Defining parameters
Level: | \( N \) | \(=\) | \( 381 = 3 \cdot 127 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 381.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(85\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(381))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 21 | 23 |
Cusp forms | 41 | 21 | 20 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(127\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(6\) | |
Minus space | \(-\) | \(15\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(381))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 3 | 127 | |||||||
381.2.a.a | \(1\) | \(3.042\) | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-2\) | \(-\) | \(-\) | \(q+q^{3}-2q^{4}-q^{5}-2q^{7}+q^{9}-4q^{11}+\cdots\) | |
381.2.a.b | \(1\) | \(3.042\) | \(\Q\) | None | \(2\) | \(1\) | \(3\) | \(-4\) | \(-\) | \(+\) | \(q+2q^{2}+q^{3}+2q^{4}+3q^{5}+2q^{6}+\cdots\) | |
381.2.a.c | \(5\) | \(3.042\) | 5.5.81509.1 | None | \(-1\) | \(-5\) | \(-5\) | \(0\) | \(+\) | \(+\) | \(q-\beta _{1}q^{2}-q^{3}+\beta _{2}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\) | |
381.2.a.d | \(5\) | \(3.042\) | 5.5.246832.1 | None | \(2\) | \(-5\) | \(1\) | \(0\) | \(+\) | \(-\) | \(q+\beta _{2}q^{2}-q^{3}+(\beta _{1}+\beta _{2}+\beta _{3}+\beta _{4})q^{4}+\cdots\) | |
381.2.a.e | \(9\) | \(3.042\) | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-2\) | \(9\) | \(-4\) | \(10\) | \(-\) | \(+\) | \(q-\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}-\beta _{5}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(381))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(381)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 2}\)