Properties

Label 3750.2.a.r.1.3
Level $3750$
Weight $2$
Character 3750.1
Self dual yes
Analytic conductor $29.944$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3750,2,Mod(1,3750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3750.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3750, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,0,-4,6,4,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.33826\) of defining polynomial
Character \(\chi\) \(=\) 3750.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +2.12920 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.05849 q^{11} -1.00000 q^{12} +5.89025 q^{13} +2.12920 q^{14} +1.00000 q^{16} -4.35772 q^{17} +1.00000 q^{18} +2.84943 q^{19} -2.12920 q^{21} -1.05849 q^{22} -0.467465 q^{23} -1.00000 q^{24} +5.89025 q^{26} -1.00000 q^{27} +2.12920 q^{28} -2.58189 q^{29} +8.20715 q^{31} +1.00000 q^{32} +1.05849 q^{33} -4.35772 q^{34} +1.00000 q^{36} +5.21470 q^{37} +2.84943 q^{38} -5.89025 q^{39} +5.13485 q^{41} -2.12920 q^{42} -6.49606 q^{43} -1.05849 q^{44} -0.467465 q^{46} +6.24520 q^{47} -1.00000 q^{48} -2.46649 q^{49} +4.35772 q^{51} +5.89025 q^{52} -7.32315 q^{53} -1.00000 q^{54} +2.12920 q^{56} -2.84943 q^{57} -2.58189 q^{58} -8.39228 q^{59} +7.13387 q^{61} +8.20715 q^{62} +2.12920 q^{63} +1.00000 q^{64} +1.05849 q^{66} +11.9579 q^{67} -4.35772 q^{68} +0.467465 q^{69} -14.6447 q^{71} +1.00000 q^{72} +12.1186 q^{73} +5.21470 q^{74} +2.84943 q^{76} -2.25374 q^{77} -5.89025 q^{78} -1.31999 q^{79} +1.00000 q^{81} +5.13485 q^{82} +12.9727 q^{83} -2.12920 q^{84} -6.49606 q^{86} +2.58189 q^{87} -1.05849 q^{88} -13.5287 q^{89} +12.5415 q^{91} -0.467465 q^{92} -8.20715 q^{93} +6.24520 q^{94} -1.00000 q^{96} -7.51742 q^{97} -2.46649 q^{98} -1.05849 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9} - 4 q^{12} + 2 q^{13} + 6 q^{14} + 4 q^{16} + 11 q^{17} + 4 q^{18} + 9 q^{19} - 6 q^{21} + 5 q^{23} - 4 q^{24} + 2 q^{26} - 4 q^{27}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.12920 0.804764 0.402382 0.915472i \(-0.368182\pi\)
0.402382 + 0.915472i \(0.368182\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.05849 −0.319146 −0.159573 0.987186i \(-0.551012\pi\)
−0.159573 + 0.987186i \(0.551012\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.89025 1.63366 0.816831 0.576877i \(-0.195729\pi\)
0.816831 + 0.576877i \(0.195729\pi\)
\(14\) 2.12920 0.569054
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.35772 −1.05690 −0.528451 0.848964i \(-0.677227\pi\)
−0.528451 + 0.848964i \(0.677227\pi\)
\(18\) 1.00000 0.235702
\(19\) 2.84943 0.653704 0.326852 0.945075i \(-0.394012\pi\)
0.326852 + 0.945075i \(0.394012\pi\)
\(20\) 0 0
\(21\) −2.12920 −0.464630
\(22\) −1.05849 −0.225670
\(23\) −0.467465 −0.0974733 −0.0487366 0.998812i \(-0.515520\pi\)
−0.0487366 + 0.998812i \(0.515520\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 5.89025 1.15517
\(27\) −1.00000 −0.192450
\(28\) 2.12920 0.402382
\(29\) −2.58189 −0.479444 −0.239722 0.970842i \(-0.577056\pi\)
−0.239722 + 0.970842i \(0.577056\pi\)
\(30\) 0 0
\(31\) 8.20715 1.47405 0.737024 0.675867i \(-0.236231\pi\)
0.737024 + 0.675867i \(0.236231\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.05849 0.184259
\(34\) −4.35772 −0.747342
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 5.21470 0.857292 0.428646 0.903473i \(-0.358991\pi\)
0.428646 + 0.903473i \(0.358991\pi\)
\(38\) 2.84943 0.462239
\(39\) −5.89025 −0.943195
\(40\) 0 0
\(41\) 5.13485 0.801929 0.400965 0.916094i \(-0.368675\pi\)
0.400965 + 0.916094i \(0.368675\pi\)
\(42\) −2.12920 −0.328543
\(43\) −6.49606 −0.990639 −0.495320 0.868711i \(-0.664949\pi\)
−0.495320 + 0.868711i \(0.664949\pi\)
\(44\) −1.05849 −0.159573
\(45\) 0 0
\(46\) −0.467465 −0.0689240
\(47\) 6.24520 0.910957 0.455478 0.890247i \(-0.349468\pi\)
0.455478 + 0.890247i \(0.349468\pi\)
\(48\) −1.00000 −0.144338
\(49\) −2.46649 −0.352356
\(50\) 0 0
\(51\) 4.35772 0.610202
\(52\) 5.89025 0.816831
\(53\) −7.32315 −1.00591 −0.502956 0.864312i \(-0.667754\pi\)
−0.502956 + 0.864312i \(0.667754\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.12920 0.284527
\(57\) −2.84943 −0.377416
\(58\) −2.58189 −0.339018
\(59\) −8.39228 −1.09258 −0.546291 0.837595i \(-0.683961\pi\)
−0.546291 + 0.837595i \(0.683961\pi\)
\(60\) 0 0
\(61\) 7.13387 0.913399 0.456700 0.889621i \(-0.349031\pi\)
0.456700 + 0.889621i \(0.349031\pi\)
\(62\) 8.20715 1.04231
\(63\) 2.12920 0.268255
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.05849 0.130291
\(67\) 11.9579 1.46089 0.730443 0.682973i \(-0.239313\pi\)
0.730443 + 0.682973i \(0.239313\pi\)
\(68\) −4.35772 −0.528451
\(69\) 0.467465 0.0562762
\(70\) 0 0
\(71\) −14.6447 −1.73801 −0.869004 0.494805i \(-0.835239\pi\)
−0.869004 + 0.494805i \(0.835239\pi\)
