.453700i
\(490\) 0 0
\(491\) −17.4283 −0.786528 −0.393264 0.919426i \(-0.628654\pi\)
−0.393264 + 0.919426i \(0.628654\pi\)
\(492\) 9.36266i 0.422101i
\(493\) −11.3023 −0.509028
\(494\) 1.97241 3.74173i 0.0887431 0.168348i
\(495\) −3.68133 −0.165464
\(496\) 7.36266i 0.330593i
\(497\) 0 0
\(498\) 3.01641 0.135168
\(499\) 32.2416i 1.44333i 0.692241 + 0.721666i \(0.256623\pi\)
−0.692241 + 0.721666i \(0.743377\pi\)
\(500\) 12.0604i 0.539357i
\(501\) 4.66492i 0.208413i
\(502\) 2.82687i 0.126170i
\(503\) 24.4342 1.08947 0.544734 0.838609i \(-0.316630\pi\)
0.544734 + 0.838609i \(0.316630\pi\)
\(504\) 0 0
\(505\) 15.7417i 0.700498i
\(506\) −12.4395 −0.553002
\(507\) 7.34625 + 10.7253i 0.326259 + 0.476328i
\(508\) −12.1208 −0.537773
\(509\) 28.4067i 1.25910i −0.776959 0.629551i \(-0.783239\pi\)
0.776959 0.629551i \(-0.216761\pi\)
\(510\) 7.04399 0.311913
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 1.17313i 0.0517948i
\(514\) 4.03281i 0.177880i
\(515\) 20.9149i 0.921619i
\(516\) 12.9149 0.568545
\(517\) −5.20905 −0.229094
\(518\) 0 0
\(519\) −15.0716 −0.661569
\(520\) −2.82687 + 5.36266i −0.123967 + 0.235168i
\(521\) 9.77765 0.428367 0.214183 0.976793i \(-0.431291\pi\)
0.214183 + 0.976793i \(0.431291\pi\)
\(522\) 2.69774i 0.118077i
\(523\) −13.1372 −0.574450 −0.287225 0.957863i \(-0.592733\pi\)
−0.287225 + 0.957863i \(0.592733\pi\)
\(524\) −12.6566 −0.552906
\(525\) 0 0
\(526\) 15.8297i 0.690208i
\(527\) 30.8461i 1.34368i
\(528\) 2.18953i 0.0952872i
\(529\) 9.27752 0.403370
\(530\) −5.07158 −0.220295
\(531\) 5.36266i 0.232720i
\(532\) 0 0
\(533\) −29.8625 15.7417i −1.29349 0.681850i
\(534\) −3.01641 −0.130533
\(535\) 22.0328i 0.952562i
\(536\) −15.1044 −0.652410
\(537\) −9.10439 −0.392883
\(538\) 18.7581i 0.808721i
\(539\) 0 0
\(540\) 1.68133i 0.0723530i
\(541\) 9.59335i 0.412450i −0.978505 0.206225i \(-0.933882\pi\)
0.978505 0.206225i \(-0.0661179\pi\)
\(542\) 7.62093 0.327347
\(543\) 9.32985 0.400382
\(544\) 4.18953i 0.179625i
\(545\) −11.8433 −0.507310
\(546\) 0 0
\(547\) −6.03281 −0.257944 −0.128972 0.991648i \(-0.541168\pi\)
−0.128972 + 0.991648i \(0.541168\pi\)
\(548\) 9.58501i 0.409451i
\(549\) −0.697737 −0.0297787
\(550\) 4.75814 0.202888
\(551\) 3.16479i 0.134825i
\(552\) 5.68133i 0.241813i
\(553\) 0 0
\(554\) 18.4342i 0.783196i
\(555\) −6.18953 −0.262731
\(556\) −19.7417 −0.837236
\(557\) 5.74173i 0.243285i 0.992574 + 0.121642i \(0.0388161\pi\)
