Properties

Label 3750.2.c.e.1249.7
Level $3750$
Weight $2$
Character 3750.1249
Analytic conductor $29.944$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3750,2,Mod(1249,3750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3750, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3750.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,-8,0,0,-8,0,-20,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.7
Root \(-0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 3750.1249
Dual form 3750.2.c.e.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} -0.273457i q^{7} -1.00000i q^{8} -1.00000 q^{9} -4.79360 q^{11} -1.00000i q^{12} -1.73311i q^{13} +0.273457 q^{14} +1.00000 q^{16} +1.89149i q^{17} -1.00000i q^{18} +3.01062 q^{19} +0.273457 q^{21} -4.79360i q^{22} +4.64584i q^{23} +1.00000 q^{24} +1.73311 q^{26} -1.00000i q^{27} +0.273457i q^{28} -9.08715 q^{29} +3.83390 q^{31} +1.00000i q^{32} -4.79360i q^{33} -1.89149 q^{34} +1.00000 q^{36} -9.00947i q^{37} +3.01062i q^{38} +1.73311 q^{39} -7.58064 q^{41} +0.273457i q^{42} +2.88963i q^{43} +4.79360 q^{44} -4.64584 q^{46} -1.18806i q^{47} +1.00000i q^{48} +6.92522 q^{49} -1.89149 q^{51} +1.73311i q^{52} -11.6150i q^{53} +1.00000 q^{54} -0.273457 q^{56} +3.01062i q^{57} -9.08715i q^{58} +14.2895 q^{59} -5.15131 q^{61} +3.83390i q^{62} +0.273457i q^{63} -1.00000 q^{64} +4.79360 q^{66} -6.29000i q^{67} -1.89149i q^{68} -4.64584 q^{69} -1.40217 q^{71} +1.00000i q^{72} +1.78112i q^{73} +9.00947 q^{74} -3.01062 q^{76} +1.31085i q^{77} +1.73311i q^{78} +16.0593 q^{79} +1.00000 q^{81} -7.58064i q^{82} -15.1392i q^{83} -0.273457 q^{84} -2.88963 q^{86} -9.08715i q^{87} +4.79360i q^{88} +14.8273 q^{89} -0.473931 q^{91} -4.64584i q^{92} +3.83390i q^{93} +1.18806 q^{94} -1.00000 q^{96} +5.88597i q^{97} +6.92522i q^{98} +4.79360 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{6} - 8 q^{9} - 20 q^{11} + 8 q^{14} + 8 q^{16} + 12 q^{19} + 8 q^{21} + 8 q^{24} + 4 q^{26} + 28 q^{29} - 36 q^{31} - 12 q^{34} + 8 q^{36} + 4 q^{39} - 28 q^{41} + 20 q^{44} + 8 q^{49}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3750\mathbb{Z}\right)^\times\).

\(n\) \(2501\) \(3127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) − 0.273457i − 0.103357i −0.998664 0.0516786i \(-0.983543\pi\)
0.998664 0.0516786i \(-0.0164571\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.79360 −1.44533 −0.722663 0.691200i \(-0.757082\pi\)
−0.722663 + 0.691200i \(0.757082\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) − 1.73311i − 0.480677i −0.970689 0.240339i \(-0.922741\pi\)
0.970689 0.240339i \(-0.0772585\pi\)
\(14\) 0.273457 0.0730846
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.89149i 0.458754i 0.973338 + 0.229377i \(0.0736689\pi\)
−0.973338 + 0.229377i \(0.926331\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) 3.01062 0.690684 0.345342 0.938477i \(-0.387763\pi\)
0.345342 + 0.938477i \(0.387763\pi\)
\(20\) 0 0
\(21\) 0.273457 0.0596733
\(22\) − 4.79360i − 1.02200i
\(23\) 4.64584i 0.968725i 0.874867 + 0.484362i \(0.160948\pi\)
−0.874867 + 0.484362i \(0.839052\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 1.73311 0.339890
\(27\) − 1.00000i − 0.192450i
\(28\) 0.273457i 0.0516786i
\(29\) −9.08715 −1.68744 −0.843721 0.536782i \(-0.819640\pi\)
−0.843721 + 0.536782i \(0.819640\pi\)
\(30\) 0 0
\(31\) 3.83390 0.688589 0.344294 0.938862i \(-0.388118\pi\)
0.344294 + 0.938862i \(0.388118\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 4.79360i − 0.834459i
\(34\) −1.89149 −0.324388
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 9.00947i − 1.48115i −0.671975 0.740574i \(-0.734554\pi\)
0.671975 0.740574i \(-0.265446\pi\)
\(38\) 3.01062i 0.488387i
\(39\) 1.73311 0.277519
\(40\) 0 0
\(41\) −7.58064 −1.18390 −0.591949 0.805976i \(-0.701641\pi\)
−0.591949 + 0.805976i \(0.701641\pi\)
\(42\) 0.273457i 0.0421954i
\(43\) 2.88963i 0.440664i 0.975425 + 0.220332i \(0.0707141\pi\)
−0.975425 + 0.220332i \(0.929286\pi\)
\(44\) 4.79360 0.722663
\(45\) 0 0
\(46\) −4.64584 −0.684992
\(47\) − 1.18806i − 0.173296i −0.996239 0.0866480i \(-0.972384\pi\)
0.996239 0.0866480i \(-0.0276155\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 6.92522 0.989317
\(50\) 0 0
\(51\) −1.89149 −0.264862
\(52\) 1.73311i 0.240339i
\(53\) − 11.6150i − 1.59545i −0.603025 0.797723i \(-0.706038\pi\)
0.603025 0.797723i \(-0.293962\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −0.273457 −0.0365423
\(57\) 3.01062i 0.398767i
\(58\) − 9.08715i − 1.19320i
\(59\) 14.2895 1.86033 0.930167 0.367138i \(-0.119662\pi\)
0.930167 + 0.367138i \(0.119662\pi\)
\(60\) 0 0
\(61\) −5.15131 −0.659558 −0.329779 0.944058i \(-0.606974\pi\)
−0.329779 + 0.944058i \(0.606974\pi\)
\(62\) 3.83390i 0.486906i
\(63\) 0.273457i 0.0344524i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.79360 0.590052
\(67\) − 6.29000i − 0.768446i −0.923240 0.384223i \(-0.874469\pi\)
0.923240 0.384223i \(-0.125531\pi\)
\(68\) − 1.89149i − 0.229377i
\(69\) −4.64584 −0.559294
\(70\) 0 0