\(72\) 1.00000 0.117851
\(73\) 12.1186 1.41837 0.709185 0.705023i \(-0.249063\pi\)
0.709185 + 0.705023i \(0.249063\pi\)
\(74\) 5.21470 0.606197
\(75\) 0 0
\(76\) 2.84943 0.326852
\(77\) −2.25374 −0.256837
\(78\) −5.89025 −0.666939
\(79\) −1.31999 −0.148510 −0.0742551 0.997239i \(-0.523658\pi\)
−0.0742551 + 0.997239i \(0.523658\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 5.13485 0.567049
\(83\) 12.9727 1.42393 0.711967 0.702213i \(-0.247804\pi\)
0.711967 + 0.702213i \(0.247804\pi\)
\(84\) −2.12920 −0.232315
\(85\) 0 0
\(86\) −6.49606 −0.700488
\(87\) 2.58189 0.276807
\(88\) −1.05849 −0.112835
\(89\) −13.5287 −1.43404 −0.717020 0.697052i \(-0.754495\pi\)
−0.717020 + 0.697052i \(0.754495\pi\)
\(90\) 0 0
\(91\) 12.5415 1.31471
\(92\) −0.467465 −0.0487366
\(93\) −8.20715 −0.851041
\(94\) 6.24520 0.644144
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −7.51742 −0.763278 −0.381639 0.924311i \(-0.624640\pi\)
−0.381639 + 0.924311i \(0.624640\pi\)
\(98\) −2.46649 −0.249153
\(99\) −1.05849 −0.106382
\(100\) 0 0
\(101\) 5.95341 0.592386 0.296193 0.955128i \(-0.404283\pi\)
0.296193 + 0.955128i \(0.404283\pi\)
\(102\) 4.35772 0.431478
\(103\) 1.29647 0.127745 0.0638723 0.997958i \(-0.479655\pi\)
0.0638723 + 0.997958i \(0.479655\pi\)
\(104\) 5.89025 0.577587
\(105\) 0 0
\(106\) −7.32315 −0.711287
\(107\) 13.0327 1.25991 0.629957 0.776630i \(-0.283072\pi\)
0.629957 + 0.776630i \(0.283072\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −12.7526 −1.22147 −0.610737 0.791834i \(-0.709127\pi\)
−0.610737 + 0.791834i \(0.709127\pi\)
\(110\) 0 0
\(111\) −5.21470 −0.494958
\(112\) 2.12920 0.201191
\(113\) 18.7173 1.76078 0.880390 0.474251i \(-0.157281\pi\)
0.880390 + 0.474251i \(0.157281\pi\)
\(114\) −2.84943 −0.266874
\(115\) 0 0
\(116\) −2.58189 −0.239722
\(117\) 5.89025 0.544554
\(118\) −8.39228 −0.772572
\(119\) −9.27847 −0.850556
\(120\) 0 0
\(121\) −9.87960 −0.898146
\(122\) 7.13387 0.645871
\(123\) −5.13485 −0.462994
\(124\) 8.20715 0.737024
\(125\) 0 0
\(126\) 2.12920 0.189685
\(127\) 8.43501 0.748486 0.374243 0.927331i \(-0.377903\pi\)
0.374243 + 0.927331i \(0.377903\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.49606 0.571946
\(130\) 0 0
\(131\) −6.41653 −0.560615 −0.280308 0.959910i \(-0.590436\pi\)
−0.280308 + 0.959910i \(0.590436\pi\)
\(132\) 1.05849 0.0921296
\(133\) 6.06702 0.526078
\(134\) 11.9579 1.03300
\(135\) 0 0
\(136\) −4.35772 −0.373671
\(137\) −2.49508 −0.213169 −0.106585 0.994304i \(-0.533991\pi\)
−0.106585 + 0.994304i \(0.533991\pi\)
\(138\) 0.467465 0.0397933
\(139\) 1.78818 0.151672 0.0758358 0.997120i \(-0.475838\pi\)
0.0758358 + 0.997120i \(0.475838\pi\)
\(140\) 0 0
\(141\) −6.24520 −0.525941
\(142\) −14.6447 −1.22896
\(143\) −6.23476 −0.521377
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 12.1186 1.00294
\(147\) 2.46649 0.203433
\(148\) 5.21470 0.428646
\(149\) 10.7440 0.880185 0.440092 0.897953i \(-0.354946\pi\)
0.440092 + 0.897953i \(0.354946\pi\)
\(150\) 0 0
\(151\) 16.7444 1.36264 0.681318 0.731988i \(-0.261407\pi\)
0.681318 + 0.731988i \(0.261407\pi\)
\(152\) 2.84943 0.231119
\(153\) −4.35772 −0.352300
\(154\) −2.25374 −0.181611
\(155\) 0 0
\(156\) −5.89025 −0.471597
\(157\) 4.04586 0.322895 0.161447 0.986881i \(-0.448384\pi\)
0.161447 + 0.986881i \(0.448384\pi\)
\(158\) −1.31999 −0.105013
\(159\) 7.32315 0.580763
\(160\) 0 0
\(161\) −0.995330 −0.0784430
\(162\) 1.00000 0.0785674
\(163\) −12.7786 −1.00090 −0.500448 0.865766i \(-0.666831\pi\)
−0.500448 + 0.865766i \(0.666831\pi\)
\(164\) 5.13485 0.400965
\(165\) 0 0
\(166\) 12.9727 1.00687
\(167\) 22.9012 1.77215 0.886073 0.463546i \(-0.153423\pi\)
0.886073 + 0.463546i \(0.153423\pi\)
\(168\) −2.12920 −0.164272
\(169\) 21.6950 1.66885
\(170\) 0 0
\(171\) 2.84943 0.217901
\(172\) −6.49606 −0.495320
\(173\) 21.1514 1.60811 0.804056 0.594553i \(-0.202671\pi\)
0.804056 + 0.594553i \(0.202671\pi\)
\(174\) 2.58189 0.195732
\(175\) 0 0
\(176\) −1.05849 −0.0797866
\(177\) 8.39228 0.630803
\(178\) −13.5287 −1.01402
\(179\) −10.0795 −0.753379 −0.376689 0.926340i \(-0.622938\pi\)
−0.376689 + 0.926340i \(0.622938\pi\)
\(180\) 0 0
\(181\) −3.30520 −0.245674 −0.122837 0.992427i \(-0.539199\pi\)
−0.122837 + 0.992427i \(0.539199\pi\)
\(182\) 12.5415 0.929641
\(183\) −7.13387 −0.527351
\(184\) −0.467465 −0.0344620
\(185\) 0 0
\(186\) −8.20715 −0.601777
\(187\) 4.61259 0.337306
\(188\) 6.24520 0.455478
\(189\) −2.12920 −0.154877
\(190\) 0 0
\(191\) 9.94780 0.719798 0.359899 0.932991i \(-0.382811\pi\)
0.359899 + 0.932991i \(0.382811\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −19.8949 −1.43207 −0.716034 0.698066i \(-0.754044\pi\)
−0.716034 + 0.698066i \(0.754044\pi\)
\(194\) −7.51742 −0.539719
\(195\) 0 0
\(196\) −2.46649 −0.176178
