Properties

Label 3750.2.c.e.1249.5
Level $3750$
Weight $2$
Character 3750.1249
Analytic conductor $29.944$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3750,2,Mod(1249,3750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3750, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3750.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,-8,0,0,-8,0,-20,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.5
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 3750.1249
Dual form 3750.2.c.e.1249.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} -4.07768i q^{7} -1.00000i q^{8} -1.00000 q^{9} -3.28408 q^{11} -1.00000i q^{12} -5.42226i q^{13} +4.07768 q^{14} +1.00000 q^{16} +3.45965i q^{17} -1.00000i q^{18} -1.63522 q^{19} +4.07768 q^{21} -3.28408i q^{22} +0.611469i q^{23} +1.00000 q^{24} +5.42226 q^{26} -1.00000i q^{27} +4.07768i q^{28} +4.67447 q^{29} -8.30313 q^{31} +1.00000i q^{32} -3.28408i q^{33} -3.45965 q^{34} +1.00000 q^{36} +2.40102i q^{37} -1.63522i q^{38} +5.42226 q^{39} +2.93179 q^{41} +4.07768i q^{42} +8.64114i q^{43} +3.28408 q^{44} -0.611469 q^{46} +6.91460i q^{47} +1.00000i q^{48} -9.62750 q^{49} -3.45965 q^{51} +5.42226i q^{52} -6.79766i q^{53} +1.00000 q^{54} -4.07768 q^{56} -1.63522i q^{57} +4.67447i q^{58} +14.1766 q^{59} -12.5882 q^{61} -8.30313i q^{62} +4.07768i q^{63} -1.00000 q^{64} +3.28408 q^{66} +10.8742i q^{67} -3.45965i q^{68} -0.611469 q^{69} -9.06706 q^{71} +1.00000i q^{72} +9.10079i q^{73} -2.40102 q^{74} +1.63522 q^{76} +13.3914i q^{77} +5.42226i q^{78} +4.09602 q^{79} +1.00000 q^{81} +2.93179i q^{82} +7.13111i q^{83} -4.07768 q^{84} -8.64114 q^{86} +4.67447i q^{87} +3.28408i q^{88} -4.80307 q^{89} -22.1103 q^{91} -0.611469i q^{92} -8.30313i q^{93} -6.91460 q^{94} -1.00000 q^{96} -14.7598i q^{97} -9.62750i q^{98} +3.28408 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{6} - 8 q^{9} - 20 q^{11} + 8 q^{14} + 8 q^{16} + 12 q^{19} + 8 q^{21} + 8 q^{24} + 4 q^{26} + 28 q^{29} - 36 q^{31} - 12 q^{34} + 8 q^{36} + 4 q^{39} - 28 q^{41} + 20 q^{44} + 8 q^{49}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3750\mathbb{Z}\right)^\times\).

\(n\) \(2501\) \(3127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) − 4.07768i − 1.54122i −0.637307 0.770610i \(-0.719952\pi\)
0.637307 0.770610i \(-0.280048\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.28408 −0.990187 −0.495094 0.868840i \(-0.664866\pi\)
−0.495094 + 0.868840i \(0.664866\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) − 5.42226i − 1.50386i −0.659240 0.751932i \(-0.729122\pi\)
0.659240 0.751932i \(-0.270878\pi\)
\(14\) 4.07768 1.08981
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.45965i 0.839088i 0.907735 + 0.419544i \(0.137810\pi\)
−0.907735 + 0.419544i \(0.862190\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) −1.63522 −0.375145 −0.187573 0.982251i \(-0.560062\pi\)
−0.187573 + 0.982251i \(0.560062\pi\)
\(20\) 0 0
\(21\) 4.07768 0.889823
\(22\) − 3.28408i − 0.700168i
\(23\) 0.611469i 0.127500i 0.997966 + 0.0637501i \(0.0203061\pi\)
−0.997966 + 0.0637501i \(0.979694\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 5.42226 1.06339
\(27\) − 1.00000i − 0.192450i
\(28\) 4.07768i 0.770610i
\(29\) 4.67447 0.868028 0.434014 0.900906i \(-0.357097\pi\)
0.434014 + 0.900906i \(0.357097\pi\)
\(30\) 0 0
\(31\) −8.30313 −1.49129 −0.745643 0.666346i \(-0.767858\pi\)
−0.745643 + 0.666346i \(0.767858\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 3.28408i − 0.571685i
\(34\) −3.45965 −0.593325
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 2.40102i 0.394725i 0.980331 + 0.197362i \(0.0632376\pi\)
−0.980331 + 0.197362i \(0.936762\pi\)
\(38\) − 1.63522i − 0.265268i
\(39\) 5.42226 0.868256
\(40\) 0 0
\(41\) 2.93179 0.457868 0.228934 0.973442i \(-0.426476\pi\)
0.228934 + 0.973442i \(0.426476\pi\)
\(42\) 4.07768i 0.629200i
\(43\) 8.64114i 1.31776i 0.752247 + 0.658881i \(0.228970\pi\)
−0.752247 + 0.658881i \(0.771030\pi\)
\(44\) 3.28408 0.495094
\(45\) 0 0
\(46\) −0.611469 −0.0901563
\(47\) 6.91460i 1.00860i 0.863529 + 0.504299i \(0.168249\pi\)
−0.863529 + 0.504299i \(0.831751\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −9.62750 −1.37536
\(50\) 0 0
\(51\) −3.45965 −0.484448
\(52\) 5.42226i 0.751932i
\(53\) − 6.79766i − 0.933731i −0.884328 0.466865i \(-0.845383\pi\)
0.884328 0.466865i \(-0.154617\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −4.07768 −0.544903
\(57\) − 1.63522i − 0.216590i
\(58\) 4.67447i 0.613789i
\(59\) 14.1766 1.84564 0.922819 0.385234i \(-0.125879\pi\)
0.922819 + 0.385234i \(0.125879\pi\)
\(60\) 0 0
\(61\) −12.5882 −1.61176 −0.805880 0.592079i \(-0.798307\pi\)
−0.805880 + 0.592079i \(0.798307\pi\)
\(62\) − 8.30313i − 1.05450i
\(63\) 4.07768i 0.513740i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.28408 0.404242
\(67\) 10.8742i 1.32849i 0.747513 + 0.664247i \(0.231248\pi\)
−0.747513 + 0.664247i \(0.768752\pi\)
\(68\) − 3.45965i − 0.419544i
\(69\) −0.611469 −0.0736123
\(70\) 0 0
\(71\) −9.06706 −1.07606 −0.538031 0.842925i \(-0.680832\pi\)
