Properties

Label 375.3.k.c.232.2
Level $375$
Weight $3$
Character 375.232
Analytic conductor $10.218$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,3,Mod(7,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 17])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 375.k (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,4,0,0,0,0,-4,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2180099135\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 232.2
Character \(\chi\) \(=\) 375.232
Dual form 375.3.k.c.118.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39544 + 2.73870i) q^{2} +(0.270952 - 1.71073i) q^{3} +(-3.20210 - 4.40731i) q^{4} +(4.30707 + 3.12927i) q^{6} +(-0.250082 - 0.250082i) q^{7} +(4.39513 - 0.696119i) q^{8} +(-2.85317 - 0.927051i) q^{9} +(-2.45351 - 7.55112i) q^{11} +(-8.40731 + 4.28374i) q^{12} +(5.38954 + 10.5776i) q^{13} +(1.03387 - 0.335926i) q^{14} +(2.50710 - 7.71607i) q^{16} +(3.81558 + 24.0906i) q^{17} +(6.52034 - 6.52034i) q^{18} +(15.4606 - 21.2797i) q^{19} +(-0.495582 + 0.360061i) q^{21} +(24.1040 + 3.81770i) q^{22} +(11.4516 + 5.83489i) q^{23} -7.70747i q^{24} -36.4896 q^{26} +(-2.35900 + 4.62981i) q^{27} +(-0.301401 + 1.90297i) q^{28} +(27.7376 + 38.1776i) q^{29} +(27.8697 + 20.2485i) q^{31} +(30.2198 + 30.2198i) q^{32} +(-13.5827 + 2.15129i) q^{33} +(-71.3015 - 23.1673i) q^{34} +(5.05032 + 15.5433i) q^{36} +(7.36815 - 3.75426i) q^{37} +(36.7044 + 72.0364i) q^{38} +(19.5556 - 6.35401i) q^{39} +(-14.5062 + 44.6455i) q^{41} +(-0.294547 - 1.85969i) q^{42} +(1.08084 - 1.08084i) q^{43} +(-25.4237 + 34.9928i) q^{44} +(-31.9601 + 23.2203i) q^{46} +(42.5307 + 6.73620i) q^{47} +(-12.5208 - 6.37966i) q^{48} -48.8749i q^{49} +42.2463 q^{51} +(29.3608 - 57.6237i) q^{52} +(-4.55469 + 28.7572i) q^{53} +(-9.38781 - 12.9212i) q^{54} +(-1.27323 - 0.925055i) q^{56} +(-32.2146 - 32.2146i) q^{57} +(-143.263 + 22.6907i) q^{58} +(-71.3918 - 23.1966i) q^{59} +(26.0031 + 80.0294i) q^{61} +(-94.3452 + 48.0713i) q^{62} +(0.481688 + 0.945365i) q^{63} +(-94.0684 + 30.5647i) q^{64} +(13.0621 - 40.2009i) q^{66} +(-6.64899 - 41.9801i) q^{67} +(93.9570 - 93.9570i) q^{68} +(13.0848 - 18.0096i) q^{69} +(49.0998 - 35.6731i) q^{71} +(-13.1854 - 2.08836i) q^{72} +(-84.6079 - 43.1099i) q^{73} +25.4180i q^{74} -143.292 q^{76} +(-1.27482 + 2.50198i) q^{77} +(-9.88694 + 62.4237i) q^{78} +(62.3659 + 85.8393i) q^{79} +(7.28115 + 5.29007i) q^{81} +(-102.028 - 102.028i) q^{82} +(-95.2606 + 15.0878i) q^{83} +(3.17380 + 1.03123i) q^{84} +(1.45185 + 4.46832i) q^{86} +(72.8270 - 37.1072i) q^{87} +(-16.0400 - 31.4802i) q^{88} +(163.312 - 53.0634i) q^{89} +(1.29743 - 3.99309i) q^{91} +(-10.9530 - 69.1547i) q^{92} +(42.1911 - 42.1911i) q^{93} +(-77.7974 + 107.079i) q^{94} +(59.8858 - 43.5096i) q^{96} +(106.110 + 16.8062i) q^{97} +(133.854 + 68.2019i) q^{98} +23.8192i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{2} - 4 q^{7} - 72 q^{8} - 24 q^{12} + 32 q^{13} + 80 q^{16} + 40 q^{17} - 48 q^{18} + 100 q^{19} + 280 q^{22} + 264 q^{23} - 40 q^{26} - 44 q^{28} - 200 q^{29} + 636 q^{32} + 36 q^{33} - 100 q^{34}+ \cdots + 828 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39544 + 2.73870i −0.697719 + 1.36935i 0.221327 + 0.975200i \(0.428961\pi\)