\(197\) 27.3096 1.94573 0.972865 0.231375i \(-0.0743224\pi\)
0.972865 + 0.231375i \(0.0743224\pi\)
\(198\) −1.05849 −0.0752235
\(199\) 1.70256 0.120691 0.0603455 0.998178i \(-0.480780\pi\)
0.0603455 + 0.998178i \(0.480780\pi\)
\(200\) 0 0
\(201\) −11.9579 −0.843443
\(202\) 5.95341 0.418880
\(203\) −5.49736 −0.385839
\(204\) 4.35772 0.305101
\(205\) 0 0
\(206\) 1.29647 0.0903291
\(207\) −0.467465 −0.0324911
\(208\) 5.89025 0.408415
\(209\) −3.01609 −0.208627
\(210\) 0 0
\(211\) 19.8374 1.36566 0.682832 0.730576i \(-0.260748\pi\)
0.682832 + 0.730576i \(0.260748\pi\)
\(212\) −7.32315 −0.502956
\(213\) 14.6447 1.00344
\(214\) 13.0327 0.890894
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 17.4747 1.18626
\(218\) −12.7526 −0.863712
\(219\) −12.1186 −0.818896
\(220\) 0 0
\(221\) −25.6680 −1.72662
\(222\) −5.21470 −0.349988
\(223\) 11.5590 0.774049 0.387024 0.922070i \(-0.373503\pi\)
0.387024 + 0.922070i \(0.373503\pi\)
\(224\) 2.12920 0.142263
\(225\) 0 0
\(226\) 18.7173 1.24506
\(227\) −17.3898 −1.15420 −0.577101 0.816673i \(-0.695816\pi\)
−0.577101 + 0.816673i \(0.695816\pi\)
\(228\) −2.84943 −0.188708
\(229\) −23.5935 −1.55910 −0.779550 0.626340i \(-0.784552\pi\)
−0.779550 + 0.626340i \(0.784552\pi\)
\(230\) 0 0
\(231\) 2.25374 0.148285
\(232\) −2.58189 −0.169509
\(233\) −10.6944 −0.700613 −0.350307 0.936635i \(-0.613923\pi\)
−0.350307 + 0.936635i \(0.613923\pi\)
\(234\) 5.89025 0.385058
\(235\) 0 0
\(236\) −8.39228 −0.546291
\(237\) 1.31999 0.0857424
\(238\) −9.27847 −0.601434
\(239\) 15.7067 1.01598 0.507991 0.861363i \(-0.330388\pi\)
0.507991 + 0.861363i \(0.330388\pi\)
\(240\) 0 0
\(241\) 22.5174 1.45047 0.725237 0.688499i \(-0.241730\pi\)
0.725237 + 0.688499i \(0.241730\pi\)
\(242\) −9.87960 −0.635085
\(243\) −1.00000 −0.0641500
\(244\) 7.13387 0.456700
\(245\) 0 0
\(246\) −5.13485 −0.327386
\(247\) 16.7839 1.06793
\(248\) 8.20715 0.521154
\(249\) −12.9727 −0.822109
\(250\) 0 0
\(251\) 4.11677 0.259848 0.129924 0.991524i \(-0.458527\pi\)
0.129924 + 0.991524i \(0.458527\pi\)
\(252\) 2.12920 0.134127
\(253\) 0.494807 0.0311082
\(254\) 8.43501 0.529260
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.7141 −1.41687 −0.708434 0.705777i \(-0.750598\pi\)
−0.708434 + 0.705777i \(0.750598\pi\)
\(258\) 6.49606 0.404427
\(259\) 11.1032 0.689917
\(260\) 0 0
\(261\) −2.58189 −0.159815
\(262\) −6.41653 −0.396415
\(263\) 12.5881 0.776218 0.388109 0.921614i \(-0.373128\pi\)
0.388109 + 0.921614i \(0.373128\pi\)
\(264\) 1.05849 0.0651455
\(265\) 0 0
\(266\) 6.06702 0.371993
\(267\) 13.5287 0.827944
\(268\) 11.9579 0.730443
\(269\) −24.4467 −1.49054 −0.745271 0.666762i \(-0.767680\pi\)
−0.745271 + 0.666762i \(0.767680\pi\)
\(270\) 0 0
\(271\) −13.8542 −0.841581 −0.420790 0.907158i \(-0.638247\pi\)
−0.420790 + 0.907158i \(0.638247\pi\)
\(272\) −4.35772 −0.264225
\(273\) −12.5415 −0.759049
\(274\) −2.49508 −0.150733
\(275\) 0 0
\(276\) 0.467465 0.0281381
\(277\) −14.7886 −0.888563 −0.444281 0.895887i \(-0.646541\pi\)
−0.444281 + 0.895887i \(0.646541\pi\)
\(278\) 1.78818 0.107248
\(279\) 8.20715 0.491349
\(280\) 0 0
\(281\) −5.26150 −0.313875 −0.156937 0.987609i \(-0.550162\pi\)
−0.156937 + 0.987609i \(0.550162\pi\)
\(282\) −6.24520 −0.371897
\(283\) −30.1332 −1.79123 −0.895617 0.444826i \(-0.853265\pi\)
−0.895617 + 0.444826i \(0.853265\pi\)
\(284\) −14.6447 −0.869004
\(285\) 0 0
\(286\) −6.23476 −0.368669
\(287\) 10.9331 0.645363
\(288\) 1.00000 0.0589256
\(289\) 1.98968 0.117040
\(290\) 0 0
\(291\) 7.51742 0.440679
\(292\) 12.1186 0.709185
\(293\) 27.0382 1.57959 0.789794 0.613373i \(-0.210188\pi\)
0.789794 + 0.613373i \(0.210188\pi\)
\(294\) 2.46649 0.143849
\(295\) 0 0
\(296\) 5.21470 0.303099
\(297\) 1.05849 0.0614197
\(298\) 10.7440 0.622384
\(299\) −2.75349 −0.159238
\(300\) 0 0
\(301\) −13.8314 −0.797230
\(302\) 16.7444 0.963529
\(303\) −5.95341 −0.342014
\(304\) 2.84943 0.163426
\(305\) 0 0
\(306\) −4.35772 −0.249114
\(307\) −12.1714 −0.694658 −0.347329 0.937743i \(-0.612911\pi\)
−0.347329 + 0.937743i \(0.612911\pi\)
\(308\) −2.25374 −0.128419
\(309\) −1.29647 −0.0737534
\(310\) 0 0
\(311\) 15.2313 0.863686 0.431843 0.901949i \(-0.357863\pi\)
0.431843 + 0.901949i \(0.357863\pi\)
\(312\) −5.89025 −0.333470
\(313\) −25.5390 −1.44355 −0.721776 0.692127i \(-0.756674\pi\)
−0.721776 + 0.692127i \(0.756674\pi\)
\(314\) 4.04586 0.228321
\(315\) 0 0
\(316\) −1.31999 −0.0742551
\(317\) −3.77603 −0.212083 −0.106042 0.994362i \(-0.533818\pi\)
−0.106042 + 0.994362i \(0.533818\pi\)
\(318\) 7.32315 0.410662
\(319\) 2.73290 0.153013
\(320\) 0 0
\(321\) −13.0327 −0.727412
\(322\) −0.995330 −0.0554675
\(323\) −12.4170 −0.690901
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −12.7786 −0.707741
\(327\) 12.7526 0.705218
\(328\) 5.13485 0.283525