−0.538031 + 0.842925i \(0.680832\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 9.10079i 1.06517i 0.846377 + 0.532584i \(0.178779\pi\)
−0.846377 + 0.532584i \(0.821221\pi\)
\(74\) −2.40102 −0.279113
\(75\) 0 0
\(76\) 1.63522 0.187573
\(77\) 13.3914i 1.52610i
\(78\) 5.42226i 0.613950i
\(79\) 4.09602 0.460838 0.230419 0.973091i \(-0.425990\pi\)
0.230419 + 0.973091i \(0.425990\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.93179i 0.323762i
\(83\) 7.13111i 0.782741i 0.920233 + 0.391370i \(0.127999\pi\)
−0.920233 + 0.391370i \(0.872001\pi\)
\(84\) −4.07768 −0.444912
\(85\) 0 0
\(86\) −8.64114 −0.931798
\(87\) 4.67447i 0.501156i
\(88\) 3.28408i 0.350084i
\(89\) −4.80307 −0.509125 −0.254562 0.967056i \(-0.581931\pi\)
−0.254562 + 0.967056i \(0.581931\pi\)
\(90\) 0 0
\(91\) −22.1103 −2.31779
\(92\) − 0.611469i − 0.0637501i
\(93\) − 8.30313i − 0.860994i
\(94\) −6.91460 −0.713186
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 14.7598i − 1.49863i −0.662216 0.749313i \(-0.730384\pi\)
0.662216 0.749313i \(-0.269616\pi\)
\(98\) − 9.62750i − 0.972525i
\(99\) 3.28408 0.330062
\(100\) 0 0
\(101\) −11.4846 −1.14276 −0.571381 0.820685i \(-0.693592\pi\)
−0.571381 + 0.820685i \(0.693592\pi\)
\(102\) − 3.45965i − 0.342556i
\(103\) 13.9549i 1.37502i 0.726177 + 0.687508i \(0.241295\pi\)
−0.726177 + 0.687508i \(0.758705\pi\)
\(104\) −5.42226 −0.531696
\(105\) 0 0
\(106\) 6.79766 0.660247
\(107\) 8.35405i 0.807616i 0.914844 + 0.403808i \(0.132314\pi\)
−0.914844 + 0.403808i \(0.867686\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −0.532633 −0.0510170 −0.0255085 0.999675i \(-0.508120\pi\)
−0.0255085 + 0.999675i \(0.508120\pi\)
\(110\) 0 0
\(111\) −2.40102 −0.227894
\(112\) − 4.07768i − 0.385305i
\(113\) 17.2272i 1.62060i 0.586016 + 0.810299i \(0.300695\pi\)
−0.586016 + 0.810299i \(0.699305\pi\)
\(114\) 1.63522 0.153152
\(115\) 0 0
\(116\) −4.67447 −0.434014
\(117\) 5.42226i 0.501288i
\(118\) 14.1766i 1.30506i
\(119\) 14.1074 1.29322
\(120\) 0 0
\(121\) −0.214825 −0.0195295
\(122\) − 12.5882i − 1.13969i
\(123\) 2.93179i 0.264350i
\(124\) 8.30313 0.745643
\(125\) 0 0
\(126\) −4.07768 −0.363269
\(127\) 1.14765i 0.101837i 0.998703 + 0.0509187i \(0.0162149\pi\)
−0.998703 + 0.0509187i \(0.983785\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −8.64114 −0.760810
\(130\) 0 0
\(131\) −6.61907 −0.578311 −0.289156 0.957282i \(-0.593374\pi\)
−0.289156 + 0.957282i \(0.593374\pi\)
\(132\) 3.28408i 0.285842i
\(133\) 6.66791i 0.578181i
\(134\) −10.8742 −0.939387
\(135\) 0 0
\(136\) 3.45965 0.296663
\(137\) − 7.42175i − 0.634083i −0.948412 0.317041i \(-0.897311\pi\)
0.948412 0.317041i \(-0.102689\pi\)
\(138\) − 0.611469i − 0.0520517i
\(139\) −5.30062 −0.449593 −0.224796 0.974406i \(-0.572172\pi\)
−0.224796 + 0.974406i \(0.572172\pi\)
\(140\) 0 0
\(141\) −6.91460 −0.582314
\(142\) − 9.06706i − 0.760891i
\(143\) 17.8071i 1.48911i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −9.10079 −0.753187
\(147\) − 9.62750i − 0.794063i
\(148\) − 2.40102i − 0.197362i
\(149\) 4.79296 0.392655 0.196327 0.980538i \(-0.437098\pi\)
0.196327 + 0.980538i \(0.437098\pi\)
\(150\) 0 0
\(151\) 6.93533 0.564389 0.282195 0.959357i \(-0.408938\pi\)
0.282195 + 0.959357i \(0.408938\pi\)
\(152\) 1.63522i 0.132634i
\(153\) − 3.45965i − 0.279696i
\(154\) −13.3914 −1.07911
\(155\) 0 0
\(156\) −5.42226 −0.434128
\(157\) 7.51609i 0.599849i 0.953963 + 0.299925i \(0.0969615\pi\)
−0.953963 + 0.299925i \(0.903038\pi\)
\(158\) 4.09602i 0.325862i
\(159\) 6.79766 0.539090
\(160\) 0 0
\(161\) 2.49338 0.196506
\(162\) 1.00000i 0.0785674i
\(163\) 8.36717i 0.655368i 0.944787 + 0.327684i \(0.106268\pi\)
−0.944787 + 0.327684i \(0.893732\pi\)
\(164\) −2.93179 −0.228934
\(165\) 0 0
\(166\) −7.13111 −0.553481
\(167\) 8.94427i 0.692129i 0.938211 + 0.346064i \(0.112482\pi\)
−0.938211 + 0.346064i \(0.887518\pi\)
\(168\) − 4.07768i − 0.314600i
\(169\) −16.4009 −1.26161
\(170\) 0 0
\(171\) 1.63522 0.125048
\(172\) − 8.64114i − 0.658881i
\(173\) 2.33905i 0.177835i 0.996039 + 0.0889174i \(0.0283407\pi\)
−0.996039 + 0.0889174i \(0.971659\pi\)
\(174\) −4.67447 −0.354371
\(175\) 0 0
\(176\) −3.28408 −0.247547
\(177\) 14.1766i 1.06558i
\(178\) − 4.80307i − 0.360006i
\(179\) −6.02967 −0.450679 −0.225339 0.974280i \(-0.572349\pi\)
−0.225339 + 0.974280i \(0.572349\pi\)
\(180\) 0 0
\(181\) 16.5771 1.23217 0.616084 0.787681i \(-0.288718\pi\)
0.616084 + 0.787681i \(0.288718\pi\)
\(182\) − 22.1103i − 1.63892i
\(183\) − 12.5882i − 0.930550i
\(184\) 0.611469 0.0450781
\(185\) 0 0
\(186\) 8.30313 0.608815
\(187\) − 11.3618i − 0.830854i
\(188\) − 6.91460i − 0.504299i
\(189\) −4.07768 −0.296608
\(190\) 0 0
\(191\) 9.96802 0.721261 0.360630 0.932709i \(-0.382562\pi\)
0.360630 + 0.932709i \(0.382562\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) − 25.0735i − 1.80483i −0.430867 0.902416i \(-0.641792\pi\)
0.430867 0.902416i \(-0.358208\pi\)
\(194\) 14.7598 1.05969
\(195\) 0 0
\(196\) 9.62750 0.687679
\(197\) − 26.8378i − 1.91212i −0.293176 0.956059i \(-0.594712\pi\)