−0.919046 + 0.394151i \(0.871039\pi\)
\(3\) 0.270952 1.71073i 0.0903175 0.570242i
\(4\) −3.20210 4.40731i −0.800524 1.10183i
\(5\) 0 0
\(6\) 4.30707 + 3.12927i 0.717845 + 0.521545i
\(7\) −0.250082 0.250082i −0.0357260 0.0357260i 0.689018 0.724744i \(-0.258042\pi\)
−0.724744 + 0.689018i \(0.758042\pi\)
\(8\) 4.39513 0.696119i 0.549391 0.0870149i
\(9\) −2.85317 0.927051i −0.317019 0.103006i
\(10\) 0 0
\(11\) −2.45351 7.55112i −0.223046 0.686466i −0.998484 0.0550418i \(-0.982471\pi\)
0.775438 0.631424i \(-0.217529\pi\)
\(12\) −8.40731 + 4.28374i −0.700609 + 0.356978i
\(13\) 5.38954 + 10.5776i 0.414580 + 0.813659i 0.999996 + 0.00292573i \(0.000931290\pi\)
−0.585416 + 0.810733i \(0.699069\pi\)
\(14\) 1.03387 0.335926i 0.0738481 0.0239947i
\(15\) 0 0
\(16\) 2.50710 7.71607i 0.156694 0.482254i
\(17\) 3.81558 + 24.0906i 0.224446 + 1.41710i 0.800327 + 0.599563i \(0.204659\pi\)
−0.575881 + 0.817533i \(0.695341\pi\)
\(18\) 6.52034 6.52034i 0.362241 0.362241i
\(19\) 15.4606 21.2797i 0.813715 1.11998i −0.177024 0.984206i \(-0.556647\pi\)
0.990740 0.135776i \(-0.0433529\pi\)
\(20\) 0 0
\(21\) −0.495582 + 0.360061i −0.0235991 + 0.0171458i
\(22\) 24.1040 + 3.81770i 1.09564 + 0.173532i
\(23\) 11.4516 + 5.83489i 0.497897 + 0.253691i 0.684858 0.728676i \(-0.259864\pi\)
−0.186962 + 0.982367i \(0.559864\pi\)
\(24\) 7.70747i 0.321145i
\(25\) 0 0
\(26\) −36.4896 −1.40344
\(27\) −2.35900 + 4.62981i −0.0873705 + 0.171474i
\(28\) −0.301401 + 1.90297i −0.0107643 + 0.0679634i
\(29\) 27.7376 + 38.1776i 0.956470 + 1.31647i 0.948593 + 0.316500i \(0.102508\pi\)
0.00787767 + 0.999969i \(0.497492\pi\)
\(30\) 0 0
\(31\) 27.8697 + 20.2485i 0.899023 + 0.653179i 0.938215 0.346053i \(-0.112478\pi\)
−0.0391915 + 0.999232i \(0.512478\pi\)
\(32\) 30.2198 + 30.2198i 0.944367 + 0.944367i
\(33\) −13.5827 + 2.15129i −0.411597 + 0.0651905i
\(34\) −71.3015 23.1673i −2.09710 0.681390i
\(35\) 0 0
\(36\) 5.05032 + 15.5433i 0.140287 + 0.431758i
\(37\) 7.36815 3.75426i 0.199139 0.101466i −0.351577 0.936159i \(-0.614355\pi\)
0.550716 + 0.834692i \(0.314355\pi\)
\(38\) 36.7044 + 72.0364i 0.965905 + 1.89569i
\(39\) 19.5556 6.35401i 0.501426 0.162923i
\(40\) 0 0
\(41\) −14.5062 + 44.6455i −0.353810 + 1.08892i 0.602886 + 0.797827i \(0.294017\pi\)
−0.956696 + 0.291088i \(0.905983\pi\)
\(42\) −0.294547 1.85969i −0.00701302 0.0442784i
\(43\) 1.08084 1.08084i 0.0251357 0.0251357i −0.694427 0.719563i \(-0.744342\pi\)
0.719563 + 0.694427i \(0.244342\pi\)
\(44\) −25.4237 + 34.9928i −0.577812 + 0.795291i
\(45\) 0 0
\(46\) −31.9601 + 23.2203i −0.694784 + 0.504790i
\(47\) 42.5307 + 6.73620i 0.904909 + 0.143323i 0.591509 0.806298i \(-0.298532\pi\)
0.313399 + 0.949621i \(0.398532\pi\)
\(48\) −12.5208 6.37966i −0.260850 0.132910i
\(49\) 48.8749i 0.997447i
\(50\) 0 0
\(51\) 42.2463 0.828360
\(52\) 29.3608 57.6237i 0.564630 1.10815i
\(53\) −4.55469 + 28.7572i −0.0859376 + 0.542589i 0.906730 + 0.421712i \(0.138571\pi\)
−0.992668 + 0.120877i \(0.961429\pi\)
\(54\) −9.38781 12.9212i −0.173848 0.239282i
\(55\) 0 0
\(56\) −1.27323 0.925055i −0.0227362 0.0165188i
\(57\) −32.2146 32.2146i −0.565169 0.565169i