\(329\) 13.2973 0.733105
\(330\) 0 0
\(331\) 15.2466 0.838028 0.419014 0.907980i \(-0.362376\pi\)
0.419014 + 0.907980i \(0.362376\pi\)
\(332\) 12.9727 0.711967
\(333\) 5.21470 0.285764
\(334\) 22.9012 1.25310
\(335\) 0 0
\(336\) −2.12920 −0.116158
\(337\) 10.4906 0.571460 0.285730 0.958310i \(-0.407764\pi\)
0.285730 + 0.958310i \(0.407764\pi\)
\(338\) 21.6950 1.18005
\(339\) −18.7173 −1.01659
\(340\) 0 0
\(341\) −8.68717 −0.470437
\(342\) 2.84943 0.154080
\(343\) −20.1561 −1.08833
\(344\) −6.49606 −0.350244
\(345\) 0 0
\(346\) 21.1514 1.13711
\(347\) −12.4717 −0.669518 −0.334759 0.942304i \(-0.608655\pi\)
−0.334759 + 0.942304i \(0.608655\pi\)
\(348\) 2.58189 0.138404
\(349\) −23.9316 −1.28103 −0.640516 0.767945i \(-0.721279\pi\)
−0.640516 + 0.767945i \(0.721279\pi\)
\(350\) 0 0
\(351\) −5.89025 −0.314398
\(352\) −1.05849 −0.0564176
\(353\) −23.4753 −1.24947 −0.624733 0.780838i \(-0.714792\pi\)
−0.624733 + 0.780838i \(0.714792\pi\)
\(354\) 8.39228 0.446045
\(355\) 0 0
\(356\) −13.5287 −0.717020
\(357\) 9.27847 0.491069
\(358\) −10.0795 −0.532719
\(359\) 31.5610 1.66573 0.832864 0.553478i \(-0.186700\pi\)
0.832864 + 0.553478i \(0.186700\pi\)
\(360\) 0 0
\(361\) −10.8807 −0.572671
\(362\) −3.30520 −0.173718
\(363\) 9.87960 0.518545
\(364\) 12.5415 0.657356
\(365\) 0 0
\(366\) −7.13387 −0.372894
\(367\) 2.82202 0.147308 0.0736542 0.997284i \(-0.476534\pi\)
0.0736542 + 0.997284i \(0.476534\pi\)
\(368\) −0.467465 −0.0243683
\(369\) 5.13485 0.267310
\(370\) 0 0
\(371\) −15.5925 −0.809521
\(372\) −8.20715 −0.425521
\(373\) 21.1247 1.09379 0.546897 0.837200i \(-0.315809\pi\)
0.546897 + 0.837200i \(0.315809\pi\)
\(374\) 4.61259 0.238511
\(375\) 0 0
\(376\) 6.24520 0.322072
\(377\) −15.2080 −0.783249
\(378\) −2.12920 −0.109514
\(379\) −21.2311 −1.09057 −0.545285 0.838250i \(-0.683579\pi\)
−0.545285 + 0.838250i \(0.683579\pi\)
\(380\) 0 0
\(381\) −8.43501 −0.432139
\(382\) 9.94780 0.508974
\(383\) 27.3115 1.39555 0.697776 0.716316i \(-0.254173\pi\)
0.697776 + 0.716316i \(0.254173\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −19.8949 −1.01262
\(387\) −6.49606 −0.330213
\(388\) −7.51742 −0.381639
\(389\) 7.84655 0.397836 0.198918 0.980016i \(-0.436257\pi\)
0.198918 + 0.980016i \(0.436257\pi\)
\(390\) 0 0
\(391\) 2.03708 0.103020
\(392\) −2.46649 −0.124577
\(393\) 6.41653 0.323671
\(394\) 27.3096 1.37584
\(395\) 0 0
\(396\) −1.05849 −0.0531910
\(397\) 20.5604 1.03190 0.515948 0.856620i \(-0.327440\pi\)
0.515948 + 0.856620i \(0.327440\pi\)
\(398\) 1.70256 0.0853415
\(399\) −6.06702 −0.303731
\(400\) 0 0
\(401\) 2.38184 0.118943 0.0594717 0.998230i \(-0.481058\pi\)
0.0594717 + 0.998230i \(0.481058\pi\)
\(402\) −11.9579 −0.596405
\(403\) 48.3421 2.40809
\(404\) 5.95341 0.296193
\(405\) 0 0
\(406\) −5.49736 −0.272830
\(407\) −5.51970 −0.273602
\(408\) 4.35772 0.215739
\(409\) −14.1166 −0.698023 −0.349012 0.937118i \(-0.613483\pi\)
−0.349012 + 0.937118i \(0.613483\pi\)
\(410\) 0 0
\(411\) 2.49508 0.123073
\(412\) 1.29647 0.0638723
\(413\) −17.8689 −0.879270
\(414\) −0.467465 −0.0229747
\(415\) 0 0
\(416\) 5.89025 0.288793
\(417\) −1.78818 −0.0875677
\(418\) −3.01609 −0.147522
\(419\) −23.3766 −1.14202 −0.571012 0.820942i \(-0.693449\pi\)
−0.571012 + 0.820942i \(0.693449\pi\)
\(420\) 0 0
\(421\) 21.4696 1.04636 0.523181 0.852221i \(-0.324745\pi\)
0.523181 + 0.852221i \(0.324745\pi\)
\(422\) 19.8374 0.965670
\(423\) 6.24520 0.303652
\(424\) −7.32315 −0.355643
\(425\) 0 0
\(426\) 14.6447 0.709539
\(427\) 15.1895 0.735070
\(428\) 13.0327 0.629957
\(429\) 6.23476 0.301017
\(430\) 0 0
\(431\) −35.4598 −1.70804 −0.854019 0.520242i \(-0.825842\pi\)
−0.854019 + 0.520242i \(0.825842\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −33.1379 −1.59251 −0.796253 0.604964i \(-0.793187\pi\)
−0.796253 + 0.604964i \(0.793187\pi\)
\(434\) 17.4747 0.838812
\(435\) 0 0
\(436\) −12.7526 −0.610737
\(437\) −1.33201 −0.0637187
\(438\) −12.1186 −0.579047
\(439\) −7.69473 −0.367249 −0.183625 0.982996i \(-0.558783\pi\)
−0.183625 + 0.982996i \(0.558783\pi\)
\(440\) 0 0
\(441\) −2.46649 −0.117452
\(442\) −25.6680 −1.22090
\(443\) −8.12762 −0.386155 −0.193078 0.981184i \(-0.561847\pi\)
−0.193078 + 0.981184i \(0.561847\pi\)
\(444\) −5.21470 −0.247479
\(445\) 0 0
\(446\) 11.5590 0.547335
\(447\) −10.7440 −0.508175
\(448\) 2.12920 0.100595
\(449\) 1.49021 0.0703276 0.0351638 0.999382i \(-0.488805\pi\)
0.0351638 + 0.999382i \(0.488805\pi\)
\(450\) 0 0
\(451\) −5.43518 −0.255933
\(452\) 18.7173 0.880390
\(453\) −16.7444 −0.786718
\(454\) −17.3898 −0.816144
\(455\) 0 0
\(456\) −2.84943 −0.133437
\(457\) −7.94841 −0.371811 −0.185905 0.982568i \(-0.559522\pi\)
−0.185905 + 0.982568i \(0.559522\pi\)
\(458\) −23.5935 −1.10245
\(459\) 4.35772 0.203401
\(460\) 0 0
