# Properties

 Label 3822.2.a.f Level $3822$ Weight $2$ Character orbit 3822.a Self dual yes Analytic conductor $30.519$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3822,2,Mod(1,3822)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3822, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3822.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3822.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$30.5188236525$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 546) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 - q^3 + q^4 + q^5 + q^6 - q^8 + q^9 $$q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - 3 q^{11} - q^{12} - q^{13} - q^{15} + q^{16} - 2 q^{17} - q^{18} + q^{20} + 3 q^{22} + 6 q^{23} + q^{24} - 4 q^{25} + q^{26} - q^{27} + 9 q^{29} + q^{30} + 5 q^{31} - q^{32} + 3 q^{33} + 2 q^{34} + q^{36} - 8 q^{37} + q^{39} - q^{40} - 4 q^{41} - 3 q^{44} + q^{45} - 6 q^{46} - q^{48} + 4 q^{50} + 2 q^{51} - q^{52} + q^{53} + q^{54} - 3 q^{55} - 9 q^{58} - 7 q^{59} - q^{60} - 4 q^{61} - 5 q^{62} + q^{64} - q^{65} - 3 q^{66} - 4 q^{67} - 2 q^{68} - 6 q^{69} + 6 q^{71} - q^{72} + 6 q^{73} + 8 q^{74} + 4 q^{75} - q^{78} - 13 q^{79} + q^{80} + q^{81} + 4 q^{82} - 3 q^{83} - 2 q^{85} - 9 q^{87} + 3 q^{88} - 8 q^{89} - q^{90} + 6 q^{92} - 5 q^{93} + q^{96} - 15 q^{97} - 3 q^{99}+O(q^{100})$$ q - q^2 - q^3 + q^4 + q^5 + q^6 - q^8 + q^9 - q^10 - 3 * q^11 - q^12 - q^13 - q^15 + q^16 - 2 * q^17 - q^18 + q^20 + 3 * q^22 + 6 * q^23 + q^24 - 4 * q^25 + q^26 - q^27 + 9 * q^29 + q^30 + 5 * q^31 - q^32 + 3 * q^33 + 2 * q^34 + q^36 - 8 * q^37 + q^39 - q^40 - 4 * q^41 - 3 * q^44 + q^45 - 6 * q^46 - q^48 + 4 * q^50 + 2 * q^51 - q^52 + q^53 + q^54 - 3 * q^55 - 9 * q^58 - 7 * q^59 - q^60 - 4 * q^61 - 5 * q^62 + q^64 - q^65 - 3 * q^66 - 4 * q^67 - 2 * q^68 - 6 * q^69 + 6 * q^71 - q^72 + 6 * q^73 + 8 * q^74 + 4 * q^75 - q^78 - 13 * q^79 + q^80 + q^81 + 4 * q^82 - 3 * q^83 - 2 * q^85 - 9 * q^87 + 3 * q^88 - 8 * q^89 - q^90 + 6 * q^92 - 5 * q^93 + q^96 - 15 * q^97 - 3 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 1.00000 1.00000 0 −1.00000 1.00000 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$3$$ $$+1$$
$$7$$ $$+1$$
$$13$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.a.f 1
7.b odd 2 1 3822.2.a.l 1
7.c even 3 2 546.2.i.f 2
21.h odd 6 2 1638.2.j.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.f 2 7.c even 3 2
1638.2.j.e 2 21.h odd 6 2
3822.2.a.f 1 1.a even 1 1 trivial
3822.2.a.l 1 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3822))$$:

 $$T_{5} - 1$$ T5 - 1 $$T_{11} + 3$$ T11 + 3 $$T_{17} + 2$$ T17 + 2 $$T_{29} - 9$$ T29 - 9

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T + 1$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T + 3$$
$13$ $$T + 1$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T - 6$$
$29$ $$T - 9$$
$31$ $$T - 5$$
$37$ $$T + 8$$
$41$ $$T + 4$$
$43$ $$T$$
$47$ $$T$$
$53$ $$T - 1$$
$59$ $$T + 7$$
$61$ $$T + 4$$
$67$ $$T + 4$$
$71$ $$T - 6$$
$73$ $$T - 6$$
$79$ $$T + 13$$
$83$ $$T + 3$$
$89$ $$T + 8$$
$97$ $$T + 15$$