0.293176 0.956059i \(-0.405288\pi\)
\(198\) 3.28408i 0.233389i
\(199\) 4.06114 0.287887 0.143943 0.989586i \(-0.454022\pi\)
0.143943 + 0.989586i \(0.454022\pi\)
\(200\) 0 0
\(201\) −10.8742 −0.767006
\(202\) − 11.4846i − 0.808055i
\(203\) − 19.0610i − 1.33782i
\(204\) 3.45965 0.242224
\(205\) 0 0
\(206\) −13.9549 −0.972283
\(207\) − 0.611469i − 0.0425001i
\(208\) − 5.42226i − 0.375966i
\(209\) 5.37019 0.371464
\(210\) 0 0
\(211\) −4.35487 −0.299802 −0.149901 0.988701i \(-0.547895\pi\)
−0.149901 + 0.988701i \(0.547895\pi\)
\(212\) 6.79766i 0.466865i
\(213\) − 9.06706i − 0.621265i
\(214\) −8.35405 −0.571071
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 33.8575i 2.29840i
\(218\) − 0.532633i − 0.0360745i
\(219\) −9.10079 −0.614975
\(220\) 0 0
\(221\) 18.7591 1.26187
\(222\) − 2.40102i − 0.161146i
\(223\) 0.361875i 0.0242330i 0.999927 + 0.0121165i \(0.00385689\pi\)
−0.999927 + 0.0121165i \(0.996143\pi\)
\(224\) 4.07768 0.272452
\(225\) 0 0
\(226\) −17.2272 −1.14594
\(227\) 12.8576i 0.853392i 0.904395 + 0.426696i \(0.140323\pi\)
−0.904395 + 0.426696i \(0.859677\pi\)
\(228\) 1.63522i 0.108295i
\(229\) 16.5347 1.09264 0.546322 0.837575i \(-0.316027\pi\)
0.546322 + 0.837575i \(0.316027\pi\)
\(230\) 0 0
\(231\) −13.3914 −0.881092
\(232\) − 4.67447i − 0.306894i
\(233\) 11.0706i 0.725260i 0.931933 + 0.362630i \(0.118121\pi\)
−0.931933 + 0.362630i \(0.881879\pi\)
\(234\) −5.42226 −0.354464
\(235\) 0 0
\(236\) −14.1766 −0.922819
\(237\) 4.09602i 0.266065i
\(238\) 14.1074i 0.914444i
\(239\) 5.58721 0.361407 0.180703 0.983538i \(-0.442163\pi\)
0.180703 + 0.983538i \(0.442163\pi\)
\(240\) 0 0
\(241\) −14.8540 −0.956830 −0.478415 0.878134i \(-0.658788\pi\)
−0.478415 + 0.878134i \(0.658788\pi\)
\(242\) − 0.214825i − 0.0138095i
\(243\) 1.00000i 0.0641500i
\(244\) 12.5882 0.805880
\(245\) 0 0
\(246\) −2.93179 −0.186924
\(247\) 8.86659i 0.564168i
\(248\) 8.30313i 0.527249i
\(249\) −7.13111 −0.451916
\(250\) 0 0
\(251\) −12.6802 −0.800368 −0.400184 0.916435i \(-0.631054\pi\)
−0.400184 + 0.916435i \(0.631054\pi\)
\(252\) − 4.07768i − 0.256870i
\(253\) − 2.00811i − 0.126249i
\(254\) −1.14765 −0.0720100
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.1916i 1.19714i 0.801071 + 0.598570i \(0.204264\pi\)
−0.801071 + 0.598570i \(0.795736\pi\)
\(258\) − 8.64114i − 0.537974i
\(259\) 9.79059 0.608357
\(260\) 0 0
\(261\) −4.67447 −0.289343
\(262\) − 6.61907i − 0.408928i
\(263\) − 29.4749i − 1.81750i −0.417339 0.908751i \(-0.637037\pi\)
0.417339 0.908751i \(-0.362963\pi\)
\(264\) −3.28408 −0.202121
\(265\) 0 0
\(266\) −6.66791 −0.408836
\(267\) − 4.80307i − 0.293943i
\(268\) − 10.8742i − 0.664247i
\(269\) −21.9020 −1.33539 −0.667694 0.744436i \(-0.732719\pi\)
−0.667694 + 0.744436i \(0.732719\pi\)
\(270\) 0 0
\(271\) −15.0831 −0.916233 −0.458116 0.888892i \(-0.651476\pi\)
−0.458116 + 0.888892i \(0.651476\pi\)
\(272\) 3.45965i 0.209772i
\(273\) − 22.1103i − 1.33817i
\(274\) 7.42175 0.448364
\(275\) 0 0
\(276\) 0.611469 0.0368061
\(277\) 2.58366i 0.155237i 0.996983 + 0.0776186i \(0.0247316\pi\)
−0.996983 + 0.0776186i \(0.975268\pi\)
\(278\) − 5.30062i − 0.317910i
\(279\) 8.30313 0.497095
\(280\) 0 0
\(281\) −18.3980 −1.09753 −0.548766 0.835976i \(-0.684902\pi\)
−0.548766 + 0.835976i \(0.684902\pi\)
\(282\) − 6.91460i − 0.411758i
\(283\) 3.47464i 0.206546i 0.994653 + 0.103273i \(0.0329315\pi\)
−0.994653 + 0.103273i \(0.967068\pi\)
\(284\) 9.06706 0.538031
\(285\) 0 0
\(286\) −17.8071 −1.05296
\(287\) − 11.9549i − 0.705675i
\(288\) − 1.00000i − 0.0589256i
\(289\) 5.03083 0.295931
\(290\) 0 0
\(291\) 14.7598 0.865233
\(292\) − 9.10079i − 0.532584i
\(293\) − 15.8625i − 0.926699i −0.886176 0.463349i \(-0.846647\pi\)
0.886176 0.463349i \(-0.153353\pi\)
\(294\) 9.62750 0.561487
\(295\) 0 0
\(296\) 2.40102 0.139556
\(297\) 3.28408i 0.190562i
\(298\) 4.79296i 0.277649i
\(299\) 3.31555 0.191743
\(300\) 0 0
\(301\) 35.2358 2.03096
\(302\) 6.93533i 0.399084i
\(303\) − 11.4846i − 0.659774i
\(304\) −1.63522 −0.0937863
\(305\) 0 0
\(306\) 3.45965 0.197775
\(307\) − 25.4122i − 1.45035i −0.688565 0.725175i \(-0.741759\pi\)
0.688565 0.725175i \(-0.258241\pi\)
\(308\) − 13.3914i − 0.763048i
\(309\) −13.9549 −0.793866
\(310\) 0 0
\(311\) 18.4445 1.04589 0.522947 0.852365i \(-0.324833\pi\)
0.522947 + 0.852365i \(0.324833\pi\)
\(312\) − 5.42226i − 0.306975i
\(313\) 21.9121i 1.23854i 0.785176 + 0.619272i \(0.212572\pi\)
−0.785176 + 0.619272i \(0.787428\pi\)
\(314\) −7.51609 −0.424157
\(315\) 0 0
\(316\) −4.09602 −0.230419
\(317\) − 5.78671i − 0.325014i −0.986707 0.162507i \(-0.948042\pi\)
0.986707 0.162507i \(-0.0519580\pi\)
\(318\) 6.79766i 0.381194i
\(319\) −15.3513 −0.859510
\(320\) 0 0
\(321\) −8.35405 −0.466277
\(322\) 2.49338i 0.138951i
\(323\) − 5.65729i − 0.314780i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −8.36717 −0.463415
\(327\) − 0.532633i − 0.0294547i
\(328\) − 2.93179i − 0.161881i
\(329\) 28.1955 1.55447
\(330\) 0 0
\(331\) −7.64365 −0.420133 −0.210066 0.977687i \(-0.567368\pi\)