\(461\) −29.7969 −1.38778 −0.693889 0.720082i \(-0.744104\pi\)
−0.693889 + 0.720082i \(0.744104\pi\)
\(462\) 2.25374 0.104853
\(463\) −12.4986 −0.580860 −0.290430 0.956896i \(-0.593798\pi\)
−0.290430 + 0.956896i \(0.593798\pi\)
\(464\) −2.58189 −0.119861
\(465\) 0 0
\(466\) −10.6944 −0.495408
\(467\) −23.3113 −1.07872 −0.539358 0.842077i \(-0.681333\pi\)
−0.539358 + 0.842077i \(0.681333\pi\)
\(468\) 5.89025 0.272277
\(469\) 25.4608 1.17567
\(470\) 0 0
\(471\) −4.04586 −0.186423
\(472\) −8.39228 −0.386286
\(473\) 6.87600 0.316159
\(474\) 1.31999 0.0606290
\(475\) 0 0
\(476\) −9.27847 −0.425278
\(477\) −7.32315 −0.335304
\(478\) 15.7067 0.718407
\(479\) 36.4911 1.66732 0.833661 0.552276i \(-0.186241\pi\)
0.833661 + 0.552276i \(0.186241\pi\)
\(480\) 0 0
\(481\) 30.7159 1.40052
\(482\) 22.5174 1.02564
\(483\) 0.995330 0.0452891
\(484\) −9.87960 −0.449073
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 8.61685 0.390467 0.195233 0.980757i \(-0.437454\pi\)
0.195233 + 0.980757i \(0.437454\pi\)
\(488\) 7.13387 0.322935
\(489\) 12.7786 0.577868
\(490\) 0 0
\(491\) −27.4118 −1.23708 −0.618539 0.785754i \(-0.712275\pi\)
−0.618539 + 0.785754i \(0.712275\pi\)
\(492\) −5.13485 −0.231497
\(493\) 11.2511 0.506725
\(494\) 16.7839 0.755142
\(495\) 0 0
\(496\) 8.20715 0.368512
\(497\) −31.1816 −1.39869
\(498\) −12.9727 −0.581319
\(499\) −9.07912 −0.406437 −0.203219 0.979133i \(-0.565140\pi\)
−0.203219 + 0.979133i \(0.565140\pi\)
\(500\) 0 0
\(501\) −22.9012 −1.02315
\(502\) 4.11677 0.183741
\(503\) 15.2313 0.679131 0.339565 0.940582i \(-0.389720\pi\)
0.339565 + 0.940582i \(0.389720\pi\)
\(504\) 2.12920 0.0948423
\(505\) 0 0
\(506\) 0.494807 0.0219968
\(507\) −21.6950 −0.963511
\(508\) 8.43501 0.374243
\(509\) −30.6693 −1.35939 −0.679696 0.733494i \(-0.737888\pi\)
−0.679696 + 0.733494i \(0.737888\pi\)
\(510\) 0 0
\(511\) 25.8029 1.14145
\(512\) 1.00000 0.0441942
\(513\) −2.84943 −0.125805
\(514\) −22.7141 −1.00188
\(515\) 0 0
\(516\) 6.49606 0.285973
\(517\) −6.61048 −0.290728
\(518\) 11.1032 0.487845
\(519\) −21.1514 −0.928444
\(520\) 0 0
\(521\) −18.5375 −0.812141 −0.406070 0.913842i \(-0.633101\pi\)
−0.406070 + 0.913842i \(0.633101\pi\)
\(522\) −2.58189 −0.113006
\(523\) 20.4297 0.893328 0.446664 0.894702i \(-0.352612\pi\)
0.446664 + 0.894702i \(0.352612\pi\)
\(524\) −6.41653 −0.280308
\(525\) 0 0
\(526\) 12.5881 0.548869
\(527\) −35.7644 −1.55792
\(528\) 1.05849 0.0460648
\(529\) −22.7815 −0.990499
\(530\) 0 0
\(531\) −8.39228 −0.364194
\(532\) 6.06702 0.263039
\(533\) 30.2456 1.31008
\(534\) 13.5287 0.585445
\(535\) 0 0
\(536\) 11.9579 0.516502
\(537\) 10.0795 0.434963
\(538\) −24.4467 −1.05397
\(539\) 2.61075 0.112453
\(540\) 0 0
\(541\) −18.3399 −0.788493 −0.394247 0.919005i \(-0.628994\pi\)
−0.394247 + 0.919005i \(0.628994\pi\)
\(542\) −13.8542 −0.595088
\(543\) 3.30520 0.141840
\(544\) −4.35772 −0.186836
\(545\) 0 0
\(546\) −12.5415 −0.536729
\(547\) −5.73208 −0.245086 −0.122543 0.992463i \(-0.539105\pi\)
−0.122543 + 0.992463i \(0.539105\pi\)
\(548\) −2.49508 −0.106585
\(549\) 7.13387 0.304466
\(550\) 0 0
\(551\) −7.35691 −0.313415
\(552\) 0.467465 0.0198967
\(553\) −2.81052 −0.119516
\(554\) −14.7886 −0.628309
\(555\) 0 0
\(556\) 1.78818 0.0758358
\(557\) −21.1606 −0.896602 −0.448301 0.893883i \(-0.647971\pi\)
−0.448301 + 0.893883i \(0.647971\pi\)
\(558\) 8.20715 0.347436
\(559\) −38.2634 −1.61837
\(560\) 0 0
\(561\) −4.61259 −0.194744
\(562\) −5.26150 −0.221943
\(563\) −21.6721 −0.913370 −0.456685 0.889628i \(-0.650963\pi\)
−0.456685 + 0.889628i \(0.650963\pi\)
\(564\) −6.24520 −0.262971
\(565\) 0 0
\(566\) −30.1332 −1.26659
\(567\) 2.12920 0.0894182
\(568\) −14.6447 −0.614479
\(569\) −7.26491 −0.304561 −0.152280 0.988337i \(-0.548662\pi\)
−0.152280 + 0.988337i \(0.548662\pi\)
\(570\) 0 0
\(571\) 37.4515 1.56730 0.783648 0.621205i \(-0.213357\pi\)
0.783648 + 0.621205i \(0.213357\pi\)
\(572\) −6.23476 −0.260688
\(573\) −9.94780 −0.415575
\(574\) 10.9331 0.456341
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 7.91413 0.329469 0.164735 0.986338i \(-0.447323\pi\)
0.164735 + 0.986338i \(0.447323\pi\)
\(578\) 1.98968 0.0827599
\(579\) 19.8949 0.826805
\(580\) 0 0
\(581\) 27.6214 1.14593
\(582\) 7.51742 0.311607
\(583\) 7.75147 0.321033
\(584\) 12.1186 0.501469
\(585\) 0 0
\(586\) 27.0382 1.11694
\(587\) −10.9336 −0.451276 −0.225638 0.974211i \(-0.572447\pi\)
−0.225638 + 0.974211i \(0.572447\pi\)
\(588\) 2.46649 0.101716
\(589\) 23.3857 0.963591
\(590\) 0 0
\(591\) −27.3096 −1.12337
\(592\) 5.21470 0.214323
\(593\) 40.1889 1.65036 0.825179 0.564871i \(-0.191074\pi\)
0.825179 + 0.564871i \(0.191074\pi\)
\(594\) 1.05849 0.0434303
\(595\) 0 0
\(596\) 10.7440 0.440092
\(597\) −1.70256 −0.0696810
\(598\) −2.75349 −0.112599
\(599\) −34.8233 −1.42284 −0.711422 0.702765i \(-0.751948\pi\)
