Properties

Label 3751.2.bj
Level $3751$
Weight $2$
Character orbit 3751.bj
Rep. character $\chi_{3751}(366,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $2240$
Sturm bound $704$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3751 = 11^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3751.bj (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 341 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3751, [\chi])\).

Total New Old
Modular forms 2912 2368 544
Cusp forms 2720 2240 480
Eisenstein series 192 128 64

Trace form

\( 2240 q + 12 q^{2} + 7 q^{3} - 532 q^{4} + q^{5} + 3 q^{6} - q^{7} - 4 q^{8} + 271 q^{9} + 12 q^{10} - 106 q^{12} + q^{13} + 11 q^{14} + 68 q^{15} - 500 q^{16} - 3 q^{17} + 27 q^{18} + 3 q^{19} - 45 q^{20}+ \cdots + 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3751, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3751, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3751, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(341, [\chi])\)\(^{\oplus 2}\)