−0.210066 + 0.977687i \(0.567368\pi\)
\(332\) − 7.13111i − 0.391370i
\(333\) − 2.40102i − 0.131575i
\(334\) −8.94427 −0.489409
\(335\) 0 0
\(336\) 4.07768 0.222456
\(337\) 3.68904i 0.200955i 0.994939 + 0.100477i \(0.0320370\pi\)
−0.994939 + 0.100477i \(0.967963\pi\)
\(338\) − 16.4009i − 0.892092i
\(339\) −17.2272 −0.935653
\(340\) 0 0
\(341\) 27.2681 1.47665
\(342\) 1.63522i 0.0884226i
\(343\) 10.7141i 0.578508i
\(344\) 8.64114 0.465899
\(345\) 0 0
\(346\) −2.33905 −0.125748
\(347\) 3.63522i 0.195149i 0.995228 + 0.0975744i \(0.0311084\pi\)
−0.995228 + 0.0975744i \(0.968892\pi\)
\(348\) − 4.67447i − 0.250578i
\(349\) −12.2270 −0.654496 −0.327248 0.944938i \(-0.606121\pi\)
−0.327248 + 0.944938i \(0.606121\pi\)
\(350\) 0 0
\(351\) −5.42226 −0.289419
\(352\) − 3.28408i − 0.175042i
\(353\) 15.6641i 0.833714i 0.908972 + 0.416857i \(0.136868\pi\)
−0.908972 + 0.416857i \(0.863132\pi\)
\(354\) −14.1766 −0.753478
\(355\) 0 0
\(356\) 4.80307 0.254562
\(357\) 14.1074i 0.746640i
\(358\) − 6.02967i − 0.318678i
\(359\) −7.07176 −0.373233 −0.186617 0.982433i \(-0.559752\pi\)
−0.186617 + 0.982433i \(0.559752\pi\)
\(360\) 0 0
\(361\) −16.3261 −0.859266
\(362\) 16.5771i 0.871274i
\(363\) − 0.214825i − 0.0112754i
\(364\) 22.1103 1.15889
\(365\) 0 0
\(366\) 12.5882 0.657998
\(367\) − 26.7477i − 1.39622i −0.715992 0.698109i \(-0.754025\pi\)
0.715992 0.698109i \(-0.245975\pi\)
\(368\) 0.611469i 0.0318751i
\(369\) −2.93179 −0.152623
\(370\) 0 0
\(371\) −27.7187 −1.43908
\(372\) 8.30313i 0.430497i
\(373\) 11.8848i 0.615372i 0.951488 + 0.307686i \(0.0995547\pi\)
−0.951488 + 0.307686i \(0.900445\pi\)
\(374\) 11.3618 0.587503
\(375\) 0 0
\(376\) 6.91460 0.356593
\(377\) − 25.3462i − 1.30540i
\(378\) − 4.07768i − 0.209733i
\(379\) 4.82558 0.247873 0.123937 0.992290i \(-0.460448\pi\)
0.123937 + 0.992290i \(0.460448\pi\)
\(380\) 0 0
\(381\) −1.14765 −0.0587959
\(382\) 9.96802i 0.510008i
\(383\) − 4.80351i − 0.245448i −0.992441 0.122724i \(-0.960837\pi\)
0.992441 0.122724i \(-0.0391630\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 25.0735 1.27621
\(387\) − 8.64114i − 0.439254i
\(388\) 14.7598i 0.749313i
\(389\) 13.4417 0.681522 0.340761 0.940150i \(-0.389315\pi\)
0.340761 + 0.940150i \(0.389315\pi\)
\(390\) 0 0
\(391\) −2.11547 −0.106984
\(392\) 9.62750i 0.486262i
\(393\) − 6.61907i − 0.333888i
\(394\) 26.8378 1.35207
\(395\) 0 0
\(396\) −3.28408 −0.165031
\(397\) 0.0866228i 0.00434747i 0.999998 + 0.00217374i \(0.000691923\pi\)
−0.999998 + 0.00217374i \(0.999308\pi\)
\(398\) 4.06114i 0.203567i
\(399\) −6.66791 −0.333813
\(400\) 0 0
\(401\) 0.321141 0.0160370 0.00801851 0.999968i \(-0.497448\pi\)
0.00801851 + 0.999968i \(0.497448\pi\)
\(402\) − 10.8742i − 0.542355i
\(403\) 45.0217i 2.24269i
\(404\) 11.4846 0.571381
\(405\) 0 0
\(406\) 19.0610 0.945983
\(407\) − 7.88513i − 0.390851i
\(408\) 3.45965i 0.171278i
\(409\) −24.2346 −1.19832 −0.599162 0.800628i \(-0.704499\pi\)
−0.599162 + 0.800628i \(0.704499\pi\)
\(410\) 0 0
\(411\) 7.42175 0.366088
\(412\) − 13.9549i − 0.687508i
\(413\) − 57.8077i − 2.84453i
\(414\) 0.611469 0.0300521
\(415\) 0 0
\(416\) 5.42226 0.265848
\(417\) − 5.30062i − 0.259573i
\(418\) 5.37019i 0.262665i
\(419\) −22.8254 −1.11509 −0.557546 0.830146i \(-0.688257\pi\)
−0.557546 + 0.830146i \(0.688257\pi\)
\(420\) 0 0
\(421\) −39.1298 −1.90707 −0.953536 0.301279i \(-0.902586\pi\)
−0.953536 + 0.301279i \(0.902586\pi\)
\(422\) − 4.35487i − 0.211992i
\(423\) − 6.91460i − 0.336199i
\(424\) −6.79766 −0.330124
\(425\) 0 0
\(426\) 9.06706 0.439301
\(427\) 51.3309i 2.48408i
\(428\) − 8.35405i − 0.403808i
\(429\) −17.8071 −0.859736
\(430\) 0 0
\(431\) 24.6813 1.18886 0.594429 0.804148i \(-0.297378\pi\)
0.594429 + 0.804148i \(0.297378\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) − 19.8779i − 0.955269i −0.878559 0.477634i \(-0.841494\pi\)
0.878559 0.477634i \(-0.158506\pi\)
\(434\) −33.8575 −1.62521
\(435\) 0 0
\(436\) 0.532633 0.0255085
\(437\) − 0.999887i − 0.0478311i
\(438\) − 9.10079i − 0.434853i
\(439\) −5.07227 −0.242086 −0.121043 0.992647i \(-0.538624\pi\)
−0.121043 + 0.992647i \(0.538624\pi\)
\(440\) 0 0
\(441\) 9.62750 0.458453
\(442\) 18.7591i 0.892280i
\(443\) − 10.1873i − 0.484015i −0.970274 0.242008i \(-0.922194\pi\)
0.970274 0.242008i \(-0.0778059\pi\)
\(444\) 2.40102 0.113947
\(445\) 0 0
\(446\) −0.361875 −0.0171353
\(447\) 4.79296i 0.226699i
\(448\) 4.07768i 0.192652i
\(449\) −10.3653 −0.489169 −0.244585 0.969628i \(-0.578652\pi\)
−0.244585 + 0.969628i \(0.578652\pi\)
\(450\) 0 0
\(451\) −9.62822 −0.453375
\(452\) − 17.2272i − 0.810299i
\(453\) 6.93533i 0.325850i
\(454\) −12.8576 −0.603439
\(455\) 0 0
\(456\) −1.63522 −0.0765762
\(457\) − 4.06165i − 0.189996i −0.995477 0.0949980i \(-0.969716\pi\)
0.995477 0.0949980i \(-0.0302845\pi\)
\(458\) 16.5347i 0.772616i
\(459\) 3.45965 0.161483
\(460\) 0 0
\(461\) 6.76110 0.314896 0.157448 0.987527i \(-0.449673\pi\)
0.157448 + 0.987527i \(0.449673\pi\)
\(462\) − 13.3914i − 0.623026i
\(463\) 9.72184i 0.451812i 0.974149 + 0.225906i \(0.0725343\pi\)