−0.711422 + 0.702765i \(0.751948\pi\)
\(600\) 0 0
\(601\) −35.1280 −1.43290 −0.716450 0.697638i \(-0.754234\pi\)
−0.716450 + 0.697638i \(0.754234\pi\)
\(602\) −13.8314 −0.563727
\(603\) 11.9579 0.486962
\(604\) 16.7444 0.681318
\(605\) 0 0
\(606\) −5.95341 −0.241841
\(607\) −20.8402 −0.845876 −0.422938 0.906159i \(-0.639001\pi\)
−0.422938 + 0.906159i \(0.639001\pi\)
\(608\) 2.84943 0.115560
\(609\) 5.49736 0.222764
\(610\) 0 0
\(611\) 36.7858 1.48819
\(612\) −4.35772 −0.176150
\(613\) −4.56401 −0.184339 −0.0921694 0.995743i \(-0.529380\pi\)
−0.0921694 + 0.995743i \(0.529380\pi\)
\(614\) −12.1714 −0.491198
\(615\) 0 0
\(616\) −2.25374 −0.0908057
\(617\) 20.2929 0.816962 0.408481 0.912767i \(-0.366059\pi\)
0.408481 + 0.912767i \(0.366059\pi\)
\(618\) −1.29647 −0.0521515
\(619\) −34.4978 −1.38658 −0.693292 0.720657i \(-0.743840\pi\)
−0.693292 + 0.720657i \(0.743840\pi\)
\(620\) 0 0
\(621\) 0.467465 0.0187587
\(622\) 15.2313 0.610718
\(623\) −28.8054 −1.15406
\(624\) −5.89025 −0.235799
\(625\) 0 0
\(626\) −25.5390 −1.02074
\(627\) 3.01609 0.120451
\(628\) 4.04586 0.161447
\(629\) −22.7242 −0.906073
\(630\) 0 0
\(631\) 20.8998 0.832009 0.416005 0.909362i \(-0.363430\pi\)
0.416005 + 0.909362i \(0.363430\pi\)
\(632\) −1.31999 −0.0525063
\(633\) −19.8374 −0.788466
\(634\) −3.77603 −0.149965
\(635\) 0 0
\(636\) 7.32315 0.290382
\(637\) −14.5282 −0.575630
\(638\) 2.73290 0.108196
\(639\) −14.6447 −0.579336
\(640\) 0 0
\(641\) −11.5946 −0.457960 −0.228980 0.973431i \(-0.573539\pi\)
−0.228980 + 0.973431i \(0.573539\pi\)
\(642\) −13.0327 −0.514358
\(643\) 9.98993 0.393964 0.196982 0.980407i \(-0.436886\pi\)
0.196982 + 0.980407i \(0.436886\pi\)
\(644\) −0.995330 −0.0392215
\(645\) 0 0
\(646\) −12.4170 −0.488541
\(647\) 11.8474 0.465767 0.232884 0.972505i \(-0.425184\pi\)
0.232884 + 0.972505i \(0.425184\pi\)
\(648\) 1.00000 0.0392837
\(649\) 8.88313 0.348694
\(650\) 0 0
\(651\) −17.4747 −0.684887
\(652\) −12.7786 −0.500448
\(653\) −9.60772 −0.375979 −0.187990 0.982171i \(-0.560197\pi\)
−0.187990 + 0.982171i \(0.560197\pi\)
\(654\) 12.7526 0.498664
\(655\) 0 0
\(656\) 5.13485 0.200482
\(657\) 12.1186 0.472790
\(658\) 13.2973 0.518383
\(659\) 15.5196 0.604557 0.302278 0.953220i \(-0.402253\pi\)
0.302278 + 0.953220i \(0.402253\pi\)
\(660\) 0 0
\(661\) −3.68034 −0.143149 −0.0715744 0.997435i \(-0.522802\pi\)
−0.0715744 + 0.997435i \(0.522802\pi\)
\(662\) 15.2466 0.592576
\(663\) 25.6680 0.996864
\(664\) 12.9727 0.503437
\(665\) 0 0
\(666\) 5.21470 0.202066
\(667\) 1.20694 0.0467330
\(668\) 22.9012 0.886073
\(669\) −11.5590 −0.446897
\(670\) 0 0
\(671\) −7.55112 −0.291508
\(672\) −2.12920 −0.0821358
\(673\) −15.9336 −0.614196 −0.307098 0.951678i \(-0.599358\pi\)
−0.307098 + 0.951678i \(0.599358\pi\)
\(674\) 10.4906 0.404083
\(675\) 0 0
\(676\) 21.6950 0.834425
\(677\) 10.0691 0.386986 0.193493 0.981102i \(-0.438018\pi\)
0.193493 + 0.981102i \(0.438018\pi\)
\(678\) −18.7173 −0.718835
\(679\) −16.0061 −0.614259
\(680\) 0 0
\(681\) 17.3898 0.666378
\(682\) −8.68717 −0.332649
\(683\) 4.75947 0.182116 0.0910579 0.995846i \(-0.470975\pi\)
0.0910579 + 0.995846i \(0.470975\pi\)
\(684\) 2.84943 0.108951
\(685\) 0 0
\(686\) −20.1561 −0.769563
\(687\) 23.5935 0.900146
\(688\) −6.49606 −0.247660
\(689\) −43.1352 −1.64332
\(690\) 0 0
\(691\) −20.9548 −0.797159 −0.398580 0.917134i \(-0.630497\pi\)
−0.398580 + 0.917134i \(0.630497\pi\)
\(692\) 21.1514 0.804056
\(693\) −2.25374 −0.0856124
\(694\) −12.4717 −0.473421
\(695\) 0 0
\(696\) 2.58189 0.0978661
\(697\) −22.3762 −0.847560
\(698\) −23.9316 −0.905826
\(699\) 10.6944 0.404499
\(700\) 0 0
\(701\) −13.5605 −0.512172 −0.256086 0.966654i \(-0.582433\pi\)
−0.256086 + 0.966654i \(0.582433\pi\)
\(702\) −5.89025 −0.222313
\(703\) 14.8589 0.560416
\(704\) −1.05849 −0.0398933
\(705\) 0 0
\(706\) −23.4753 −0.883506
\(707\) 12.6760 0.476731
\(708\) 8.39228 0.315401
\(709\) −26.2036 −0.984095 −0.492048 0.870568i \(-0.663751\pi\)
−0.492048 + 0.870568i \(0.663751\pi\)
\(710\) 0 0
\(711\) −1.31999 −0.0495034
\(712\) −13.5287 −0.507010
\(713\) −3.83656 −0.143680
\(714\) 9.27847 0.347238
\(715\) 0 0
\(716\) −10.0795 −0.376689
\(717\) −15.7067 −0.586577
\(718\) 31.5610 1.17785
\(719\) −2.51142 −0.0936601 −0.0468300 0.998903i \(-0.514912\pi\)
−0.0468300 + 0.998903i \(0.514912\pi\)
\(720\) 0 0
\(721\) 2.76044 0.102804
\(722\) −10.8807 −0.404939
\(723\) −22.5174 −0.837432
\(724\) −3.30520 −0.122837
\(725\) 0 0
\(726\) 9.87960 0.366666
\(727\) −16.4323 −0.609441 −0.304721 0.952442i \(-0.598563\pi\)
−0.304721 + 0.952442i \(0.598563\pi\)
\(728\) 12.5415 0.464821
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 28.3080 1.04701
\(732\) −7.13387 −0.263676
\(733\) −23.5466 −0.869713 −0.434857 0.900500i \(-0.643201\pi\)