−0.992574 + 0.121642i \(0.961184\pi\)
\(558\) −7.36266 −0.311686
\(559\) 21.7141 41.1924i 0.918410 1.74225i
\(560\) 0 0
\(561\) 9.17313i 0.387290i
\(562\) −8.03281 −0.338844
\(563\) 30.2447 1.27466 0.637331 0.770590i \(-0.280038\pi\)
0.637331 + 0.770590i \(0.280038\pi\)
\(564\) 2.37907i 0.100177i
\(565\) 12.4342i 0.523112i
\(566\) 14.8461i 0.624029i
\(567\) 0 0
\(568\) −5.01641 −0.210484
\(569\) −43.9505 −1.84250 −0.921251 0.388970i \(-0.872831\pi\)
−0.921251 + 0.388970i \(0.872831\pi\)
\(570\) 1.97241i 0.0826154i
\(571\) −4.69251 −0.196375 −0.0981877 0.995168i \(-0.531305\pi\)
−0.0981877 + 0.995168i \(0.531305\pi\)
\(572\) −6.98359 3.68133i −0.291999 0.153924i
\(573\) −6.43947 −0.269013
\(574\) 0 0
\(575\) −12.3463 −0.514874
\(576\) −1.00000 −0.0416667
\(577\) 17.4835i 0.727846i −0.931429 0.363923i \(-0.881437\pi\)
0.931429 0.363923i \(-0.118563\pi\)
\(578\) 0.552195i 0.0229683i
\(579\) 3.10439i 0.129014i
\(580\) 4.53579i 0.188338i
\(581\) 0 0
\(582\) −2.00000 −0.0829027
\(583\) 6.60453i 0.273531i
\(584\) −3.81047 −0.157678
\(585\) 5.36266 + 2.82687i 0.221719 + 0.116877i
\(586\) 21.7417 0.898143
\(587\) 21.6209i 0.892391i −0.894935 0.446196i \(-0.852779\pi\)
0.894935 0.446196i \(-0.147221\pi\)
\(588\) 0 0
\(589\) 8.63734 0.355895
\(590\) 9.01641i 0.371200i
\(591\) 6.12080i 0.251776i
\(592\) 3.68133i 0.151302i
\(593\) 9.48346i 0.389439i 0.980859 + 0.194719i \(0.0623797\pi\)
−0.980859 + 0.194719i \(0.937620\pi\)
\(594\) −2.18953 −0.0898377
\(595\) 0 0
\(596\) 23.4506i 0.960576i
\(597\) −13.7141 −0.561283
\(598\) 18.1208 + 9.55220i 0.741015 + 0.390618i
\(599\) 12.3515 0.504668 0.252334 0.967640i \(-0.418802\pi\)
0.252334 + 0.967640i \(0.418802\pi\)
\(600\) 2.17313i 0.0887175i
\(601\) 29.2580 1.19346 0.596729 0.802443i \(-0.296467\pi\)
0.596729 + 0.802443i \(0.296467\pi\)
\(602\) 0 0
\(603\) 15.1044i 0.615098i
\(604\) 10.0276i 0.408017i
\(605\) 10.4342i 0.424212i
\(606\) 9.36266i 0.380332i
\(607\) 0.439467 0.0178374 0.00891870 0.999960i \(-0.497161\pi\)
0.00891870 + 0.999960i \(0.497161\pi\)
\(608\) 1.17313 0.0475766
\(609\) 0 0
\(610\) −1.17313 −0.0474985
\(611\) 7.58812 + 4.00000i 0.306982 + 0.161823i
\(612\) 4.18953 0.169352
\(613\) 41.8901i 1.69193i −0.533242 0.845963i \(-0.679026\pi\)
0.533242 0.845963i \(-0.320974\pi\)
\(614\) −27.4835 −1.10914
\(615\) −15.7417 −0.634768
\(616\) 0 0
\(617\) 35.4147i 1.42574i −0.701295 0.712872i \(-0.747394\pi\)
0.701295 0.712872i \(-0.252606\pi\)