\(71\) −1.40217 −0.166407 −0.0832034 0.996533i \(-0.526515\pi\)
−0.0832034 + 0.996533i \(0.526515\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 1.78112i 0.208464i 0.994553 + 0.104232i \(0.0332385\pi\)
−0.994553 + 0.104232i \(0.966762\pi\)
\(74\) 9.00947 1.04733
\(75\) 0 0
\(76\) −3.01062 −0.345342
\(77\) 1.31085i 0.149385i
\(78\) 1.73311i 0.196236i
\(79\) 16.0593 1.80682 0.903409 0.428780i \(-0.141057\pi\)
0.903409 + 0.428780i \(0.141057\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 7.58064i − 0.837142i
\(83\) − 15.1392i − 1.66175i −0.556463 0.830873i \(-0.687842\pi\)
0.556463 0.830873i \(-0.312158\pi\)
\(84\) −0.273457 −0.0298367
\(85\) 0 0
\(86\) −2.88963 −0.311596
\(87\) − 9.08715i − 0.974245i
\(88\) 4.79360i 0.511000i
\(89\) 14.8273 1.57169 0.785847 0.618421i \(-0.212227\pi\)
0.785847 + 0.618421i \(0.212227\pi\)
\(90\) 0 0
\(91\) −0.473931 −0.0496815
\(92\) − 4.64584i − 0.484362i
\(93\) 3.83390i 0.397557i
\(94\) 1.18806 0.122539
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 5.88597i 0.597629i 0.954311 + 0.298815i \(0.0965912\pi\)
−0.954311 + 0.298815i \(0.903409\pi\)
\(98\) 6.92522i 0.699553i
\(99\) 4.79360 0.481775
\(100\) 0 0
\(101\) 4.83576 0.481176 0.240588 0.970627i \(-0.422660\pi\)
0.240588 + 0.970627i \(0.422660\pi\)
\(102\) − 1.89149i − 0.187286i
\(103\) − 0.0729839i − 0.00719132i −0.999994 0.00359566i \(-0.998855\pi\)
0.999994 0.00359566i \(-0.00114454\pi\)
\(104\) −1.73311 −0.169945
\(105\) 0 0
\(106\) 11.6150 1.12815
\(107\) − 5.84754i − 0.565303i −0.959223 0.282651i \(-0.908786\pi\)
0.959223 0.282651i \(-0.0912140\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 9.80609 0.939253 0.469627 0.882865i \(-0.344389\pi\)
0.469627 + 0.882865i \(0.344389\pi\)
\(110\) 0 0
\(111\) 9.00947 0.855141
\(112\) − 0.273457i − 0.0258393i
\(113\) − 17.3291i − 1.63019i −0.579328 0.815094i \(-0.696685\pi\)
0.579328 0.815094i \(-0.303315\pi\)
\(114\) −3.01062 −0.281971
\(115\) 0 0
\(116\) 9.08715 0.843721
\(117\) 1.73311i 0.160226i
\(118\) 14.2895i 1.31545i
\(119\) 0.517242 0.0474155
\(120\) 0 0
\(121\) 11.9786 1.08897
\(122\) − 5.15131i − 0.466378i
\(123\) − 7.58064i − 0.683524i
\(124\) −3.83390 −0.344294
\(125\) 0 0
\(126\) −0.273457 −0.0243615
\(127\) − 18.3677i − 1.62987i −0.579553 0.814934i \(-0.696773\pi\)
0.579553 0.814934i \(-0.303227\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −2.88963 −0.254417
\(130\) 0 0
\(131\) −7.57357 −0.661706 −0.330853 0.943682i \(-0.607336\pi\)
−0.330853 + 0.943682i \(0.607336\pi\)
\(132\) 4.79360i 0.417230i
\(133\) − 0.823277i − 0.0713872i
\(134\) 6.29000 0.543373
\(135\) 0 0
\(136\) 1.89149 0.162194
\(137\) 19.6095i 1.67535i 0.546168 + 0.837676i \(0.316086\pi\)
−0.546168 + 0.837676i \(0.683914\pi\)
\(138\) − 4.64584i − 0.395480i
\(139\) −9.56514 −0.811305 −0.405652 0.914027i \(-0.632956\pi\)
−0.405652 + 0.914027i \(0.632956\pi\)
\(140\) 0 0
\(141\) 1.18806 0.100052
\(142\) − 1.40217i − 0.117667i
\(143\) 8.30783i 0.694736i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −1.78112 −0.147406
\(147\) 6.92522i 0.571183i
\(148\) 9.00947i 0.740574i
\(149\) 4.64398 0.380449 0.190225 0.981741i \(-0.439078\pi\)
0.190225 + 0.981741i \(0.439078\pi\)
\(150\) 0 0
\(151\) −16.7881 −1.36619 −0.683097 0.730327i \(-0.739368\pi\)
−0.683097 + 0.730327i \(0.739368\pi\)
\(152\) − 3.01062i − 0.244194i
\(153\) − 1.89149i − 0.152918i
\(154\) −1.31085 −0.105631
\(155\) 0 0
\(156\) −1.73311 −0.138760
\(157\) − 5.57763i − 0.445143i −0.974916 0.222572i \(-0.928555\pi\)
0.974916 0.222572i \(-0.0714451\pi\)
\(158\) 16.0593i 1.27761i
\(159\) 11.6150 0.921131
\(160\) 0 0
\(161\) 1.27044 0.100125
\(162\) 1.00000i 0.0785674i
\(163\) − 18.3753i − 1.43926i −0.694356 0.719632i \(-0.744311\pi\)
0.694356 0.719632i \(-0.255689\pi\)
\(164\) 7.58064 0.591949
\(165\) 0 0
\(166\) 15.1392 1.17503
\(167\) − 8.94427i − 0.692129i −0.938211 0.346064i \(-0.887518\pi\)
0.938211 0.346064i \(-0.112482\pi\)
\(168\) − 0.273457i − 0.0210977i
\(169\) 9.99634 0.768949
\(170\) 0 0
\(171\) −3.01062 −0.230228
\(172\) − 2.88963i − 0.220332i
\(173\) 11.9151i 0.905890i 0.891538 + 0.452945i \(0.149627\pi\)
−0.891538 + 0.452945i \(0.850373\pi\)
\(174\) 9.08715 0.688895
\(175\) 0 0
\(176\) −4.79360 −0.361332
\(177\) 14.2895i 1.07406i
\(178\) 14.8273i 1.11136i
\(179\) 3.75621 0.280753 0.140376 0.990098i \(-0.455169\pi\)
0.140376 + 0.990098i \(0.455169\pi\)
\(180\) 0 0
\(181\) −18.0626 −1.34258 −0.671290 0.741194i \(-0.734260\pi\)
−0.671290 + 0.741194i \(0.734260\pi\)
\(182\) − 0.473931i − 0.0351301i
\(183\) − 5.15131i − 0.380796i
\(184\) 4.64584 0.342496
\(185\) 0 0
\(186\) −3.83390 −0.281115
\(187\) − 9.06706i − 0.663049i
\(188\) 1.18806i 0.0866480i
\(189\) −0.273457 −0.0198911
\(190\) 0 0
\(191\) −16.6007 −1.20119 −0.600594 0.799555i \(-0.705069\pi\)
−0.600594 + 0.799555i \(0.705069\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) 3.84858i 0.277027i 0.990361 + 0.138513i \(0.0442324\pi\)
−0.990361 + 0.138513i \(0.955768\pi\)
\(194\) −5.88597 −0.422588
\(195\) 0 0
\(196\) −6.92522 −0.494659