−0.434857 + 0.900500i \(0.643201\pi\)
\(734\) 2.82202 0.104163
\(735\) 0 0
\(736\) −0.467465 −0.0172310
\(737\) −12.6573 −0.466237
\(738\) 5.13485 0.189016
\(739\) 29.2458 1.07582 0.537912 0.843001i \(-0.319213\pi\)
0.537912 + 0.843001i \(0.319213\pi\)
\(740\) 0 0
\(741\) −16.7839 −0.616571
\(742\) −15.5925 −0.572418
\(743\) −18.8806 −0.692661 −0.346331 0.938113i \(-0.612572\pi\)
−0.346331 + 0.938113i \(0.612572\pi\)
\(744\) −8.20715 −0.300889
\(745\) 0 0
\(746\) 21.1247 0.773430
\(747\) 12.9727 0.474645
\(748\) 4.61259 0.168653
\(749\) 27.7492 1.01393
\(750\) 0 0
\(751\) 48.7324 1.77827 0.889135 0.457645i \(-0.151307\pi\)
0.889135 + 0.457645i \(0.151307\pi\)
\(752\) 6.24520 0.227739
\(753\) −4.11677 −0.150024
\(754\) −15.2080 −0.553841
\(755\) 0 0
\(756\) −2.12920 −0.0774384
\(757\) 2.52286 0.0916950 0.0458475 0.998948i \(-0.485401\pi\)
0.0458475 + 0.998948i \(0.485401\pi\)
\(758\) −21.2311 −0.771150
\(759\) −0.494807 −0.0179603
\(760\) 0 0
\(761\) 27.6782 1.00334 0.501668 0.865060i \(-0.332720\pi\)
0.501668 + 0.865060i \(0.332720\pi\)
\(762\) −8.43501 −0.305568
\(763\) −27.1528 −0.982997
\(764\) 9.94780 0.359899
\(765\) 0 0
\(766\) 27.3115 0.986804
\(767\) −49.4326 −1.78491
\(768\) −1.00000 −0.0360844
\(769\) 46.5952 1.68027 0.840134 0.542379i \(-0.182476\pi\)
0.840134 + 0.542379i \(0.182476\pi\)
\(770\) 0 0
\(771\) 22.7141 0.818029
\(772\) −19.8949 −0.716034
\(773\) −27.5113 −0.989512 −0.494756 0.869032i \(-0.664743\pi\)
−0.494756 + 0.869032i \(0.664743\pi\)
\(774\) −6.49606 −0.233496
\(775\) 0 0
\(776\) −7.51742 −0.269860
\(777\) −11.1032 −0.398324
\(778\) 7.84655 0.281312
\(779\) 14.6314 0.524225
\(780\) 0 0
\(781\) 15.5013 0.554679
\(782\) 2.03708 0.0728459
\(783\) 2.58189 0.0922691
\(784\) −2.46649 −0.0880889
\(785\) 0 0
\(786\) 6.41653 0.228870
\(787\) −35.1736 −1.25380 −0.626901 0.779099i \(-0.715677\pi\)
−0.626901 + 0.779099i \(0.715677\pi\)
\(788\) 27.3096 0.972865
\(789\) −12.5881 −0.448150
\(790\) 0 0
\(791\) 39.8530 1.41701
\(792\) −1.05849 −0.0376117
\(793\) 42.0203 1.49218
\(794\) 20.5604 0.729661
\(795\) 0 0
\(796\) 1.70256 0.0603455
\(797\) −16.4851 −0.583932 −0.291966 0.956429i \(-0.594309\pi\)
−0.291966 + 0.956429i \(0.594309\pi\)
\(798\) −6.06702 −0.214770
\(799\) −27.2148 −0.962791
\(800\) 0 0
\(801\) −13.5287 −0.478014
\(802\) 2.38184 0.0841057
\(803\) −12.8274 −0.452667
\(804\) −11.9579 −0.421722
\(805\) 0 0
\(806\) 48.3421 1.70278
\(807\) 24.4467 0.860565
\(808\) 5.95341 0.209440
\(809\) 22.8814 0.804466 0.402233 0.915537i \(-0.368234\pi\)
0.402233 + 0.915537i \(0.368234\pi\)
\(810\) 0 0
\(811\) 5.01376 0.176057 0.0880285 0.996118i \(-0.471943\pi\)
0.0880285 + 0.996118i \(0.471943\pi\)
\(812\) −5.49736 −0.192920
\(813\) 13.8542 0.485887
\(814\) −5.51970 −0.193466
\(815\) 0 0
\(816\) 4.35772 0.152551
\(817\) −18.5101 −0.647585
\(818\) −14.1166 −0.493577
\(819\) 12.5415 0.438237
\(820\) 0 0
\(821\) 42.5592 1.48532 0.742662 0.669666i \(-0.233563\pi\)
0.742662 + 0.669666i \(0.233563\pi\)
\(822\) 2.49508 0.0870259
\(823\) −26.4978 −0.923657 −0.461828 0.886969i \(-0.652806\pi\)
−0.461828 + 0.886969i \(0.652806\pi\)
\(824\) 1.29647 0.0451646
\(825\) 0 0
\(826\) −17.8689 −0.621738
\(827\) 11.8921 0.413530 0.206765 0.978391i \(-0.433706\pi\)
0.206765 + 0.978391i \(0.433706\pi\)
\(828\) −0.467465 −0.0162455
\(829\) −24.4042 −0.847592 −0.423796 0.905758i \(-0.639303\pi\)
−0.423796 + 0.905758i \(0.639303\pi\)
\(830\) 0 0
\(831\) 14.7886 0.513012
\(832\) 5.89025 0.204208
\(833\) 10.7483 0.372405
\(834\) −1.78818 −0.0619197
\(835\) 0 0
\(836\) −3.01609 −0.104314
\(837\) −8.20715 −0.283680
\(838\) −23.3766 −0.807532
\(839\) −14.0138 −0.483810 −0.241905 0.970300i \(-0.577772\pi\)
−0.241905 + 0.970300i \(0.577772\pi\)
\(840\) 0 0
\(841\) −22.3339 −0.770133
\(842\) 21.4696 0.739890
\(843\) 5.26150 0.181216
\(844\) 19.8374 0.682832
\(845\) 0 0
\(846\) 6.24520 0.214715
\(847\) −21.0357 −0.722795
\(848\) −7.32315 −0.251478
\(849\) 30.1332 1.03417
\(850\) 0 0
\(851\) −2.43769 −0.0835631
\(852\) 14.6447 0.501720
\(853\) 13.7943 0.472310 0.236155 0.971715i \(-0.424113\pi\)
0.236155 + 0.971715i \(0.424113\pi\)
\(854\) 15.1895 0.519773
\(855\) 0 0
\(856\) 13.0327 0.445447
\(857\) −11.5927 −0.396000 −0.198000 0.980202i \(-0.563445\pi\)
−0.198000 + 0.980202i \(0.563445\pi\)
\(858\) 6.23476 0.212851
\(859\) 24.8369 0.847423 0.423712 0.905797i \(-0.360727\pi\)
0.423712 + 0.905797i \(0.360727\pi\)
\(860\) 0 0
\(861\) −10.9331 −0.372601
\(862\) −35.4598 −1.20776
\(863\) −35.9787 −1.22473 −0.612365 0.790575i \(-0.709782\pi\)
−0.612365 + 0.790575i \(0.709782\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) −33.1379 −1.12607
\(867\) −1.98968 −0.0675732
\(868\) 17.4747 0.593130
\(869\) 1.39719 0.0473965
\(870\) 0 0