\(618\) 12.4395i 0.500389i
\(619\) 5.55220i 0.223162i 0.993755 + 0.111581i \(0.0355914\pi\)
−0.993755 + 0.111581i \(0.964409\pi\)
\(620\) −12.3791 −0.497155
\(621\) 5.68133 0.227984
\(622\) 6.29108i 0.252249i
\(623\) 0 0
\(624\) −1.68133 + 3.18953i −0.0673071 + 0.127684i
\(625\) −9.41188 −0.376475
\(626\) 32.4342i 1.29633i
\(627\) 2.56860 0.102580
\(628\) −18.0932 −0.721998
\(629\) 15.4231i 0.614958i
\(630\) 0 0
\(631\) 28.8737i 1.14944i 0.818349 + 0.574722i \(0.194890\pi\)
−0.818349 + 0.574722i \(0.805110\pi\)
\(632\) 8.37907i 0.333301i
\(633\) −3.46421 −0.137690
\(634\) 29.7417 1.18119
\(635\) 20.3791i 0.808719i
\(636\) −3.01641 −0.119608
\(637\) 0 0
\(638\) 5.90679 0.233852
\(639\) 5.01641i 0.198446i
\(640\) −1.68133 −0.0664604
\(641\) 5.22519 0.206383 0.103191 0.994662i \(-0.467095\pi\)
0.103191 + 0.994662i \(0.467095\pi\)
\(642\) 13.1044i 0.517189i
\(643\) 32.2775i 1.27290i 0.771318 + 0.636451i \(0.219598\pi\)
−0.771318 + 0.636451i \(0.780402\pi\)
\(644\) 0 0
\(645\) 21.7141i 0.854994i
\(646\) −4.91486 −0.193372
\(647\) −42.5878 −1.67430 −0.837151 0.546973i \(-0.815780\pi\)
−0.837151 + 0.546973i \(0.815780\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −11.7417 −0.460903
\(650\) −6.93126 3.65375i −0.271867 0.143312i
\(651\) 0 0
\(652\) 10.0328i 0.392915i
\(653\) 18.0604 0.706758 0.353379 0.935480i \(-0.385033\pi\)
0.353379 + 0.935480i \(0.385033\pi\)
\(654\) −7.04399 −0.275442
\(655\) 21.2799i 0.831475i
\(656\) 9.36266i 0.365551i
\(657\) 3.81047i 0.148660i
\(658\) 0 0
\(659\) 34.1760 1.33131 0.665653 0.746261i \(-0.268153\pi\)
0.665653 + 0.746261i \(0.268153\pi\)
\(660\) −3.68133 −0.143296
\(661\) 12.4671i 0.484912i 0.970162 + 0.242456i \(0.0779530\pi\)
−0.970162 + 0.242456i \(0.922047\pi\)
\(662\) 25.3955 0.987023
\(663\) 7.04399 13.3627i 0.273566 0.518963i
\(664\) 3.01641 0.117059
\(665\) 0 0
\(666\) −3.68133 −0.142649
\(667\) −15.3267 −0.593454
\(668\) 4.66492i 0.180491i
\(669\) 0.258271i 0.00998532i
\(670\) 25.3955i 0.981113i
\(671\) 1.52772i 0.0589770i
\(672\) 0 0
\(673\) −33.5850 −1.29461 −0.647303 0.762232i \(-0.724103\pi\)
−0.647303 + 0.762232i \(0.724103\pi\)
\(674\) 10.4806i 0.403698i
\(675\) −2.17313 −0.0836437
\(676\) 7.34625 + 10.7253i 0.282548 + 0.412512i
\(677\) −41.1700 −1.58229 −0.791146 0.611627i \(-0.790515\pi\)
−0.791146 + 0.611627i \(0.790515\pi\)
\(678\) 7.39547i 0.284021i
\(679\) 0 0
\(680\) 7.04399 0.270125