\(197\) − 10.7432i − 0.765423i −0.923868 0.382711i \(-0.874990\pi\)
0.923868 0.382711i \(-0.125010\pi\)
\(198\) 4.79360i 0.340667i
\(199\) −2.49808 −0.177084 −0.0885421 0.996072i \(-0.528221\pi\)
−0.0885421 + 0.996072i \(0.528221\pi\)
\(200\) 0 0
\(201\) 6.29000 0.443662
\(202\) 4.83576i 0.340243i
\(203\) 2.48495i 0.174409i
\(204\) 1.89149 0.132431
\(205\) 0 0
\(206\) 0.0729839 0.00508503
\(207\) − 4.64584i − 0.322908i
\(208\) − 1.73311i − 0.120169i
\(209\) −14.4317 −0.998264
\(210\) 0 0
\(211\) 24.2741 1.67109 0.835547 0.549418i \(-0.185151\pi\)
0.835547 + 0.549418i \(0.185151\pi\)
\(212\) 11.6150i 0.797723i
\(213\) − 1.40217i − 0.0960751i
\(214\) 5.84754 0.399729
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 1.04841i − 0.0711706i
\(218\) 9.80609i 0.664152i
\(219\) −1.78112 −0.120357
\(220\) 0 0
\(221\) 3.27816 0.220513
\(222\) 9.00947i 0.604676i
\(223\) 13.0539i 0.874156i 0.899424 + 0.437078i \(0.143987\pi\)
−0.899424 + 0.437078i \(0.856013\pi\)
\(224\) 0.273457 0.0182711
\(225\) 0 0
\(226\) 17.3291 1.15272
\(227\) − 7.06154i − 0.468691i −0.972153 0.234345i \(-0.924705\pi\)
0.972153 0.234345i \(-0.0752946\pi\)
\(228\) − 3.01062i − 0.199383i
\(229\) 12.5771 0.831119 0.415560 0.909566i \(-0.363586\pi\)
0.415560 + 0.909566i \(0.363586\pi\)
\(230\) 0 0
\(231\) −1.31085 −0.0862474
\(232\) 9.08715i 0.596601i
\(233\) − 9.80527i − 0.642364i −0.947017 0.321182i \(-0.895920\pi\)
0.947017 0.321182i \(-0.104080\pi\)
\(234\) −1.73311 −0.113297
\(235\) 0 0
\(236\) −14.2895 −0.930167
\(237\) 16.0593i 1.04317i
\(238\) 0.517242i 0.0335278i
\(239\) −5.04029 −0.326030 −0.163015 0.986624i \(-0.552122\pi\)
−0.163015 + 0.986624i \(0.552122\pi\)
\(240\) 0 0
\(241\) 6.84097 0.440666 0.220333 0.975425i \(-0.429286\pi\)
0.220333 + 0.975425i \(0.429286\pi\)
\(242\) 11.9786i 0.770016i
\(243\) 1.00000i 0.0641500i
\(244\) 5.15131 0.329779
\(245\) 0 0
\(246\) 7.58064 0.483324
\(247\) − 5.21773i − 0.331996i
\(248\) − 3.83390i − 0.243453i
\(249\) 15.1392 0.959409
\(250\) 0 0
\(251\) −7.07549 −0.446601 −0.223301 0.974750i \(-0.571683\pi\)
−0.223301 + 0.974750i \(0.571683\pi\)
\(252\) − 0.273457i − 0.0172262i
\(253\) − 22.2703i − 1.40012i
\(254\) 18.3677 1.15249
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 4.47318i − 0.279029i −0.990220 0.139515i \(-0.955446\pi\)
0.990220 0.139515i \(-0.0445542\pi\)
\(258\) − 2.88963i − 0.179900i
\(259\) −2.46371 −0.153087
\(260\) 0 0
\(261\) 9.08715 0.562481
\(262\) − 7.57357i − 0.467897i
\(263\) 2.50232i 0.154300i 0.997020 + 0.0771498i \(0.0245820\pi\)
−0.997020 + 0.0771498i \(0.975418\pi\)
\(264\) −4.79360 −0.295026
\(265\) 0 0
\(266\) 0.823277 0.0504783
\(267\) 14.8273i 0.907418i
\(268\) 6.29000i 0.384223i
\(269\) −6.18870 −0.377332 −0.188666 0.982041i \(-0.560416\pi\)
−0.188666 + 0.982041i \(0.560416\pi\)
\(270\) 0 0
\(271\) 13.1689 0.799953 0.399977 0.916525i \(-0.369018\pi\)
0.399977 + 0.916525i \(0.369018\pi\)
\(272\) 1.89149i 0.114689i
\(273\) − 0.473931i − 0.0286836i
\(274\) −19.6095 −1.18465
\(275\) 0 0
\(276\) 4.64584 0.279647
\(277\) 5.16714i 0.310463i 0.987878 + 0.155232i \(0.0496124\pi\)
−0.987878 + 0.155232i \(0.950388\pi\)
\(278\) − 9.56514i − 0.573679i
\(279\) −3.83390 −0.229530
\(280\) 0 0
\(281\) −0.0469714 −0.00280208 −0.00140104 0.999999i \(-0.500446\pi\)
−0.00140104 + 0.999999i \(0.500446\pi\)
\(282\) 1.18806i 0.0707478i
\(283\) − 21.8712i − 1.30011i −0.759889 0.650053i \(-0.774747\pi\)
0.759889 0.650053i \(-0.225253\pi\)
\(284\) 1.40217 0.0832034
\(285\) 0 0
\(286\) −8.30783 −0.491252
\(287\) 2.07298i 0.122364i
\(288\) − 1.00000i − 0.0589256i
\(289\) 13.4223 0.789545
\(290\) 0 0
\(291\) −5.88597 −0.345041
\(292\) − 1.78112i − 0.104232i
\(293\) 8.35289i 0.487981i 0.969778 + 0.243991i \(0.0784566\pi\)
−0.969778 + 0.243991i \(0.921543\pi\)
\(294\) −6.92522 −0.403887
\(295\) 0 0
\(296\) −9.00947 −0.523665
\(297\) 4.79360i 0.278153i
\(298\) 4.64398i 0.269018i
\(299\) 8.05174 0.465644
\(300\) 0 0
\(301\) 0.790190 0.0455458
\(302\) − 16.7881i − 0.966045i
\(303\) 4.83576i 0.277807i
\(304\) 3.01062 0.172671
\(305\) 0 0
\(306\) 1.89149 0.108129
\(307\) 2.28918i 0.130650i 0.997864 + 0.0653251i \(0.0208084\pi\)
−0.997864 + 0.0653251i \(0.979192\pi\)
\(308\) − 1.31085i − 0.0746924i
\(309\) 0.0729839 0.00415191
\(310\) 0 0
\(311\) 25.6673 1.45546 0.727729 0.685865i \(-0.240576\pi\)
0.727729 + 0.685865i \(0.240576\pi\)
\(312\) − 1.73311i − 0.0981179i
\(313\) 30.2110i 1.70763i 0.520580 + 0.853813i \(0.325716\pi\)
−0.520580 + 0.853813i \(0.674284\pi\)
\(314\) 5.57763 0.314764
\(315\) 0 0
\(316\) −16.0593 −0.903409
\(317\) 25.8613i 1.45251i 0.687424 + 0.726257i \(0.258742\pi\)
−0.687424 + 0.726257i \(0.741258\pi\)
\(318\) 11.6150i 0.651338i
\(319\) 43.5602 2.43890
\(320\) 0 0
\(321\) 5.84754 0.326378
\(322\) 1.27044i 0.0707989i
\(323\) 5.69456i 0.316854i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 18.3753 1.01771
\(327\) 9.80609i 0.542278i
\(328\) 7.58064i 0.418571i
\(329\) −0.324883 −0.0179114
\(330\) 0 0
\(331\) 14.5094 0.797509 0.398755 0.917058i \(-0.369442\pi\)
0.398755 + 0.917058i \(0.369442\pi\)