−0.974149 + 0.225906i \(0.927466\pi\)
\(464\) 4.67447 0.217007
\(465\) 0 0
\(466\) −11.0706 −0.512836
\(467\) 38.4021i 1.77704i 0.458842 + 0.888518i \(0.348264\pi\)
−0.458842 + 0.888518i \(0.651736\pi\)
\(468\) − 5.42226i − 0.250644i
\(469\) 44.3415 2.04750
\(470\) 0 0
\(471\) −7.51609 −0.346323
\(472\) − 14.1766i − 0.652531i
\(473\) − 28.3782i − 1.30483i
\(474\) −4.09602 −0.188137
\(475\) 0 0
\(476\) −14.1074 −0.646610
\(477\) 6.79766i 0.311244i
\(478\) 5.58721i 0.255553i
\(479\) −8.47735 −0.387340 −0.193670 0.981067i \(-0.562039\pi\)
−0.193670 + 0.981067i \(0.562039\pi\)
\(480\) 0 0
\(481\) 13.0189 0.593612
\(482\) − 14.8540i − 0.676581i
\(483\) 2.49338i 0.113453i
\(484\) 0.214825 0.00976477
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 28.9739i 1.31293i 0.754354 + 0.656467i \(0.227950\pi\)
−0.754354 + 0.656467i \(0.772050\pi\)
\(488\) 12.5882i 0.569843i
\(489\) −8.36717 −0.378377
\(490\) 0 0
\(491\) −10.2266 −0.461518 −0.230759 0.973011i \(-0.574121\pi\)
−0.230759 + 0.973011i \(0.574121\pi\)
\(492\) − 2.93179i − 0.132175i
\(493\) 16.1720i 0.728352i
\(494\) −8.86659 −0.398927
\(495\) 0 0
\(496\) −8.30313 −0.372822
\(497\) 36.9726i 1.65845i
\(498\) − 7.13111i − 0.319553i
\(499\) 23.0007 1.02965 0.514827 0.857294i \(-0.327856\pi\)
0.514827 + 0.857294i \(0.327856\pi\)
\(500\) 0 0
\(501\) −8.94427 −0.399601
\(502\) − 12.6802i − 0.565946i
\(503\) − 19.0511i − 0.849447i −0.905323 0.424724i \(-0.860371\pi\)
0.905323 0.424724i \(-0.139629\pi\)
\(504\) 4.07768 0.181634
\(505\) 0 0
\(506\) 2.00811 0.0892716
\(507\) − 16.4009i − 0.728390i
\(508\) − 1.14765i − 0.0509187i
\(509\) 23.7206 1.05140 0.525698 0.850671i \(-0.323804\pi\)
0.525698 + 0.850671i \(0.323804\pi\)
\(510\) 0 0
\(511\) 37.1101 1.64166
\(512\) 1.00000i 0.0441942i
\(513\) 1.63522i 0.0721967i
\(514\) −19.1916 −0.846505
\(515\) 0 0
\(516\) 8.64114 0.380405
\(517\) − 22.7081i − 0.998701i
\(518\) 9.79059i 0.430174i
\(519\) −2.33905 −0.102673
\(520\) 0 0
\(521\) 29.2425 1.28114 0.640569 0.767901i \(-0.278699\pi\)
0.640569 + 0.767901i \(0.278699\pi\)
\(522\) − 4.67447i − 0.204596i
\(523\) 19.3157i 0.844616i 0.906452 + 0.422308i \(0.138780\pi\)
−0.906452 + 0.422308i \(0.861220\pi\)
\(524\) 6.61907 0.289156
\(525\) 0 0
\(526\) 29.4749 1.28517
\(527\) − 28.7259i − 1.25132i
\(528\) − 3.28408i − 0.142921i
\(529\) 22.6261 0.983744
\(530\) 0 0
\(531\) −14.1766 −0.615212
\(532\) − 6.66791i − 0.289091i
\(533\) − 15.8969i − 0.688571i
\(534\) 4.80307 0.207849
\(535\) 0 0
\(536\) 10.8742 0.469694
\(537\) − 6.02967i − 0.260200i
\(538\) − 21.9020i − 0.944262i
\(539\) 31.6175 1.36186
\(540\) 0 0
\(541\) −32.2091 −1.38478 −0.692389 0.721524i \(-0.743442\pi\)
−0.692389 + 0.721524i \(0.743442\pi\)
\(542\) − 15.0831i − 0.647874i
\(543\) 16.5771i 0.711392i
\(544\) −3.45965 −0.148331
\(545\) 0 0
\(546\) 22.1103 0.946232
\(547\) 22.2651i 0.951988i 0.879449 + 0.475994i \(0.157912\pi\)
−0.879449 + 0.475994i \(0.842088\pi\)
\(548\) 7.42175i 0.317041i
\(549\) 12.5882 0.537253
\(550\) 0 0
\(551\) −7.64379 −0.325637
\(552\) 0.611469i 0.0260259i
\(553\) − 16.7023i − 0.710253i
\(554\) −2.58366 −0.109769
\(555\) 0 0
\(556\) 5.30062 0.224796
\(557\) 15.1565i 0.642202i 0.947045 + 0.321101i \(0.104053\pi\)
−0.947045 + 0.321101i \(0.895947\pi\)
\(558\) 8.30313i 0.351500i
\(559\) 46.8545 1.98173
\(560\) 0 0
\(561\) 11.3618 0.479694
\(562\) − 18.3980i − 0.776073i
\(563\) 20.8210i 0.877499i 0.898609 + 0.438750i \(0.144579\pi\)
−0.898609 + 0.438750i \(0.855421\pi\)
\(564\) 6.91460 0.291157
\(565\) 0 0
\(566\) −3.47464 −0.146050
\(567\) − 4.07768i − 0.171247i
\(568\) 9.06706i 0.380445i
\(569\) −14.7556 −0.618586 −0.309293 0.950967i \(-0.600092\pi\)
−0.309293 + 0.950967i \(0.600092\pi\)
\(570\) 0 0
\(571\) −5.05311 −0.211466 −0.105733 0.994395i \(-0.533719\pi\)
−0.105733 + 0.994395i \(0.533719\pi\)
\(572\) − 17.8071i − 0.744554i
\(573\) 9.96802i 0.416420i
\(574\) 11.9549 0.498988
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 5.49722i − 0.228852i −0.993432 0.114426i \(-0.963497\pi\)
0.993432 0.114426i \(-0.0365029\pi\)
\(578\) 5.03083i 0.209255i
\(579\) 25.0735 1.04202
\(580\) 0 0
\(581\) 29.0784 1.20638
\(582\) 14.7598i 0.611812i
\(583\) 22.3241i 0.924568i
\(584\) 9.10079 0.376593
\(585\) 0 0
\(586\) 15.8625 0.655275
\(587\) 42.3980i 1.74995i 0.484167 + 0.874975i \(0.339123\pi\)
−0.484167 + 0.874975i \(0.660877\pi\)
\(588\) 9.62750i 0.397032i
\(589\) 13.5774 0.559449
\(590\) 0 0
\(591\) 26.8378 1.10396
\(592\) 2.40102i 0.0986812i
\(593\) − 6.76110i − 0.277645i −0.990317 0.138822i \(-0.955668\pi\)
0.990317 0.138822i \(-0.0443317\pi\)
\(594\) −3.28408 −0.134747
\(595\) 0 0
\(596\) −4.79296 −0.196327
\(597\) 4.06114i 0.166211i
\(598\) 3.31555i 0.135583i
\(599\) −11.7740 −0.481074 −0.240537 0.970640i \(-0.577324\pi\)
−0.240537 + 0.970640i \(0.577324\pi\)
\(600\) 0 0
\(601\) 22.4353 0.915154 0.457577 0.889170i \(-0.348717\pi\)
0.457577 + 0.889170i \(0.348717\pi\)
\(602\) 35.2358i 1.43611i
\(603\) − 10.8742i − 0.442831i
\(604\) −6.93533 −0.282195