\(681\) 2.25827i 0.0865371i
\(682\) 16.1208i 0.617297i
\(683\) 4.22235i 0.161564i −0.996732 0.0807818i \(-0.974258\pi\)
0.996732 0.0807818i \(-0.0257417\pi\)
\(684\) 1.17313i 0.0448556i
\(685\) −16.1156 −0.615744
\(686\) 0 0
\(687\) 18.3791i 0.701205i
\(688\) 12.9149 0.492374
\(689\) −5.07158 + 9.62093i −0.193212 + 0.366528i
\(690\) 9.55220 0.363646
\(691\) 9.27468i 0.352825i −0.984316 0.176413i \(-0.943551\pi\)
0.984316 0.176413i \(-0.0564493\pi\)
\(692\) −15.0716 −0.572935
\(693\) 0 0
\(694\) 19.7089i 0.748140i
\(695\) 33.1924i 1.25906i
\(696\) 2.69774i 0.102257i
\(697\) 39.2252i 1.48576i
\(698\) −0.467052 −0.0176782
\(699\) −17.7417 −0.671054
\(700\) 0 0
\(701\) −39.9505 −1.50891 −0.754455 0.656352i \(-0.772099\pi\)
−0.754455 + 0.656352i \(0.772099\pi\)
\(702\) 3.18953 + 1.68133i 0.120381 + 0.0634577i
\(703\) 4.31867 0.162882
\(704\) 2.18953i 0.0825212i
\(705\) 4.00000 0.150649
\(706\) 31.1372 1.17186
\(707\) 0 0
\(708\) 5.36266i 0.201541i
\(709\) 2.73578i 0.102744i −0.998680 0.0513722i \(-0.983641\pi\)
0.998680 0.0513722i \(-0.0163595\pi\)
\(710\) 8.43424i 0.316531i
\(711\) 8.37907 0.314240
\(712\) −3.01641 −0.113045
\(713\) 41.8297i 1.56654i
\(714\) 0 0
\(715\) −6.18953 + 11.7417i −0.231475 + 0.439116i
\(716\) −9.10439 −0.340247
\(717\) 17.0716i 0.637550i
\(718\) 8.12080 0.303065
\(719\) 6.84612 0.255317 0.127659 0.991818i \(-0.459254\pi\)
0.127659 + 0.991818i \(0.459254\pi\)
\(720\) 1.68133i 0.0626595i
\(721\) 0 0
\(722\) 17.6238i 0.655889i
\(723\) 11.4506i 0.425854i
\(724\) 9.32985 0.346741
\(725\) 5.86253 0.217729
\(726\) 6.20594i 0.230324i
\(727\) 45.2528 1.67833 0.839166 0.543875i \(-0.183043\pi\)
0.839166 + 0.543875i \(0.183043\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 6.40665i 0.237121i
\(731\) −54.1072 −2.00123
\(732\) −0.697737 −0.0257891
\(733\) 32.7909i 1.21116i −0.795784 0.605581i \(-0.792941\pi\)
0.795784 0.605581i \(-0.207059\pi\)
\(734\) 11.4835i 0.423862i
\(735\) 0 0
\(736\) 5.68133i 0.209417i
\(737\) −33.0716 −1.21821
\(738\) −9.36266 −0.344644
\(739\) 40.1760i 1.47790i −0.673762 0.738948i \(-0.735323\pi\)
0.673762 0.738948i \(-0.264677\pi\)
\(740\) −6.18953 −0.227532
\(741\) −3.74173 1.97241i −0.137456 0.0724585i
\(742\) 0 0
\(743\) 48.6758i 1.78574i 0.450311 + 0.892872i \(0.351313\pi\)
−0.450311 + 0.892872i \(0.648687\pi\)
\(744\) −7.36266 −0.269928
\(745\) 39.4283 1.44454
\(746\) 11.3955i 0.417218i
\(747\) 3.01641i 0.110365i
\(748\) 9.17313i 0.335403i