\(332\) 15.1392i 0.830873i
\(333\) 9.00947i 0.493716i
\(334\) 8.94427 0.489409
\(335\) 0 0
\(336\) 0.273457 0.0149183
\(337\) − 11.0676i − 0.602889i −0.953484 0.301445i \(-0.902531\pi\)
0.953484 0.301445i \(-0.0974688\pi\)
\(338\) 9.99634i 0.543729i
\(339\) 17.3291 0.941190
\(340\) 0 0
\(341\) −18.3782 −0.995235
\(342\) − 3.01062i − 0.162796i
\(343\) − 3.80796i − 0.205610i
\(344\) 2.88963 0.155798
\(345\) 0 0
\(346\) −11.9151 −0.640561
\(347\) − 1.01062i − 0.0542530i −0.999632 0.0271265i \(-0.991364\pi\)
0.999632 0.0271265i \(-0.00863569\pi\)
\(348\) 9.08715i 0.487123i
\(349\) −30.4268 −1.62871 −0.814356 0.580366i \(-0.802910\pi\)
−0.814356 + 0.580366i \(0.802910\pi\)
\(350\) 0 0
\(351\) −1.73311 −0.0925064
\(352\) − 4.79360i − 0.255500i
\(353\) 15.6597i 0.833481i 0.909026 + 0.416740i \(0.136828\pi\)
−0.909026 + 0.416740i \(0.863172\pi\)
\(354\) −14.2895 −0.759478
\(355\) 0 0
\(356\) −14.8273 −0.785847
\(357\) 0.517242i 0.0273754i
\(358\) 3.75621i 0.198522i
\(359\) −4.37321 −0.230809 −0.115405 0.993319i \(-0.536816\pi\)
−0.115405 + 0.993319i \(0.536816\pi\)
\(360\) 0 0
\(361\) −9.93616 −0.522956
\(362\) − 18.0626i − 0.949348i
\(363\) 11.9786i 0.628716i
\(364\) 0.473931 0.0248407
\(365\) 0 0
\(366\) 5.15131 0.269263
\(367\) − 21.8334i − 1.13969i −0.821751 0.569847i \(-0.807003\pi\)
0.821751 0.569847i \(-0.192997\pi\)
\(368\) 4.64584i 0.242181i
\(369\) 7.58064 0.394633
\(370\) 0 0
\(371\) −3.17621 −0.164901
\(372\) − 3.83390i − 0.198778i
\(373\) − 1.41871i − 0.0734582i −0.999325 0.0367291i \(-0.988306\pi\)
0.999325 0.0367291i \(-0.0116939\pi\)
\(374\) 9.06706 0.468847
\(375\) 0 0
\(376\) −1.18806 −0.0612694
\(377\) 15.7490i 0.811115i
\(378\) − 0.273457i − 0.0140651i
\(379\) 26.0806 1.33967 0.669835 0.742510i \(-0.266365\pi\)
0.669835 + 0.742510i \(0.266365\pi\)
\(380\) 0 0
\(381\) 18.3677 0.941005
\(382\) − 16.6007i − 0.849367i
\(383\) − 32.7645i − 1.67419i −0.547058 0.837095i \(-0.684252\pi\)
0.547058 0.837095i \(-0.315748\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −3.84858 −0.195887
\(387\) − 2.88963i − 0.146888i
\(388\) − 5.88597i − 0.298815i
\(389\) 4.46133 0.226199 0.113099 0.993584i \(-0.463922\pi\)
0.113099 + 0.993584i \(0.463922\pi\)
\(390\) 0 0
\(391\) −8.78757 −0.444407
\(392\) − 6.92522i − 0.349776i
\(393\) − 7.57357i − 0.382036i
\(394\) 10.7432 0.541236
\(395\) 0 0
\(396\) −4.79360 −0.240888
\(397\) 2.11727i 0.106262i 0.998588 + 0.0531312i \(0.0169202\pi\)
−0.998588 + 0.0531312i \(0.983080\pi\)
\(398\) − 2.49808i − 0.125217i
\(399\) 0.823277 0.0412154
\(400\) 0 0
\(401\) −28.6530 −1.43086 −0.715431 0.698683i \(-0.753770\pi\)
−0.715431 + 0.698683i \(0.753770\pi\)
\(402\) 6.29000i 0.313717i
\(403\) − 6.64456i − 0.330989i
\(404\) −4.83576 −0.240588
\(405\) 0 0
\(406\) −2.48495 −0.123326
\(407\) 43.1878i 2.14074i
\(408\) 1.89149i 0.0936428i
\(409\) −39.3546 −1.94596 −0.972979 0.230893i \(-0.925835\pi\)
−0.972979 + 0.230893i \(0.925835\pi\)
\(410\) 0 0
\(411\) −19.6095 −0.967265
\(412\) 0.0729839i 0.00359566i
\(413\) − 3.90757i − 0.192279i
\(414\) 4.64584 0.228331
\(415\) 0 0
\(416\) 1.73311 0.0849726
\(417\) − 9.56514i − 0.468407i
\(418\) − 14.4317i − 0.705879i
\(419\) −14.1068 −0.689165 −0.344582 0.938756i \(-0.611979\pi\)
−0.344582 + 0.938756i \(0.611979\pi\)
\(420\) 0 0
\(421\) 16.3046 0.794636 0.397318 0.917681i \(-0.369941\pi\)
0.397318 + 0.917681i \(0.369941\pi\)
\(422\) 24.2741i 1.18164i
\(423\) 1.18806i 0.0577653i
\(424\) −11.6150 −0.564075
\(425\) 0 0
\(426\) 1.40217 0.0679353
\(427\) 1.40866i 0.0681700i
\(428\) 5.84754i 0.282651i
\(429\) −8.30783 −0.401106
\(430\) 0 0
\(431\) −1.98217 −0.0954778 −0.0477389 0.998860i \(-0.515202\pi\)
−0.0477389 + 0.998860i \(0.515202\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) − 4.48943i − 0.215748i −0.994165 0.107874i \(-0.965596\pi\)
0.994165 0.107874i \(-0.0344044\pi\)
\(434\) 1.04841 0.0503252
\(435\) 0 0
\(436\) −9.80609 −0.469627
\(437\) 13.9869i 0.669083i
\(438\) − 1.78112i − 0.0851051i
\(439\) −25.7158 −1.22735 −0.613674 0.789559i \(-0.710309\pi\)
−0.613674 + 0.789559i \(0.710309\pi\)
\(440\) 0 0
\(441\) −6.92522 −0.329772
\(442\) 3.27816i 0.155926i
\(443\) − 29.1477i − 1.38485i −0.721491 0.692423i \(-0.756543\pi\)
0.721491 0.692423i \(-0.243457\pi\)
\(444\) −9.00947 −0.427570
\(445\) 0 0
\(446\) −13.0539 −0.618122
\(447\) 4.64398i 0.219653i
\(448\) 0.273457i 0.0129197i
\(449\) 5.14037 0.242589 0.121295 0.992617i \(-0.461295\pi\)
0.121295 + 0.992617i \(0.461295\pi\)
\(450\) 0 0
\(451\) 36.3386 1.71112
\(452\) 17.3291i 0.815094i
\(453\) − 16.7881i − 0.788773i
\(454\) 7.06154 0.331414
\(455\) 0 0
\(456\) 3.01062 0.140985
\(457\) − 20.8445i − 0.975066i −0.873105 0.487533i \(-0.837897\pi\)
0.873105 0.487533i \(-0.162103\pi\)
\(458\) 12.5771i 0.587690i
\(459\) 1.89149 0.0882873
\(460\) 0 0
\(461\) −4.96989 −0.231471 −0.115735 0.993280i \(-0.536922\pi\)
−0.115735 + 0.993280i \(0.536922\pi\)
\(462\) − 1.31085i − 0.0609861i
\(463\) 7.10664i 0.330274i 0.986271 + 0.165137i \(0.0528066\pi\)
−0.986271 + 0.165137i \(0.947193\pi\)