\(605\) 0 0
\(606\) 11.4846 0.466531
\(607\) 33.0837i 1.34283i 0.741083 + 0.671413i \(0.234312\pi\)
−0.741083 + 0.671413i \(0.765688\pi\)
\(608\) − 1.63522i − 0.0663169i
\(609\) 19.0610 0.772392
\(610\) 0 0
\(611\) 37.4928 1.51679
\(612\) 3.45965i 0.139848i
\(613\) 15.2894i 0.617535i 0.951138 + 0.308767i \(0.0999165\pi\)
−0.951138 + 0.308767i \(0.900084\pi\)
\(614\) 25.4122 1.02555
\(615\) 0 0
\(616\) 13.3914 0.539556
\(617\) − 10.6410i − 0.428389i −0.976791 0.214194i \(-0.931287\pi\)
0.976791 0.214194i \(-0.0687126\pi\)
\(618\) − 13.9549i − 0.561348i
\(619\) −28.8152 −1.15818 −0.579090 0.815264i \(-0.696592\pi\)
−0.579090 + 0.815264i \(0.696592\pi\)
\(620\) 0 0
\(621\) 0.611469 0.0245374
\(622\) 18.4445i 0.739559i
\(623\) 19.5854i 0.784673i
\(624\) 5.42226 0.217064
\(625\) 0 0
\(626\) −21.9121 −0.875783
\(627\) 5.37019i 0.214465i
\(628\) − 7.51609i − 0.299925i
\(629\) −8.30668 −0.331209
\(630\) 0 0
\(631\) 20.2165 0.804806 0.402403 0.915463i \(-0.368175\pi\)
0.402403 + 0.915463i \(0.368175\pi\)
\(632\) − 4.09602i − 0.162931i
\(633\) − 4.35487i − 0.173091i
\(634\) 5.78671 0.229820
\(635\) 0 0
\(636\) −6.79766 −0.269545
\(637\) 52.2028i 2.06835i
\(638\) − 15.3513i − 0.607766i
\(639\) 9.06706 0.358687
\(640\) 0 0
\(641\) −50.0641 −1.97741 −0.988707 0.149860i \(-0.952118\pi\)
−0.988707 + 0.149860i \(0.952118\pi\)
\(642\) − 8.35405i − 0.329708i
\(643\) 11.8080i 0.465660i 0.972517 + 0.232830i \(0.0747986\pi\)
−0.972517 + 0.232830i \(0.925201\pi\)
\(644\) −2.49338 −0.0982529
\(645\) 0 0
\(646\) 5.65729 0.222583
\(647\) 29.0870i 1.14353i 0.820419 + 0.571763i \(0.193740\pi\)
−0.820419 + 0.571763i \(0.806260\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) −46.5571 −1.82753
\(650\) 0 0
\(651\) −33.8575 −1.32698
\(652\) − 8.36717i − 0.327684i
\(653\) 24.8126i 0.970993i 0.874239 + 0.485496i \(0.161361\pi\)
−0.874239 + 0.485496i \(0.838639\pi\)
\(654\) 0.532633 0.0208276
\(655\) 0 0
\(656\) 2.93179 0.114467
\(657\) − 9.10079i − 0.355056i
\(658\) 28.1955i 1.09918i
\(659\) −19.1692 −0.746726 −0.373363 0.927685i \(-0.621795\pi\)
−0.373363 + 0.927685i \(0.621795\pi\)
\(660\) 0 0
\(661\) −45.7461 −1.77932 −0.889658 0.456627i \(-0.849057\pi\)
−0.889658 + 0.456627i \(0.849057\pi\)
\(662\) − 7.64365i − 0.297079i
\(663\) 18.7591i 0.728544i
\(664\) 7.13111 0.276741
\(665\) 0 0
\(666\) 2.40102 0.0930375
\(667\) 2.85830i 0.110674i
\(668\) − 8.94427i − 0.346064i
\(669\) −0.361875 −0.0139909
\(670\) 0 0
\(671\) 41.3408 1.59594
\(672\) 4.07768i 0.157300i
\(673\) − 21.2542i − 0.819288i −0.912246 0.409644i \(-0.865653\pi\)
0.912246 0.409644i \(-0.134347\pi\)
\(674\) −3.68904 −0.142097
\(675\) 0 0
\(676\) 16.4009 0.630804
\(677\) − 43.3531i − 1.66620i −0.553126 0.833098i \(-0.686565\pi\)
0.553126 0.833098i \(-0.313435\pi\)
\(678\) − 17.2272i − 0.661607i
\(679\) −60.1856 −2.30971
\(680\) 0 0
\(681\) −12.8576 −0.492706
\(682\) 27.2681i 1.04415i
\(683\) − 15.5812i − 0.596197i −0.954535 0.298099i \(-0.903648\pi\)
0.954535 0.298099i \(-0.0963524\pi\)
\(684\) −1.63522 −0.0625242
\(685\) 0 0
\(686\) −10.7141 −0.409067
\(687\) 16.5347i 0.630839i
\(688\) 8.64114i 0.329440i
\(689\) −36.8587 −1.40420
\(690\) 0 0
\(691\) 25.5539 0.972118 0.486059 0.873926i \(-0.338434\pi\)
0.486059 + 0.873926i \(0.338434\pi\)
\(692\) − 2.33905i − 0.0889174i
\(693\) − 13.3914i − 0.508699i
\(694\) −3.63522 −0.137991
\(695\) 0 0
\(696\) 4.67447 0.177185
\(697\) 10.1430i 0.384192i
\(698\) − 12.2270i − 0.462799i
\(699\) −11.0706 −0.418729
\(700\) 0 0
\(701\) 24.7063 0.933146 0.466573 0.884483i \(-0.345489\pi\)
0.466573 + 0.884483i \(0.345489\pi\)
\(702\) − 5.42226i − 0.204650i
\(703\) − 3.92619i − 0.148079i
\(704\) 3.28408 0.123773
\(705\) 0 0
\(706\) −15.6641 −0.589525
\(707\) 46.8307i 1.76125i
\(708\) − 14.1766i − 0.532790i
\(709\) 20.1411 0.756414 0.378207 0.925721i \(-0.376541\pi\)
0.378207 + 0.925721i \(0.376541\pi\)
\(710\) 0 0
\(711\) −4.09602 −0.153613
\(712\) 4.80307i 0.180003i
\(713\) − 5.07711i − 0.190139i
\(714\) −14.1074 −0.527955
\(715\) 0 0
\(716\) 6.02967 0.225339
\(717\) 5.58721i 0.208658i
\(718\) − 7.07176i − 0.263916i
\(719\) 25.9912 0.969308 0.484654 0.874706i \(-0.338945\pi\)
0.484654 + 0.874706i \(0.338945\pi\)
\(720\) 0 0
\(721\) 56.9036 2.11920
\(722\) − 16.3261i − 0.607593i
\(723\) − 14.8540i − 0.552426i
\(724\) −16.5771 −0.616084
\(725\) 0 0
\(726\) 0.214825 0.00797290
\(727\) − 34.3616i − 1.27440i −0.770697 0.637202i \(-0.780092\pi\)
0.770697 0.637202i \(-0.219908\pi\)
\(728\) 22.1103i 0.819461i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −29.8953 −1.10572
\(732\) 12.5882i 0.465275i
\(733\) 32.2515i 1.19124i 0.803267 + 0.595619i \(0.203093\pi\)
−0.803267 + 0.595619i \(0.796907\pi\)
\(734\) 26.7477 0.987275
\(735\) 0 0
\(736\) −0.611469 −0.0225391
\(737\) − 35.7117i − 1.31546i
\(738\) − 2.93179i − 0.107921i
\(739\) −41.2647 −1.51795 −0.758973 0.651122i \(-0.774299\pi\)
−0.758973 + 0.651122i \(0.774299\pi\)
\(740\) 0 0
\(741\) −8.86659 −0.325722
\(742\) − 27.7187i − 1.01759i
\(743\) − 7.06997i − 0.259372i −0.991555 0.129686i \(-0.958603\pi\)