\(749\) 0 0
\(750\) −12.0604 −0.440383
\(751\) −23.1044 −0.843091 −0.421546 0.906807i \(-0.638512\pi\)
−0.421546 + 0.906807i \(0.638512\pi\)
\(752\) 2.37907i 0.0867557i
\(753\) −2.82687 −0.103017
\(754\) −8.60453 4.53579i −0.313358 0.165184i
\(755\) 16.8597 0.613587
\(756\) 0 0
\(757\) −38.2968 −1.39192 −0.695960 0.718081i \(-0.745021\pi\)
−0.695960 + 0.718081i \(0.745021\pi\)
\(758\) −14.3463 −0.521079
\(759\) 12.4395i 0.451524i
\(760\) 1.97241i 0.0715470i
\(761\) 30.2583i 1.09686i 0.836196 + 0.548431i \(0.184775\pi\)
−0.836196 + 0.548431i \(0.815225\pi\)
\(762\) 12.1208i 0.439090i
\(763\) 0 0
\(764\) −6.43947 −0.232972
\(765\) 7.04399i 0.254676i
\(766\) 5.36789 0.193950
\(767\) 17.1044 + 9.01641i 0.617604 + 0.325564i
\(768\) −1.00000 −0.0360844
\(769\) 40.1895i 1.44927i −0.689132 0.724636i \(-0.742008\pi\)
0.689132 0.724636i \(-0.257992\pi\)
\(770\) 0 0
\(771\) −4.03281 −0.145238
\(772\) 3.10439i 0.111729i
\(773\) 5.73650i 0.206328i 0.994664 + 0.103164i \(0.0328966\pi\)
−0.994664 + 0.103164i \(0.967103\pi\)
\(774\) 12.9149i 0.464215i
\(775\) 16.0000i 0.574737i
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) 14.4342i 0.517493i
\(779\) 10.9836 0.393528
\(780\) 5.36266 + 2.82687i 0.192014 + 0.101218i
\(781\) −10.9836 −0.393024
\(782\) 23.8021i 0.851162i
\(783\) −2.69774 −0.0964093
\(784\) 0 0
\(785\) 30.4207i 1.08576i
\(786\) 12.6566i 0.451445i
\(787\) 9.61782i 0.342838i 0.985198 + 0.171419i \(0.0548352\pi\)
−0.985198 + 0.171419i \(0.945165\pi\)
\(788\) 6.12080i 0.218044i
\(789\) 15.8297 0.563553
\(790\) 14.0880 0.501228
\(791\) 0 0
\(792\) −2.18953 −0.0778017
\(793\) −1.17313 + 2.22546i −0.0416590 + 0.0790283i
\(794\) 12.6045 0.447318
\(795\) 5.07158i 0.179870i
\(796\) −13.7141 −0.486085
\(797\) 3.58812 0.127098 0.0635488 0.997979i \(-0.479758\pi\)
0.0635488 + 0.997979i \(0.479758\pi\)
\(798\) 0 0
\(799\) 9.96719i 0.352614i
\(800\) 2.17313i 0.0768317i
\(801\) 3.01641i 0.106579i
\(802\) 4.72532 0.166857
\(803\) −8.34314 −0.294423
\(804\) 15.1044i 0.532691i
\(805\) 0 0
\(806\) −12.3791 + 23.4835i −0.436034 + 0.827170i
\(807\) 18.7581 0.660318
\(808\) 9.36266i 0.329377i
\(809\) 48.4671 1.70401 0.852005 0.523533i \(-0.175386\pi\)
0.852005 + 0.523533i \(0.175386\pi\)
\(810\) 1.68133 0.0590759
\(811\) 33.7938i 1.18666i −0.804959 0.593330i \(-0.797813\pi\)
0.804959 0.593330i \(-0.202187\pi\)
\(812\) 0 0
\(813\) 7.62093i 0.267278i
\(814\) 8.06040i 0.282517i