\(464\) −9.08715 −0.421860
\(465\) 0 0
\(466\) 9.80527 0.454220
\(467\) 30.1821i 1.39666i 0.715775 + 0.698331i \(0.246074\pi\)
−0.715775 + 0.698331i \(0.753926\pi\)
\(468\) − 1.73311i − 0.0801129i
\(469\) −1.72005 −0.0794244
\(470\) 0 0
\(471\) 5.57763 0.257003
\(472\) − 14.2895i − 0.657727i
\(473\) − 13.8517i − 0.636903i
\(474\) −16.0593 −0.737630
\(475\) 0 0
\(476\) −0.517242 −0.0237078
\(477\) 11.6150i 0.531815i
\(478\) − 5.04029i − 0.230538i
\(479\) −27.8415 −1.27211 −0.636055 0.771643i \(-0.719435\pi\)
−0.636055 + 0.771643i \(0.719435\pi\)
\(480\) 0 0
\(481\) −15.6144 −0.711954
\(482\) 6.84097i 0.311598i
\(483\) 1.27044i 0.0578070i
\(484\) −11.9786 −0.544484
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 1.29951i 0.0588866i 0.999566 + 0.0294433i \(0.00937344\pi\)
−0.999566 + 0.0294433i \(0.990627\pi\)
\(488\) 5.15131i 0.233189i
\(489\) 18.3753 0.830959
\(490\) 0 0
\(491\) 19.1650 0.864905 0.432453 0.901657i \(-0.357648\pi\)
0.432453 + 0.901657i \(0.357648\pi\)
\(492\) 7.58064i 0.341762i
\(493\) − 17.1883i − 0.774121i
\(494\) 5.21773 0.234757
\(495\) 0 0
\(496\) 3.83390 0.172147
\(497\) 0.383434i 0.0171994i
\(498\) 15.1392i 0.678405i
\(499\) −6.41339 −0.287103 −0.143551 0.989643i \(-0.545852\pi\)
−0.143551 + 0.989643i \(0.545852\pi\)
\(500\) 0 0
\(501\) 8.94427 0.399601
\(502\) − 7.07549i − 0.315795i
\(503\) 35.7696i 1.59489i 0.603392 + 0.797444i \(0.293815\pi\)
−0.603392 + 0.797444i \(0.706185\pi\)
\(504\) 0.273457 0.0121808
\(505\) 0 0
\(506\) 22.2703 0.990037
\(507\) 9.99634i 0.443953i
\(508\) 18.3677i 0.814934i
\(509\) −12.0587 −0.534493 −0.267246 0.963628i \(-0.586114\pi\)
−0.267246 + 0.963628i \(0.586114\pi\)
\(510\) 0 0
\(511\) 0.487060 0.0215463
\(512\) 1.00000i 0.0441942i
\(513\) − 3.01062i − 0.132922i
\(514\) 4.47318 0.197303
\(515\) 0 0
\(516\) 2.88963 0.127209
\(517\) 5.69507i 0.250469i
\(518\) − 2.46371i − 0.108249i
\(519\) −11.9151 −0.523016
\(520\) 0 0
\(521\) 3.51319 0.153915 0.0769577 0.997034i \(-0.475479\pi\)
0.0769577 + 0.997034i \(0.475479\pi\)
\(522\) 9.08715i 0.397734i
\(523\) − 24.4468i − 1.06898i −0.845174 0.534492i \(-0.820503\pi\)
0.845174 0.534492i \(-0.179497\pi\)
\(524\) 7.57357 0.330853
\(525\) 0 0
\(526\) −2.50232 −0.109106
\(527\) 7.25179i 0.315893i
\(528\) − 4.79360i − 0.208615i
\(529\) 1.41616 0.0615720
\(530\) 0 0
\(531\) −14.2895 −0.620111
\(532\) 0.823277i 0.0356936i
\(533\) 13.1381i 0.569073i
\(534\) −14.8273 −0.641641
\(535\) 0 0
\(536\) −6.29000 −0.271687
\(537\) 3.75621i 0.162093i
\(538\) − 6.18870i − 0.266814i
\(539\) −33.1968 −1.42989
\(540\) 0 0
\(541\) −38.7392 −1.66553 −0.832765 0.553627i \(-0.813243\pi\)
−0.832765 + 0.553627i \(0.813243\pi\)
\(542\) 13.1689i 0.565652i
\(543\) − 18.0626i − 0.775139i
\(544\) −1.89149 −0.0810970
\(545\) 0 0
\(546\) 0.473931 0.0202824
\(547\) − 30.3218i − 1.29646i −0.761443 0.648232i \(-0.775509\pi\)
0.761443 0.648232i \(-0.224491\pi\)
\(548\) − 19.6095i − 0.837676i
\(549\) 5.15131 0.219853
\(550\) 0 0
\(551\) −27.3580 −1.16549
\(552\) 4.64584i 0.197740i
\(553\) − 4.39155i − 0.186748i
\(554\) −5.16714 −0.219531
\(555\) 0 0
\(556\) 9.56514 0.405652
\(557\) 25.7254i 1.09002i 0.838430 + 0.545010i \(0.183474\pi\)
−0.838430 + 0.545010i \(0.816526\pi\)
\(558\) − 3.83390i − 0.162302i
\(559\) 5.00803 0.211817
\(560\) 0 0
\(561\) 9.06706 0.382812
\(562\) − 0.0469714i − 0.00198137i
\(563\) − 30.6333i − 1.29104i −0.763743 0.645520i \(-0.776641\pi\)
0.763743 0.645520i \(-0.223359\pi\)
\(564\) −1.18806 −0.0500262
\(565\) 0 0
\(566\) 21.8712 0.919314
\(567\) − 0.273457i − 0.0114841i
\(568\) 1.40217i 0.0588337i
\(569\) −12.4856 −0.523423 −0.261712 0.965146i \(-0.584287\pi\)
−0.261712 + 0.965146i \(0.584287\pi\)
\(570\) 0 0
\(571\) −24.3564 −1.01929 −0.509643 0.860386i \(-0.670222\pi\)
−0.509643 + 0.860386i \(0.670222\pi\)
\(572\) − 8.30783i − 0.347368i
\(573\) − 16.6007i − 0.693506i
\(574\) −2.07298 −0.0865247
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 3.21252i 0.133739i 0.997762 + 0.0668695i \(0.0213011\pi\)
−0.997762 + 0.0668695i \(0.978699\pi\)
\(578\) 13.4223i 0.558292i
\(579\) −3.84858 −0.159941
\(580\) 0 0
\(581\) −4.13993 −0.171753
\(582\) − 5.88597i − 0.243981i
\(583\) 55.6778i 2.30594i
\(584\) 1.78112 0.0737032
\(585\) 0 0
\(586\) −8.35289 −0.345055
\(587\) − 15.1892i − 0.626924i −0.949601 0.313462i \(-0.898511\pi\)
0.949601 0.313462i \(-0.101489\pi\)
\(588\) − 6.92522i − 0.285591i
\(589\) 11.5424 0.475597
\(590\) 0 0
\(591\) 10.7432 0.441917
\(592\) − 9.00947i − 0.370287i
\(593\) 4.96989i 0.204089i 0.994780 + 0.102044i \(0.0325384\pi\)
−0.994780 + 0.102044i \(0.967462\pi\)
\(594\) −4.79360 −0.196684
\(595\) 0 0
\(596\) −4.64398 −0.190225
\(597\) − 2.49808i − 0.102240i
\(598\) 8.05174i 0.329260i
\(599\) 3.23524 0.132188 0.0660942 0.997813i \(-0.478946\pi\)
0.0660942 + 0.997813i \(0.478946\pi\)
\(600\) 0 0
\(601\) −8.78152 −0.358205 −0.179103 0.983830i \(-0.557319\pi\)
−0.179103 + 0.983830i \(0.557319\pi\)
\(602\) 0.790190i 0.0322057i
\(603\) 6.29000i 0.256149i
\(604\) 16.7881 0.683097
