Properties

Label 38.4.a
Level $38$
Weight $4$
Character orbit 38.a
Rep. character $\chi_{38}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $20$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 38.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(20\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(38))\).

Total New Old
Modular forms 17 5 12
Cusp forms 13 5 8
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(1\)

Trace form

\( 5 q - 2 q^{2} + 8 q^{3} + 20 q^{4} - 8 q^{5} + 20 q^{6} + 8 q^{7} - 8 q^{8} + 35 q^{9} - 20 q^{10} + 50 q^{11} + 32 q^{12} - 22 q^{13} - 88 q^{14} - 304 q^{15} + 80 q^{16} - 62 q^{17} + 22 q^{18} + 19 q^{19}+ \cdots - 826 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(38))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 19
38.4.a.a 38.a 1.a $1$ $2.242$ \(\Q\) None 38.4.a.a \(-2\) \(-2\) \(-9\) \(-31\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-2q^{3}+4q^{4}-9q^{5}+4q^{6}+\cdots\)
38.4.a.b 38.a 1.a $2$ $2.242$ \(\Q(\sqrt{177}) \) None 38.4.a.b \(-4\) \(1\) \(10\) \(57\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta )q^{3}+4q^{4}+(4+2\beta )q^{5}+\cdots\)
38.4.a.c 38.a 1.a $2$ $2.242$ \(\Q(\sqrt{73}) \) None 38.4.a.c \(4\) \(9\) \(-9\) \(-18\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(5-\beta )q^{3}+4q^{4}+(-6+3\beta )q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(38))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(38)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)