\(815\) −16.8685 −0.590877
\(816\) 4.18953 0.146663
\(817\) 15.1508i 0.530058i
\(818\) −31.6074 −1.10513
\(819\) 0 0
\(820\) −15.7417 −0.549725
\(821\) 15.1372i 0.528292i −0.964483 0.264146i \(-0.914910\pi\)
0.964483 0.264146i \(-0.0850901\pi\)
\(822\) −9.58501 −0.334316
\(823\) 25.3955 0.885231 0.442615 0.896712i \(-0.354051\pi\)
0.442615 + 0.896712i \(0.354051\pi\)
\(824\) 12.4395i 0.433349i
\(825\) 4.75814i 0.165657i
\(826\) 0 0
\(827\) 26.4311i 0.919100i 0.888152 + 0.459550i \(0.151989\pi\)
−0.888152 + 0.459550i \(0.848011\pi\)
\(828\) 5.68133 0.197440
\(829\) −4.57694 −0.158964 −0.0794818 0.996836i \(-0.525327\pi\)
−0.0794818 + 0.996836i \(0.525327\pi\)
\(830\) 5.07158i 0.176037i
\(831\) −18.4342 −0.639477
\(832\) −1.68133 + 3.18953i −0.0582897 + 0.110577i
\(833\) 0 0
\(834\) 19.7417i 0.683600i
\(835\) −7.84328 −0.271428
\(836\) 2.56860 0.0888370
\(837\) 7.36266i 0.254491i
\(838\) 21.9313i 0.757603i
\(839\) 56.5222i 1.95136i 0.219191 + 0.975682i \(0.429658\pi\)
−0.219191 + 0.975682i \(0.570342\pi\)
\(840\) 0 0
\(841\) −21.7222 −0.749042
\(842\) −15.4283 −0.531694
\(843\) 8.03281i 0.276665i
\(844\) −3.46421 −0.119243
\(845\) 18.0328 12.3515i 0.620348 0.424904i
\(846\) 2.37907 0.0817940
\(847\) 0 0
\(848\) −3.01641 −0.103584
\(849\) −14.8461 −0.509518
\(850\) 9.10439i 0.312278i
\(851\) 20.9149i 0.716952i
\(852\) 5.01641i 0.171859i
\(853\) 34.3791i 1.17712i −0.808455 0.588558i \(-0.799696\pi\)
0.808455 0.588558i \(-0.200304\pi\)
\(854\) 0 0
\(855\) −1.97241 −0.0674552
\(856\) 13.1044i 0.447899i
\(857\) −16.5494 −0.565315 −0.282658 0.959221i \(-0.591216\pi\)
−0.282658 + 0.959221i \(0.591216\pi\)
\(858\) −3.68133 + 6.98359i −0.125679 + 0.238416i
\(859\) −29.1372 −0.994149 −0.497074 0.867708i \(-0.665592\pi\)
−0.497074 + 0.867708i \(0.665592\pi\)
\(860\) 21.7141i 0.740446i
\(861\) 0 0
\(862\) −5.65375 −0.192567
\(863\) 10.9836i 0.373886i 0.982371 + 0.186943i \(0.0598579\pi\)
−0.982371 + 0.186943i \(0.940142\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 25.3403i 0.861596i
\(866\) 19.7417i 0.670851i
\(867\) −0.552195 −0.0187535
\(868\) 0 0
\(869\) 18.3463i 0.622354i
\(870\) −4.53579 −0.153778
\(871\) 48.1760 + 25.3955i 1.63238 + 0.860493i
\(872\) −7.04399 −0.238540
\(873\) 2.00000i 0.0676897i
\(874\) −6.66492 −0.225444
\(875\) 0 0
\(876\) 3.81047i 0.128744i
\(877\) 0.637339i 0.0215214i 0.999942 + 0.0107607i \(0.00342530\pi\)
−0.999942 + 0.0107607i \(0.996575\pi\)