\(605\) 0 0
\(606\) −4.83576 −0.196439
\(607\) − 39.5692i − 1.60606i −0.595937 0.803031i \(-0.703219\pi\)
0.595937 0.803031i \(-0.296781\pi\)
\(608\) 3.01062i 0.122097i
\(609\) −2.48495 −0.100695
\(610\) 0 0
\(611\) −2.05903 −0.0832994
\(612\) 1.89149i 0.0764590i
\(613\) − 46.8849i − 1.89366i −0.321730 0.946831i \(-0.604264\pi\)
0.321730 0.946831i \(-0.395736\pi\)
\(614\) −2.28918 −0.0923836
\(615\) 0 0
\(616\) 1.31085 0.0528155
\(617\) − 14.1520i − 0.569739i −0.958566 0.284869i \(-0.908050\pi\)
0.958566 0.284869i \(-0.0919503\pi\)
\(618\) 0.0729839i 0.00293584i
\(619\) 6.54669 0.263134 0.131567 0.991307i \(-0.457999\pi\)
0.131567 + 0.991307i \(0.457999\pi\)
\(620\) 0 0
\(621\) 4.64584 0.186431
\(622\) 25.6673i 1.02916i
\(623\) − 4.05465i − 0.162446i
\(624\) 1.73311 0.0693798
\(625\) 0 0
\(626\) −30.2110 −1.20747
\(627\) − 14.4317i − 0.576348i
\(628\) 5.57763i 0.222572i
\(629\) 17.0413 0.679482
\(630\) 0 0
\(631\) 6.04884 0.240800 0.120400 0.992725i \(-0.461582\pi\)
0.120400 + 0.992725i \(0.461582\pi\)
\(632\) − 16.0593i − 0.638806i
\(633\) 24.2741i 0.964807i
\(634\) −25.8613 −1.02708
\(635\) 0 0
\(636\) −11.6150 −0.460565
\(637\) − 12.0021i − 0.475542i
\(638\) 43.5602i 1.72457i
\(639\) 1.40217 0.0554690
\(640\) 0 0
\(641\) 32.2843 1.27515 0.637576 0.770388i \(-0.279937\pi\)
0.637576 + 0.770388i \(0.279937\pi\)
\(642\) 5.84754i 0.230784i
\(643\) − 12.1187i − 0.477914i −0.971030 0.238957i \(-0.923194\pi\)
0.971030 0.238957i \(-0.0768056\pi\)
\(644\) −1.27044 −0.0500624
\(645\) 0 0
\(646\) −5.69456 −0.224050
\(647\) 20.2287i 0.795271i 0.917543 + 0.397635i \(0.130169\pi\)
−0.917543 + 0.397635i \(0.869831\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) −68.4982 −2.68879
\(650\) 0 0
\(651\) 1.04841 0.0410904
\(652\) 18.3753i 0.719632i
\(653\) − 33.3838i − 1.30641i −0.757182 0.653204i \(-0.773424\pi\)
0.757182 0.653204i \(-0.226576\pi\)
\(654\) −9.80609 −0.383448
\(655\) 0 0
\(656\) −7.58064 −0.295974
\(657\) − 1.78112i − 0.0694880i
\(658\) − 0.324883i − 0.0126653i
\(659\) 30.3942 1.18399 0.591995 0.805941i \(-0.298340\pi\)
0.591995 + 0.805941i \(0.298340\pi\)
\(660\) 0 0
\(661\) 24.9370 0.969935 0.484968 0.874532i \(-0.338831\pi\)
0.484968 + 0.874532i \(0.338831\pi\)
\(662\) 14.5094i 0.563924i
\(663\) 3.27816i 0.127313i
\(664\) −15.1392 −0.587516
\(665\) 0 0
\(666\) −9.00947 −0.349110
\(667\) − 42.2175i − 1.63467i
\(668\) 8.94427i 0.346064i
\(669\) −13.0539 −0.504694
\(670\) 0 0
\(671\) 24.6933 0.953276
\(672\) 0.273457i 0.0105489i
\(673\) − 46.0697i − 1.77586i −0.459983 0.887928i \(-0.652145\pi\)
0.459983 0.887928i \(-0.347855\pi\)
\(674\) 11.0676 0.426307
\(675\) 0 0
\(676\) −9.99634 −0.384475
\(677\) − 28.5921i − 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(678\) 17.3291i 0.665522i
\(679\) 1.60956 0.0617693
\(680\) 0 0
\(681\) 7.06154 0.270599
\(682\) − 18.3782i − 0.703737i
\(683\) 8.92741i 0.341598i 0.985306 + 0.170799i \(0.0546349\pi\)
−0.985306 + 0.170799i \(0.945365\pi\)
\(684\) 3.01062 0.115114
\(685\) 0 0
\(686\) 3.80796 0.145388
\(687\) 12.5771i 0.479847i
\(688\) 2.88963i 0.110166i
\(689\) −20.1301 −0.766894
\(690\) 0 0
\(691\) −1.31278 −0.0499406 −0.0249703 0.999688i \(-0.507949\pi\)
−0.0249703 + 0.999688i \(0.507949\pi\)
\(692\) − 11.9151i − 0.452945i
\(693\) − 1.31085i − 0.0497950i
\(694\) 1.01062 0.0383627
\(695\) 0 0
\(696\) −9.08715 −0.344448
\(697\) − 14.3387i − 0.543118i
\(698\) − 30.4268i − 1.15167i
\(699\) 9.80527 0.370869
\(700\) 0 0
\(701\) 22.5267 0.850822 0.425411 0.905000i \(-0.360130\pi\)
0.425411 + 0.905000i \(0.360130\pi\)
\(702\) − 1.73311i − 0.0654119i
\(703\) − 27.1241i − 1.02300i
\(704\) 4.79360 0.180666
\(705\) 0 0
\(706\) −15.6597 −0.589360
\(707\) − 1.32238i − 0.0497331i
\(708\) − 14.2895i − 0.537032i
\(709\) 6.89619 0.258992 0.129496 0.991580i \(-0.458664\pi\)
0.129496 + 0.991580i \(0.458664\pi\)
\(710\) 0 0
\(711\) −16.0593 −0.602272
\(712\) − 14.8273i − 0.555678i
\(713\) 17.8117i 0.667053i
\(714\) −0.517242 −0.0193573
\(715\) 0 0
\(716\) −3.75621 −0.140376
\(717\) − 5.04029i − 0.188233i
\(718\) − 4.37321i − 0.163207i
\(719\) −28.3423 −1.05699 −0.528495 0.848936i \(-0.677244\pi\)
−0.528495 + 0.848936i \(0.677244\pi\)
\(720\) 0 0
\(721\) −0.0199580 −0.000743274 0
\(722\) − 9.93616i − 0.369786i
\(723\) 6.84097i 0.254419i
\(724\) 18.0626 0.671290
\(725\) 0 0
\(726\) −11.9786 −0.444569
\(727\) − 17.0802i − 0.633469i −0.948514 0.316735i \(-0.897414\pi\)
0.948514 0.316735i \(-0.102586\pi\)
\(728\) 0.473931i 0.0175651i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −5.46570 −0.202156
\(732\) 5.15131i 0.190398i
\(733\) − 11.8923i − 0.439251i −0.975584 0.219626i \(-0.929516\pi\)
0.975584 0.219626i \(-0.0704836\pi\)
\(734\) 21.8334 0.805885
\(735\) 0 0
\(736\) −4.64584 −0.171248
\(737\) 30.1518i 1.11065i
\(738\) 7.58064i 0.279047i
\(739\) −11.4605 −0.421581 −0.210791 0.977531i \(-0.567604\pi\)
−0.210791 + 0.977531i \(0.567604\pi\)
\(740\) 0 0
\(741\) 5.21773 0.191678
\(742\) − 3.17621i − 0.116602i
\(743\) 8.64114i 0.317013i 0.987358 + 0.158506i \(0.0506678\pi\)