0.991555 0.129686i \(-0.0413969\pi\)
\(744\) −8.30313 −0.304408
\(745\) 0 0
\(746\) −11.8848 −0.435134
\(747\) − 7.13111i − 0.260914i
\(748\) 11.3618i 0.415427i
\(749\) 34.0652 1.24471
\(750\) 0 0
\(751\) −4.57240 −0.166849 −0.0834246 0.996514i \(-0.526586\pi\)
−0.0834246 + 0.996514i \(0.526586\pi\)
\(752\) 6.91460i 0.252149i
\(753\) − 12.6802i − 0.462093i
\(754\) 25.3462 0.923055
\(755\) 0 0
\(756\) 4.07768 0.148304
\(757\) 21.1871i 0.770058i 0.922904 + 0.385029i \(0.125809\pi\)
−0.922904 + 0.385029i \(0.874191\pi\)
\(758\) 4.82558i 0.175273i
\(759\) 2.00811 0.0728899
\(760\) 0 0
\(761\) −31.8509 −1.15459 −0.577296 0.816535i \(-0.695892\pi\)
−0.577296 + 0.816535i \(0.695892\pi\)
\(762\) − 1.14765i − 0.0415750i
\(763\) 2.17191i 0.0786284i
\(764\) −9.96802 −0.360630
\(765\) 0 0
\(766\) 4.80351 0.173558
\(767\) − 76.8693i − 2.77559i
\(768\) 1.00000i 0.0360844i
\(769\) 9.12820 0.329171 0.164586 0.986363i \(-0.447371\pi\)
0.164586 + 0.986363i \(0.447371\pi\)
\(770\) 0 0
\(771\) −19.1916 −0.691169
\(772\) 25.0735i 0.902416i
\(773\) − 39.1142i − 1.40684i −0.710774 0.703420i \(-0.751655\pi\)
0.710774 0.703420i \(-0.248345\pi\)
\(774\) 8.64114 0.310599
\(775\) 0 0
\(776\) −14.7598 −0.529845
\(777\) 9.79059i 0.351235i
\(778\) 13.4417i 0.481909i
\(779\) −4.79411 −0.171767
\(780\) 0 0
\(781\) 29.7769 1.06550
\(782\) − 2.11547i − 0.0756491i
\(783\) − 4.67447i − 0.167052i
\(784\) −9.62750 −0.343839
\(785\) 0 0
\(786\) 6.61907 0.236095
\(787\) − 27.1029i − 0.966113i −0.875589 0.483056i \(-0.839527\pi\)
0.875589 0.483056i \(-0.160473\pi\)
\(788\) 26.8378i 0.956059i
\(789\) 29.4749 1.04934
\(790\) 0 0
\(791\) 70.2471 2.49770
\(792\) − 3.28408i − 0.116695i
\(793\) 68.2568i 2.42387i
\(794\) −0.0866228 −0.00307413
\(795\) 0 0
\(796\) −4.06114 −0.143943
\(797\) 13.2411i 0.469024i 0.972113 + 0.234512i \(0.0753492\pi\)
−0.972113 + 0.234512i \(0.924651\pi\)
\(798\) − 6.66791i − 0.236041i
\(799\) −23.9221 −0.846303
\(800\) 0 0
\(801\) 4.80307 0.169708
\(802\) 0.321141i 0.0113399i
\(803\) − 29.8877i − 1.05471i
\(804\) 10.8742 0.383503
\(805\) 0 0
\(806\) −45.0217 −1.58582
\(807\) − 21.9020i − 0.770987i
\(808\) 11.4846i 0.404028i
\(809\) 7.53161 0.264797 0.132399 0.991197i \(-0.457732\pi\)
0.132399 + 0.991197i \(0.457732\pi\)
\(810\) 0 0
\(811\) −26.8219 −0.941846 −0.470923 0.882174i \(-0.656079\pi\)
−0.470923 + 0.882174i \(0.656079\pi\)
\(812\) 19.0610i 0.668911i
\(813\) − 15.0831i − 0.528987i
\(814\) 7.88513 0.276374
\(815\) 0 0
\(816\) −3.45965 −0.121112
\(817\) − 14.1302i − 0.494352i
\(818\) − 24.2346i − 0.847343i
\(819\) 22.1103 0.772595
\(820\) 0 0
\(821\) 37.2089 1.29860 0.649300 0.760532i \(-0.275062\pi\)
0.649300 + 0.760532i \(0.275062\pi\)
\(822\) 7.42175i 0.258863i
\(823\) − 17.9438i − 0.625483i −0.949838 0.312742i \(-0.898753\pi\)
0.949838 0.312742i \(-0.101247\pi\)
\(824\) 13.9549 0.486142
\(825\) 0 0
\(826\) 57.8077 2.01139
\(827\) − 16.9269i − 0.588606i −0.955712 0.294303i \(-0.904913\pi\)
0.955712 0.294303i \(-0.0950875\pi\)
\(828\) 0.611469i 0.0212500i
\(829\) −51.5169 −1.78925 −0.894627 0.446813i \(-0.852559\pi\)
−0.894627 + 0.446813i \(0.852559\pi\)
\(830\) 0 0
\(831\) −2.58366 −0.0896262
\(832\) 5.42226i 0.187983i
\(833\) − 33.3078i − 1.15405i
\(834\) 5.30062 0.183546
\(835\) 0 0
\(836\) −5.37019 −0.185732
\(837\) 8.30313i 0.286998i
\(838\) − 22.8254i − 0.788489i
\(839\) −22.2100 −0.766775 −0.383387 0.923588i \(-0.625243\pi\)
−0.383387 + 0.923588i \(0.625243\pi\)
\(840\) 0 0
\(841\) −7.14929 −0.246527
\(842\) − 39.1298i − 1.34850i
\(843\) − 18.3980i − 0.633661i
\(844\) 4.35487 0.149901
\(845\) 0 0
\(846\) 6.91460 0.237729
\(847\) 0.875988i 0.0300993i
\(848\) − 6.79766i − 0.233433i
\(849\) −3.47464 −0.119249
\(850\) 0 0
\(851\) −1.46815 −0.0503275
\(852\) 9.06706i 0.310632i
\(853\) − 35.5195i − 1.21616i −0.793874 0.608082i \(-0.791939\pi\)
0.793874 0.608082i \(-0.208061\pi\)
\(854\) −51.3309 −1.75651
\(855\) 0 0
\(856\) 8.35405 0.285535
\(857\) − 35.9714i − 1.22876i −0.789010 0.614380i \(-0.789406\pi\)
0.789010 0.614380i \(-0.210594\pi\)
\(858\) − 17.8071i − 0.607925i
\(859\) −47.1199 −1.60771 −0.803854 0.594826i \(-0.797221\pi\)
−0.803854 + 0.594826i \(0.797221\pi\)
\(860\) 0 0
\(861\) 11.9549 0.407422
\(862\) 24.6813i 0.840649i
\(863\) 40.4709i 1.37765i 0.724929 + 0.688823i \(0.241872\pi\)
−0.724929 + 0.688823i \(0.758128\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 19.8779 0.675477
\(867\) 5.03083i 0.170856i
\(868\) − 33.8575i − 1.14920i
\(869\) −13.4517 −0.456316
\(870\) 0 0
\(871\) 58.9627 1.99787
\(872\) 0.532633i 0.0180372i
\(873\) 14.7598i 0.499542i
\(874\) 0.999887 0.0338217
\(875\) 0 0
\(876\) 9.10079 0.307487
\(877\) 13.5814i 0.458610i 0.973355 + 0.229305i \(0.0736453\pi\)
−0.973355 + 0.229305i \(0.926355\pi\)
\(878\) − 5.07227i − 0.171181i
\(879\) 15.8625 0.535030
\(880\) 0 0
\(881\) 30.1137 1.01456 0.507278 0.861783i \(-0.330652\pi\)
0.507278 + 0.861783i \(0.330652\pi\)
\(882\) 9.62750i 0.324175i
\(883\) 4.76444i 0.160336i 0.996781 + 0.0801681i \(0.0255457\pi\)