\(878\) 19.7365i 0.666075i
\(879\) 21.7417i 0.733330i
\(880\) −3.68133 −0.124098
\(881\) 27.4699 0.925484 0.462742 0.886493i \(-0.346866\pi\)
0.462742 + 0.886493i \(0.346866\pi\)
\(882\) 0 0
\(883\) −18.6342 −0.627092 −0.313546 0.949573i \(-0.601517\pi\)
−0.313546 + 0.949573i \(0.601517\pi\)
\(884\) 7.04399 13.3627i 0.236915 0.449435i
\(885\) 9.01641 0.303083
\(886\) 22.4342i 0.753693i
\(887\) 31.3627 1.05306 0.526528 0.850158i \(-0.323494\pi\)
0.526528 + 0.850158i \(0.323494\pi\)
\(888\) −3.68133 −0.123537
\(889\) 0 0
\(890\) 5.07158i 0.170000i
\(891\) 2.18953i 0.0733521i
\(892\) 0.258271i 0.00864754i
\(893\) −2.79095 −0.0933956
\(894\) 23.4506 0.784307
\(895\) 15.3075i 0.511673i
\(896\) 0 0
\(897\) 9.55220 18.1208i 0.318939 0.605036i
\(898\) −0.447805 −0.0149434
\(899\) 19.8625i 0.662452i
\(900\) −2.17313 −0.0724376
\(901\) 12.6373 0.421011
\(902\) 20.4999i 0.682571i
\(903\) 0 0
\(904\) 7.39547i 0.245970i
\(905\) 15.6866i 0.521439i
\(906\) 10.0276 0.333144
\(907\) −34.7253 −1.15304 −0.576518 0.817085i \(-0.695589\pi\)
−0.576518 + 0.817085i \(0.695589\pi\)
\(908\) 2.25827i 0.0749433i
\(909\) −9.36266 −0.310540
\(910\) 0 0
\(911\) −28.4723 −0.943329 −0.471664 0.881778i \(-0.656347\pi\)
−0.471664 + 0.881778i \(0.656347\pi\)
\(912\) 1.17313i 0.0388461i
\(913\) 6.60453 0.218578
\(914\) −12.6373 −0.418006
\(915\) 1.17313i 0.0387824i
\(916\) 18.3791i 0.607262i
\(917\) 0 0
\(918\) 4.18953i 0.138275i
\(919\) 18.3463 0.605187 0.302594 0.953120i \(-0.402148\pi\)
0.302594 + 0.953120i \(0.402148\pi\)
\(920\) 9.55220 0.314927
\(921\) 27.4835i 0.905611i
\(922\) 38.5603 1.26991
\(923\) 16.0000 + 8.43424i 0.526646 + 0.277616i
\(924\) 0 0
\(925\) 8.00000i 0.263038i
\(926\) 40.1156 1.31828
\(927\) −12.4395 −0.408566
\(928\) 2.69774i 0.0885576i
\(929\) 3.96719i 0.130159i 0.997880 + 0.0650796i \(0.0207301\pi\)
−0.997880 + 0.0650796i \(0.979270\pi\)
\(930\) 12.3791i 0.405926i
\(931\) 0 0
\(932\) −17.7417 −0.581150
\(933\) 6.29108 0.205961
\(934\) 37.7282i 1.23450i
\(935\) 15.4231 0.504388
\(936\) 3.18953 + 1.68133i 0.104253 + 0.0549560i
\(937\) 40.6373 1.32756 0.663782 0.747926i \(-0.268950\pi\)
0.663782 + 0.747926i \(0.268950\pi\)
\(938\) 0 0
\(939\) 32.4342 1.05845
\(940\) 4.00000 0.130466
\(941\) 25.7417i 0.839156i −0.907719 0.419578i \(-0.862178\pi\)
0.907719 0.419578i \(-0.137822\pi\)
\(942\) 18.0932i 0.589509i
\(943\) 53.1924i 1.73218i
\(944\) 5.36266i 0.174540i