−0.987358 + 0.158506i \(0.949332\pi\)
\(744\) 3.83390 0.140558
\(745\) 0 0
\(746\) 1.41871 0.0519428
\(747\) 15.1392i 0.553915i
\(748\) 9.06706i 0.331525i
\(749\) −1.59905 −0.0584281
\(750\) 0 0
\(751\) −8.45998 −0.308709 −0.154354 0.988016i \(-0.549330\pi\)
−0.154354 + 0.988016i \(0.549330\pi\)
\(752\) − 1.18806i − 0.0433240i
\(753\) − 7.07549i − 0.257845i
\(754\) −15.7490 −0.573545
\(755\) 0 0
\(756\) 0.273457 0.00994555
\(757\) 53.6675i 1.95058i 0.220932 + 0.975289i \(0.429090\pi\)
−0.220932 + 0.975289i \(0.570910\pi\)
\(758\) 26.0806i 0.947290i
\(759\) 22.2703 0.808362
\(760\) 0 0
\(761\) 11.7714 0.426713 0.213357 0.976974i \(-0.431560\pi\)
0.213357 + 0.976974i \(0.431560\pi\)
\(762\) 18.3677i 0.665391i
\(763\) − 2.68155i − 0.0970786i
\(764\) 16.6007 0.600594
\(765\) 0 0
\(766\) 32.7645 1.18383
\(767\) − 24.7652i − 0.894220i
\(768\) 1.00000i 0.0360844i
\(769\) −5.09591 −0.183763 −0.0918816 0.995770i \(-0.529288\pi\)
−0.0918816 + 0.995770i \(0.529288\pi\)
\(770\) 0 0
\(771\) 4.47318 0.161097
\(772\) − 3.84858i − 0.138513i
\(773\) − 12.6222i − 0.453990i −0.973896 0.226995i \(-0.927110\pi\)
0.973896 0.226995i \(-0.0728901\pi\)
\(774\) 2.88963 0.103865
\(775\) 0 0
\(776\) 5.88597 0.211294
\(777\) − 2.46371i − 0.0883850i
\(778\) 4.46133i 0.159946i
\(779\) −22.8225 −0.817699
\(780\) 0 0
\(781\) 6.72145 0.240512
\(782\) − 8.78757i − 0.314243i
\(783\) 9.08715i 0.324748i
\(784\) 6.92522 0.247329
\(785\) 0 0
\(786\) 7.57357 0.270140
\(787\) 44.2098i 1.57591i 0.615734 + 0.787954i \(0.288860\pi\)
−0.615734 + 0.787954i \(0.711140\pi\)
\(788\) 10.7432i 0.382711i
\(789\) −2.50232 −0.0890849
\(790\) 0 0
\(791\) −4.73878 −0.168492
\(792\) − 4.79360i − 0.170333i
\(793\) 8.92777i 0.317034i
\(794\) −2.11727 −0.0751389
\(795\) 0 0
\(796\) 2.49808 0.0885421
\(797\) 46.3400i 1.64145i 0.571326 + 0.820723i \(0.306429\pi\)
−0.571326 + 0.820723i \(0.693571\pi\)
\(798\) 0.823277i 0.0291437i
\(799\) 2.24720 0.0795002
\(800\) 0 0
\(801\) −14.8273 −0.523898
\(802\) − 28.6530i − 1.01177i
\(803\) − 8.53798i − 0.301299i
\(804\) −6.29000 −0.221831
\(805\) 0 0
\(806\) 6.64456 0.234045
\(807\) − 6.18870i − 0.217853i
\(808\) − 4.83576i − 0.170122i
\(809\) −49.4913 −1.74002 −0.870011 0.493033i \(-0.835888\pi\)
−0.870011 + 0.493033i \(0.835888\pi\)
\(810\) 0 0
\(811\) −2.80756 −0.0985867 −0.0492934 0.998784i \(-0.515697\pi\)
−0.0492934 + 0.998784i \(0.515697\pi\)
\(812\) − 2.48495i − 0.0872046i
\(813\) 13.1689i 0.461853i
\(814\) −43.1878 −1.51373
\(815\) 0 0
\(816\) −1.89149 −0.0662154
\(817\) 8.69957i 0.304360i
\(818\) − 39.3546i − 1.37600i
\(819\) 0.473931 0.0165605
\(820\) 0 0
\(821\) −37.3643 −1.30402 −0.652011 0.758209i \(-0.726075\pi\)
−0.652011 + 0.758209i \(0.726075\pi\)
\(822\) − 19.6095i − 0.683960i
\(823\) − 22.8380i − 0.796082i −0.917368 0.398041i \(-0.869690\pi\)
0.917368 0.398041i \(-0.130310\pi\)
\(824\) −0.0729839 −0.00254251
\(825\) 0 0
\(826\) 3.90757 0.135962
\(827\) − 10.7107i − 0.372448i −0.982507 0.186224i \(-0.940375\pi\)
0.982507 0.186224i \(-0.0596250\pi\)
\(828\) 4.64584i 0.161454i
\(829\) 27.5959 0.958445 0.479223 0.877693i \(-0.340919\pi\)
0.479223 + 0.877693i \(0.340919\pi\)
\(830\) 0 0
\(831\) −5.16714 −0.179246
\(832\) 1.73311i 0.0600847i
\(833\) 13.0990i 0.453853i
\(834\) 9.56514 0.331214
\(835\) 0 0
\(836\) 14.4317 0.499132
\(837\) − 3.83390i − 0.132519i
\(838\) − 14.1068i − 0.487313i
\(839\) 9.93655 0.343048 0.171524 0.985180i \(-0.445131\pi\)
0.171524 + 0.985180i \(0.445131\pi\)
\(840\) 0 0
\(841\) 53.5763 1.84746
\(842\) 16.3046i 0.561892i
\(843\) − 0.0469714i − 0.00161778i
\(844\) −24.2741 −0.835547
\(845\) 0 0
\(846\) −1.18806 −0.0408462
\(847\) − 3.27565i − 0.112553i
\(848\) − 11.6150i − 0.398861i
\(849\) 21.8712 0.750617
\(850\) 0 0
\(851\) 41.8566 1.43482
\(852\) 1.40217i 0.0480375i
\(853\) 45.0081i 1.54105i 0.637412 + 0.770524i \(0.280005\pi\)
−0.637412 + 0.770524i \(0.719995\pi\)
\(854\) −1.40866 −0.0482035
\(855\) 0 0
\(856\) −5.84754 −0.199865
\(857\) − 24.6986i − 0.843686i −0.906669 0.421843i \(-0.861383\pi\)
0.906669 0.421843i \(-0.138617\pi\)
\(858\) − 8.30783i − 0.283625i
\(859\) 17.3400 0.591632 0.295816 0.955245i \(-0.404408\pi\)
0.295816 + 0.955245i \(0.404408\pi\)
\(860\) 0 0
\(861\) −2.07298 −0.0706471
\(862\) − 1.98217i − 0.0675130i
\(863\) − 25.8867i − 0.881195i −0.897705 0.440598i \(-0.854767\pi\)
0.897705 0.440598i \(-0.145233\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 4.48943 0.152557
\(867\) 13.4223i 0.455844i
\(868\) 1.04841i 0.0355853i
\(869\) −76.9821 −2.61144
\(870\) 0 0
\(871\) −10.9012 −0.369375
\(872\) − 9.80609i − 0.332076i
\(873\) − 5.88597i − 0.199210i
\(874\) −13.9869 −0.473113
\(875\) 0 0
\(876\) 1.78112 0.0601784
\(877\) − 20.1898i − 0.681761i −0.940107 0.340881i \(-0.889275\pi\)
0.940107 0.340881i \(-0.110725\pi\)
\(878\) − 25.7158i − 0.867866i
\(879\) −8.35289 −0.281736
\(880\) 0 0
\(881\) 23.7732 0.800940 0.400470 0.916310i \(-0.368847\pi\)
0.400470 + 0.916310i \(0.368847\pi\)
\(882\) − 6.92522i − 0.233184i
\(883\) 32.5787i 1.09636i 0.836361 + 0.548180i \(0.184679\pi\)