−0.996781 + 0.0801681i \(0.974454\pi\)
\(884\) −18.7591 −0.630937
\(885\) 0 0
\(886\) 10.1873 0.342251
\(887\) 40.3791i 1.35580i 0.735155 + 0.677899i \(0.237109\pi\)
−0.735155 + 0.677899i \(0.762891\pi\)
\(888\) 2.40102i 0.0805729i
\(889\) 4.67975 0.156954
\(890\) 0 0
\(891\) −3.28408 −0.110021
\(892\) − 0.361875i − 0.0121165i
\(893\) − 11.3069i − 0.378371i
\(894\) −4.79296 −0.160301
\(895\) 0 0
\(896\) −4.07768 −0.136226
\(897\) 3.31555i 0.110703i
\(898\) − 10.3653i − 0.345895i
\(899\) −38.8128 −1.29448
\(900\) 0 0
\(901\) 23.5175 0.783482
\(902\) − 9.62822i − 0.320585i
\(903\) 35.2358i 1.17258i
\(904\) 17.2272 0.572968
\(905\) 0 0
\(906\) −6.93533 −0.230411
\(907\) − 22.3227i − 0.741214i −0.928790 0.370607i \(-0.879150\pi\)
0.928790 0.370607i \(-0.120850\pi\)
\(908\) − 12.8576i − 0.426696i
\(909\) 11.4846 0.380921
\(910\) 0 0
\(911\) 0.782586 0.0259282 0.0129641 0.999916i \(-0.495873\pi\)
0.0129641 + 0.999916i \(0.495873\pi\)
\(912\) − 1.63522i − 0.0541475i
\(913\) − 23.4191i − 0.775060i
\(914\) 4.06165 0.134347
\(915\) 0 0
\(916\) −16.5347 −0.546322
\(917\) 26.9905i 0.891304i
\(918\) 3.45965i 0.114185i
\(919\) 1.97061 0.0650045 0.0325022 0.999472i \(-0.489652\pi\)
0.0325022 + 0.999472i \(0.489652\pi\)
\(920\) 0 0
\(921\) 25.4122 0.837359
\(922\) 6.76110i 0.222665i
\(923\) 49.1640i 1.61825i
\(924\) 13.3914 0.440546
\(925\) 0 0
\(926\) −9.72184 −0.319480
\(927\) − 13.9549i − 0.458339i
\(928\) 4.67447i 0.153447i
\(929\) 23.7107 0.777922 0.388961 0.921254i \(-0.372834\pi\)
0.388961 + 0.921254i \(0.372834\pi\)
\(930\) 0 0
\(931\) 15.7431 0.515959
\(932\) − 11.0706i − 0.362630i
\(933\) 18.4445i 0.603847i
\(934\) −38.4021 −1.25655
\(935\) 0 0
\(936\) 5.42226 0.177232
\(937\) − 17.7488i − 0.579829i −0.957053 0.289914i \(-0.906373\pi\)
0.957053 0.289914i \(-0.0936268\pi\)
\(938\) 44.3415i 1.44780i
\(939\) −21.9121 −0.715074
\(940\) 0 0
\(941\) 49.7755 1.62264 0.811318 0.584605i \(-0.198750\pi\)
0.811318 + 0.584605i \(0.198750\pi\)
\(942\) − 7.51609i − 0.244887i
\(943\) 1.79270i 0.0583783i
\(944\) 14.1766 0.461409
\(945\) 0 0
\(946\) 28.3782 0.922655
\(947\) 4.51522i 0.146725i 0.997305 + 0.0733625i \(0.0233730\pi\)
−0.997305 + 0.0733625i \(0.976627\pi\)
\(948\) − 4.09602i − 0.133033i
\(949\) 49.3469 1.60187
\(950\) 0 0
\(951\) 5.78671 0.187647
\(952\) − 14.1074i − 0.457222i
\(953\) − 9.33298i − 0.302325i −0.988509 0.151163i \(-0.951698\pi\)
0.988509 0.151163i \(-0.0483017\pi\)
\(954\) −6.79766 −0.220082
\(955\) 0 0
\(956\) −5.58721 −0.180703
\(957\) − 15.3513i − 0.496238i
\(958\) − 8.47735i − 0.273891i
\(959\) −30.2635 −0.977261
\(960\) 0 0
\(961\) 37.9420 1.22393
\(962\) 13.0189i 0.419747i
\(963\) − 8.35405i − 0.269205i
\(964\) 14.8540 0.478415
\(965\) 0 0
\(966\) −2.49338 −0.0802232
\(967\) − 22.2528i − 0.715602i −0.933798 0.357801i \(-0.883527\pi\)
0.933798 0.357801i \(-0.116473\pi\)
\(968\) 0.214825i 0.00690473i
\(969\) 5.65729 0.181738
\(970\) 0 0
\(971\) 4.39676 0.141099 0.0705493 0.997508i \(-0.477525\pi\)
0.0705493 + 0.997508i \(0.477525\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 21.6143i 0.692921i
\(974\) −28.9739 −0.928385
\(975\) 0 0
\(976\) −12.5882 −0.402940
\(977\) 14.8273i 0.474368i 0.971465 + 0.237184i \(0.0762245\pi\)
−0.971465 + 0.237184i \(0.923775\pi\)
\(978\) − 8.36717i − 0.267553i
\(979\) 15.7737 0.504129
\(980\) 0 0
\(981\) 0.532633 0.0170057
\(982\) − 10.2266i − 0.326343i
\(983\) 18.0501i 0.575708i 0.957674 + 0.287854i \(0.0929419\pi\)
−0.957674 + 0.287854i \(0.907058\pi\)
\(984\) 2.93179 0.0934619
\(985\) 0 0
\(986\) −16.1720 −0.515023
\(987\) 28.1955i 0.897474i
\(988\) − 8.86659i − 0.282084i
\(989\) −5.28379 −0.168015
\(990\) 0 0
\(991\) −55.2657 −1.75557 −0.877787 0.479051i \(-0.840981\pi\)
−0.877787 + 0.479051i \(0.840981\pi\)
\(992\) − 8.30313i − 0.263625i
\(993\) − 7.64365i − 0.242564i
\(994\) −36.9726 −1.17270
\(995\) 0 0
\(996\) 7.13111 0.225958
\(997\) 16.2703i 0.515286i 0.966240 + 0.257643i \(0.0829459\pi\)
−0.966240 + 0.257643i \(0.917054\pi\)
\(998\) 23.0007i 0.728075i
\(999\) 2.40102 0.0759648
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.c.e.1249.5 8
5.2 odd 4 3750.2.a.m.1.4 4
5.3 odd 4 3750.2.a.o.1.1 4
5.4 even 2 inner 3750.2.c.e.1249.4 8
25.2 odd 20 750.2.g.e.601.2 8
25.9 even 10 750.2.h.c.349.2 8
25.11 even 5 750.2.h.c.649.2 8
25.12 odd 20 750.2.g.e.151.2 8
25.13 odd 20 750.2.g.c.151.1 8
25.14 even 10 150.2.h.a.79.1 yes 8
25.16 even 5 150.2.h.a.19.1 8
25.23 odd 20 750.2.g.c.601.1 8
75.14 odd 10 450.2.l.a.379.2 8
75.41 odd 10 450.2.l.a.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.19.1 8 25.16 even 5
150.2.h.a.79.1 yes 8 25.14 even 10
450.2.l.a.19.2 8 75.41 odd 10
450.2.l.a.379.2 8 75.14 odd 10
750.2.g.c.151.1 8 25.13 odd 20
750.2.g.c.601.1 8 25.23 odd 20
750.2.g.e.151.2 8 25.12 odd 20
750.2.g.e.601.2 8 25.2 odd 20
750.2.h.c.349.2 8 25.9 even 10
750.2.h.c.649.2 8 25.11 even 5
3750.2.a.m.1.4 4 5.2 odd 4
3750.2.a.o.1.1 4 5.3 odd 4
3750.2.c.e.1249.4 8 5.4 even 2 inner
3750.2.c.e.1249.5 8 1.1 even 1 trivial