\(945\) 0 0
\(946\) 28.2775 0.919381
\(947\) 41.2283i 1.33974i −0.742479 0.669870i \(-0.766350\pi\)
0.742479 0.669870i \(-0.233650\pi\)
\(948\) 8.37907 0.272139
\(949\) 12.1536 + 6.40665i 0.394523 + 0.207969i
\(950\) 2.54935 0.0827120
\(951\) 29.7417i 0.964442i
\(952\) 0 0
\(953\) −5.04922 −0.163560 −0.0817801 0.996650i \(-0.526061\pi\)
−0.0817801 + 0.996650i \(0.526061\pi\)
\(954\) 3.01641i 0.0976598i
\(955\) 10.8269i 0.350349i
\(956\) 17.0716i 0.552134i
\(957\) 5.90679i 0.190939i
\(958\) −23.4559 −0.757825
\(959\) 0 0
\(960\) 1.68133i 0.0542647i
\(961\) −23.2088 −0.748670
\(962\) −6.18953 + 11.7417i −0.199559 + 0.378569i
\(963\) 13.1044 0.422283
\(964\) 11.4506i 0.368800i
\(965\) −5.21951 −0.168022
\(966\) 0 0
\(967\) 3.48869i 0.112189i 0.998425 + 0.0560943i \(0.0178647\pi\)
−0.998425 + 0.0560943i \(0.982135\pi\)
\(968\) 6.20594i 0.199466i
\(969\) 4.91486i 0.157888i
\(970\) 3.36266i 0.107969i
\(971\) −37.3850 −1.19974 −0.599871 0.800097i \(-0.704782\pi\)
−0.599871 + 0.800097i \(0.704782\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 11.4835 0.367954
\(975\) −3.65375 + 6.93126i −0.117014 + 0.221978i
\(976\) −0.697737 −0.0223340
\(977\) 6.92531i 0.221560i 0.993845 + 0.110780i \(0.0353350\pi\)
−0.993845 + 0.110780i \(0.964665\pi\)
\(978\) −10.0328 −0.320814
\(979\) −6.60453 −0.211082
\(980\) 0 0
\(981\) 7.04399i 0.224897i
\(982\) 17.4283i 0.556159i
\(983\) 25.6647i 0.818575i −0.912405 0.409288i \(-0.865777\pi\)
0.912405 0.409288i \(-0.134223\pi\)
\(984\) −9.36266 −0.298471
\(985\) 10.2911 0.327901
\(986\) 11.3023i 0.359937i
\(987\) 0 0
\(988\) −3.74173 1.97241i −0.119040 0.0627509i
\(989\) −73.3736 −2.33314
\(990\) 3.68133i 0.117000i
\(991\) 1.96719 0.0624897 0.0312449 0.999512i \(-0.490053\pi\)
0.0312449 + 0.999512i \(0.490053\pi\)
\(992\) −7.36266 −0.233765
\(993\) 25.3955i 0.805901i
\(994\) 0 0
\(995\) 23.0580i 0.730988i
\(996\) 3.01641i 0.0955785i
\(997\) 15.6043 0.494192 0.247096 0.968991i \(-0.420524\pi\)
0.247096 + 0.968991i \(0.420524\pi\)
\(998\) 32.2416 1.02059
\(999\) 3.68133i 0.116472i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3822.2.c.i.883.3 6
7.6 odd 2 3822.2.c.l.883.1 yes 6
13.12 even 2 inner 3822.2.c.i.883.4 yes 6
91.90 odd 2 3822.2.c.l.883.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3822.2.c.i.883.3 6 1.1 even 1 trivial
3822.2.c.i.883.4 yes 6 13.12 even 2 inner
3822.2.c.l.883.1 yes 6 7.6 odd 2
3822.2.c.l.883.6 yes 6 91.90 odd 2