\(871\) 70.4349 2.38659
\(872\) −12.7526 −0.431856
\(873\) −7.51742 −0.254426
\(874\) −1.33201 −0.0450559
\(875\) 0 0
\(876\) −12.1186 −0.409448
\(877\) −22.2472 −0.751236 −0.375618 0.926775i \(-0.622569\pi\)
−0.375618 + 0.926775i \(0.622569\pi\)
\(878\) −7.69473 −0.259684
\(879\) −27.0382 −0.911975
\(880\) 0 0
\(881\) −56.7564 −1.91217 −0.956085 0.293088i \(-0.905317\pi\)
−0.956085 + 0.293088i \(0.905317\pi\)
\(882\) −2.46649 −0.0830510
\(883\) 38.7543 1.30419 0.652093 0.758139i \(-0.273891\pi\)
0.652093 + 0.758139i \(0.273891\pi\)
\(884\) −25.6680 −0.863309
\(885\) 0 0
\(886\) −8.12762 −0.273053
\(887\) −7.38317 −0.247903 −0.123951 0.992288i \(-0.539557\pi\)
−0.123951 + 0.992288i \(0.539557\pi\)
\(888\) −5.21470 −0.174994
\(889\) 17.9599 0.602354
\(890\) 0 0
\(891\) −1.05849 −0.0354607
\(892\) 11.5590 0.387024
\(893\) 17.7953 0.595496
\(894\) −10.7440 −0.359334
\(895\) 0 0
\(896\) 2.12920 0.0711317
\(897\) 2.75349 0.0919363
\(898\) 1.49021 0.0497291
\(899\) −21.1899 −0.706723
\(900\) 0 0
\(901\) 31.9122 1.06315
\(902\) −5.43518 −0.180972
\(903\) 13.8314 0.460281
\(904\) 18.7173 0.622529
\(905\) 0 0
\(906\) −16.7444 −0.556294
\(907\) −20.2132 −0.671168 −0.335584 0.942010i \(-0.608934\pi\)
−0.335584 + 0.942010i \(0.608934\pi\)
\(908\) −17.3898 −0.577101
\(909\) 5.95341 0.197462
\(910\) 0 0
\(911\) −7.50406 −0.248621 −0.124310 0.992243i \(-0.539672\pi\)
−0.124310 + 0.992243i \(0.539672\pi\)
\(912\) −2.84943 −0.0943541
\(913\) −13.7314 −0.454443
\(914\) −7.94841 −0.262910
\(915\) 0 0
\(916\) −23.5935 −0.779550
\(917\) −13.6621 −0.451163
\(918\) 4.35772 0.143826
\(919\) 17.3423 0.572071 0.286035 0.958219i \(-0.407663\pi\)
0.286035 + 0.958219i \(0.407663\pi\)
\(920\) 0 0
\(921\) 12.1714 0.401061
\(922\) −29.7969 −0.981307
\(923\) −86.2610 −2.83932
\(924\) 2.25374 0.0741425
\(925\) 0 0
\(926\) −12.4986 −0.410730
\(927\) 1.29647 0.0425815
\(928\) −2.58189 −0.0847546
\(929\) −26.8437 −0.880712 −0.440356 0.897823i \(-0.645148\pi\)
−0.440356 + 0.897823i \(0.645148\pi\)
\(930\) 0 0
\(931\) −7.02809 −0.230336
\(932\) −10.6944 −0.350307
\(933\) −15.2313 −0.498649
\(934\) −23.3113 −0.762767
\(935\) 0 0
\(936\) 5.89025 0.192529
\(937\) −8.90963 −0.291065 −0.145532 0.989353i \(-0.546490\pi\)
−0.145532 + 0.989353i \(0.546490\pi\)
\(938\) 25.4608 0.831323
\(939\) 25.5390 0.833435
\(940\) 0 0
\(941\) −4.44814 −0.145005 −0.0725026 0.997368i \(-0.523099\pi\)
−0.0725026 + 0.997368i \(0.523099\pi\)
\(942\) −4.04586 −0.131821
\(943\) −2.40037 −0.0781667
\(944\) −8.39228 −0.273146
\(945\) 0 0
\(946\) 6.87600 0.223558
\(947\) −26.3275 −0.855528 −0.427764 0.903890i \(-0.640699\pi\)
−0.427764 + 0.903890i \(0.640699\pi\)
\(948\) 1.31999 0.0428712
\(949\) 71.3813 2.31714
\(950\) 0 0
\(951\) 3.77603 0.122446
\(952\) −9.27847 −0.300717
\(953\) −17.1473 −0.555455 −0.277727 0.960660i \(-0.589581\pi\)
−0.277727 + 0.960660i \(0.589581\pi\)
\(954\) −7.32315 −0.237096
\(955\) 0 0
\(956\) 15.7067 0.507991
\(957\) −2.73290 −0.0883420
\(958\) 36.4911 1.17898
\(959\) −5.31254 −0.171551
\(960\) 0 0
\(961\) 36.3573 1.17281
\(962\) 30.7159 0.990321
\(963\) 13.0327 0.419972
\(964\) 22.5174 0.725237
\(965\) 0 0
\(966\) 0.995330 0.0320242
\(967\) −1.12375 −0.0361374 −0.0180687 0.999837i \(-0.505752\pi\)
−0.0180687 + 0.999837i \(0.505752\pi\)
\(968\) −9.87960 −0.317542
\(969\) 12.4170 0.398892
\(970\) 0 0
\(971\) 9.39797 0.301595 0.150798 0.988565i \(-0.451816\pi\)
0.150798 + 0.988565i \(0.451816\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 3.80741 0.122060
\(974\) 8.61685 0.276102
\(975\) 0 0
\(976\) 7.13387 0.228350
\(977\) 7.30876 0.233828 0.116914 0.993142i \(-0.462700\pi\)
0.116914 + 0.993142i \(0.462700\pi\)
\(978\) 12.7786 0.408614
\(979\) 14.3200 0.457669
\(980\) 0 0
\(981\) −12.7526 −0.407158
\(982\) −27.4118 −0.874746
\(983\) −9.70301 −0.309478 −0.154739 0.987955i \(-0.549454\pi\)
−0.154739 + 0.987955i \(0.549454\pi\)
\(984\) −5.13485 −0.163693
\(985\) 0 0
\(986\) 11.2511 0.358309
\(987\) −13.2973 −0.423258
\(988\) 16.7839 0.533966
\(989\) 3.03668 0.0965609
\(990\) 0 0
\(991\) 32.0364 1.01767 0.508835 0.860864i \(-0.330076\pi\)
0.508835 + 0.860864i \(0.330076\pi\)
\(992\) 8.20715 0.260577
\(993\) −15.2466 −0.483836
\(994\) −31.1816 −0.989020
\(995\) 0 0
\(996\) −12.9727 −0.411054
\(997\) −4.00845 −0.126949 −0.0634744 0.997983i \(-0.520218\pi\)
−0.0634744 + 0.997983i \(0.520218\pi\)
\(998\) −9.07912 −0.287395
\(999\) −5.21470 −0.164986
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.r.1.3 yes 4
5.2 odd 4 3750.2.c.f.1249.7 8
5.3 odd 4 3750.2.c.f.1249.2 8
5.4 even 2 3750.2.a.k.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3750.2.a.k.1.2 4 5.4 even 2
3750.2.a.r.1.3 yes 4 1.1 even 1 trivial
3750.2.c.f.1249.2 8 5.3 odd 4
3750.2.c.f.1249.7 8 5.2 odd 4