−0.836361 + 0.548180i \(0.815321\pi\)
\(884\) −3.27816 −0.110256
\(885\) 0 0
\(886\) 29.1477 0.979234
\(887\) − 56.3177i − 1.89096i −0.325678 0.945481i \(-0.605592\pi\)
0.325678 0.945481i \(-0.394408\pi\)
\(888\) − 9.00947i − 0.302338i
\(889\) −5.02278 −0.168459
\(890\) 0 0
\(891\) −4.79360 −0.160592
\(892\) − 13.0539i − 0.437078i
\(893\) − 3.57679i − 0.119693i
\(894\) −4.64398 −0.155318
\(895\) 0 0
\(896\) −0.273457 −0.00913557
\(897\) 8.05174i 0.268840i
\(898\) 5.14037i 0.171536i
\(899\) −34.8392 −1.16195
\(900\) 0 0
\(901\) 21.9697 0.731917
\(902\) 36.3386i 1.20994i
\(903\) 0.790190i 0.0262959i
\(904\) −17.3291 −0.576359
\(905\) 0 0
\(906\) 16.7881 0.557747
\(907\) − 46.7617i − 1.55270i −0.630304 0.776349i \(-0.717070\pi\)
0.630304 0.776349i \(-0.282930\pi\)
\(908\) 7.06154i 0.234345i
\(909\) −4.83576 −0.160392
\(910\) 0 0
\(911\) −16.7472 −0.554858 −0.277429 0.960746i \(-0.589482\pi\)
−0.277429 + 0.960746i \(0.589482\pi\)
\(912\) 3.01062i 0.0996916i
\(913\) 72.5714i 2.40176i
\(914\) 20.8445 0.689475
\(915\) 0 0
\(916\) −12.5771 −0.415560
\(917\) 2.07105i 0.0683921i
\(918\) 1.89149i 0.0624285i
\(919\) 5.12507 0.169061 0.0845303 0.996421i \(-0.473061\pi\)
0.0845303 + 0.996421i \(0.473061\pi\)
\(920\) 0 0
\(921\) −2.28918 −0.0754309
\(922\) − 4.96989i − 0.163675i
\(923\) 2.43011i 0.0799880i
\(924\) 1.31085 0.0431237
\(925\) 0 0
\(926\) −7.10664 −0.233539
\(927\) 0.0729839i 0.00239711i
\(928\) − 9.08715i − 0.298300i
\(929\) −45.3434 −1.48767 −0.743834 0.668364i \(-0.766995\pi\)
−0.743834 + 0.668364i \(0.766995\pi\)
\(930\) 0 0
\(931\) 20.8492 0.683306
\(932\) 9.80527i 0.321182i
\(933\) 25.6673i 0.840309i
\(934\) −30.1821 −0.987590
\(935\) 0 0
\(936\) 1.73311 0.0566484
\(937\) − 31.0119i − 1.01311i −0.862207 0.506557i \(-0.830918\pi\)
0.862207 0.506557i \(-0.169082\pi\)
\(938\) − 1.72005i − 0.0561616i
\(939\) −30.2110 −0.985898
\(940\) 0 0
\(941\) −48.3113 −1.57490 −0.787452 0.616377i \(-0.788600\pi\)
−0.787452 + 0.616377i \(0.788600\pi\)
\(942\) 5.57763i 0.181729i
\(943\) − 35.2185i − 1.14687i
\(944\) 14.2895 0.465083
\(945\) 0 0
\(946\) 13.8517 0.450358
\(947\) − 33.3872i − 1.08494i −0.840075 0.542470i \(-0.817489\pi\)
0.840075 0.542470i \(-0.182511\pi\)
\(948\) − 16.0593i − 0.521583i
\(949\) 3.08687 0.100204
\(950\) 0 0
\(951\) −25.8613 −0.838609
\(952\) − 0.517242i − 0.0167639i
\(953\) 21.8525i 0.707872i 0.935270 + 0.353936i \(0.115157\pi\)
−0.935270 + 0.353936i \(0.884843\pi\)
\(954\) −11.6150 −0.376050
\(955\) 0 0
\(956\) 5.04029 0.163015
\(957\) 43.5602i 1.40810i
\(958\) − 27.8415i − 0.899518i
\(959\) 5.36236 0.173160
\(960\) 0 0
\(961\) −16.3012 −0.525846
\(962\) − 15.6144i − 0.503428i
\(963\) 5.84754i 0.188434i
\(964\) −6.84097 −0.220333
\(965\) 0 0
\(966\) −1.27044 −0.0408757
\(967\) 32.2205i 1.03614i 0.855338 + 0.518071i \(0.173350\pi\)
−0.855338 + 0.518071i \(0.826650\pi\)
\(968\) − 11.9786i − 0.385008i
\(969\) −5.69456 −0.182936
\(970\) 0 0
\(971\) 35.6114 1.14282 0.571411 0.820664i \(-0.306396\pi\)
0.571411 + 0.820664i \(0.306396\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 2.61566i 0.0838542i
\(974\) −1.29951 −0.0416391
\(975\) 0 0
\(976\) −5.15131 −0.164889
\(977\) 9.85880i 0.315411i 0.987486 + 0.157706i \(0.0504097\pi\)
−0.987486 + 0.157706i \(0.949590\pi\)
\(978\) 18.3753i 0.587577i
\(979\) −71.0764 −2.27161
\(980\) 0 0
\(981\) −9.80609 −0.313084
\(982\) 19.1650i 0.611580i
\(983\) 30.4129i 0.970020i 0.874509 + 0.485010i \(0.161184\pi\)
−0.874509 + 0.485010i \(0.838816\pi\)
\(984\) −7.58064 −0.241662
\(985\) 0 0
\(986\) 17.1883 0.547386
\(987\) − 0.324883i − 0.0103411i
\(988\) 5.21773i 0.165998i
\(989\) −13.4247 −0.426882
\(990\) 0 0
\(991\) −41.0077 −1.30265 −0.651327 0.758798i \(-0.725787\pi\)
−0.651327 + 0.758798i \(0.725787\pi\)
\(992\) 3.83390i 0.121726i
\(993\) 14.5094i 0.460442i
\(994\) −0.383434 −0.0121618
\(995\) 0 0
\(996\) −15.1392 −0.479705
\(997\) − 8.00811i − 0.253620i −0.991927 0.126810i \(-0.959526\pi\)
0.991927 0.126810i \(-0.0404738\pi\)
\(998\) − 6.41339i − 0.203012i
\(999\) −9.00947 −0.285047
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.c.e.1249.7 8
5.2 odd 4 3750.2.a.m.1.2 4
5.3 odd 4 3750.2.a.o.1.3 4
5.4 even 2 inner 3750.2.c.e.1249.2 8
25.3 odd 20 750.2.g.c.451.2 8
25.4 even 10 150.2.h.a.109.1 8
25.6 even 5 150.2.h.a.139.1 yes 8
25.8 odd 20 750.2.g.c.301.2 8
25.17 odd 20 750.2.g.e.301.1 8
25.19 even 10 750.2.h.c.199.2 8
25.21 even 5 750.2.h.c.49.2 8
25.22 odd 20 750.2.g.e.451.1 8
75.29 odd 10 450.2.l.a.109.2 8
75.56 odd 10 450.2.l.a.289.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.109.1 8 25.4 even 10
150.2.h.a.139.1 yes 8 25.6 even 5
450.2.l.a.109.2 8 75.29 odd 10
450.2.l.a.289.2 8 75.56 odd 10
750.2.g.c.301.2 8 25.8 odd 20
750.2.g.c.451.2 8 25.3 odd 20
750.2.g.e.301.1 8 25.17 odd 20
750.2.g.e.451.1 8 25.22 odd 20
750.2.h.c.49.2 8 25.21 even 5
750.2.h.c.199.2 8 25.19 even 10
3750.2.a.m.1.2 4 5.2 odd 4
3750.2.a.o.1.3 4 5.3 odd 4
3750.2.c.e.1249.2 8 5.4 even 2 inner
3750.2.c.e.1249.7 8 1.1 even 1 trivial