\(58\) −143.263 + 22.6907i −2.47005 + 0.391218i
\(59\) −71.3918 23.1966i −1.21003 0.393163i −0.366588 0.930383i \(-0.619474\pi\)
−0.843442 + 0.537221i \(0.819474\pi\)
\(60\) 0 0
\(61\) 26.0031 + 80.0294i 0.426281 + 1.31196i 0.901762 + 0.432232i \(0.142274\pi\)
−0.475481 + 0.879726i \(0.657726\pi\)
\(62\) −94.3452 + 48.0713i −1.52170 + 0.775343i
\(63\) 0.481688 + 0.945365i 0.00764583 + 0.0150058i
\(64\) −94.0684 + 30.5647i −1.46982 + 0.477573i
\(65\) 0 0
\(66\) 13.0621 40.2009i 0.197910 0.609105i
\(67\) −6.64899 41.9801i −0.0992386 0.626568i −0.986306 0.164927i \(-0.947261\pi\)
0.887067 0.461641i \(-0.152739\pi\)
\(68\) 93.9570 93.9570i 1.38172 1.38172i
\(69\) 13.0848 18.0096i 0.189634 0.261009i
\(70\) 0 0
\(71\) 49.0998 35.6731i 0.691546 0.502438i −0.185622 0.982621i \(-0.559430\pi\)
0.877168 + 0.480183i \(0.159430\pi\)
\(72\) −13.1854 2.08836i −0.183130 0.0290050i
\(73\) −84.6079 43.1099i −1.15901 0.590547i −0.234657 0.972078i \(-0.575397\pi\)
−0.924356 + 0.381532i \(0.875397\pi\)
\(74\) 25.4180i 0.343486i
\(75\) 0 0
\(76\) −143.292 −1.88543
\(77\) −1.27482 + 2.50198i −0.0165561 + 0.0324932i
\(78\) −9.88694 + 62.4237i −0.126756 + 0.800303i
\(79\) 62.3659 + 85.8393i 0.789442 + 1.08657i 0.994177 + 0.107756i \(0.0343665\pi\)
−0.204736 + 0.978817i \(0.565634\pi\)
\(80\) 0 0
\(81\) 7.28115 + 5.29007i 0.0898908 + 0.0653095i
\(82\) −102.028 102.028i −1.24425 1.24425i
\(83\) −95.2606 + 15.0878i −1.14772 + 0.181781i −0.701180 0.712984i \(-0.747343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(84\) 3.17380 + 1.03123i 0.0377834 + 0.0122766i
\(85\) 0 0
\(86\) 1.45185 + 4.46832i 0.0168819 + 0.0519572i
\(87\) 72.8270 37.1072i 0.837092 0.426520i
\(88\) −16.0400 31.4802i −0.182272 0.357730i
\(89\) 163.312 53.0634i 1.83497 0.596218i 0.836107 0.548567i \(-0.184826\pi\)
0.998864 0.0476516i \(-0.0151737\pi\)
\(90\) 0 0
\(91\) 1.29743 3.99309i 0.0142575 0.0438801i
\(92\) −10.9530 69.1547i −0.119055 0.751681i
\(93\) 42.1911 42.1911i 0.453668 0.453668i
\(94\) −77.7974 + 107.079i −0.827632 + 1.13914i
\(95\) 0 0
\(96\) 59.8858 43.5096i 0.623811 0.453225i
\(97\) 106.110 + 16.8062i 1.09392 + 0.173259i 0.677216 0.735784i \(-0.263186\pi\)
0.416701 + 0.909044i \(0.363186\pi\)
\(98\) 133.854 + 68.2019i 1.36585 + 0.695938i
\(99\) 23.8192i 0.240598i
\(100\) 0 0
\(101\) −107.110 −1.06049 −0.530247 0.847843i \(-0.677901\pi\)
−0.530247 + 0.847843i \(0.677901\pi\)
\(102\) −58.9522 + 115.700i −0.577962 + 1.13431i
\(103\) 14.9281 94.2525i 0.144933 0.915073i −0.802855 0.596174i \(-0.796687\pi\)
0.947789 0.318899i \(-0.103313\pi\)
\(104\) 31.0510 + 42.7380i 0.298567 + 0.410942i
\(105\) 0 0
\(106\) −72.4016 52.6028i −0.683034 0.496253i
\(107\) 128.543 + 128.543i 1.20134 + 1.20134i 0.973761 + 0.227575i \(0.0730796\pi\)
0.227575 + 0.973761i \(0.426920\pi\)
\(108\) 27.9587 4.42823i 0.258877 0.0410021i
\(109\) 89.3002 + 29.0154i 0.819268 + 0.266196i 0.688518 0.725219i \(-0.258262\pi\)
0.130750 + 0.991415i \(0.458262\pi\)
\(110\) 0 0
\(111\) −4.42609 13.6221i −0.0398747 0.122722i
\(112\) −2.55663 + 1.30267i −0.0228271 + 0.0116310i
\(113\) 6.69828 + 13.1461i 0.0592768 + 0.116337i 0.918744 0.394853i \(-0.129205\pi\)
−0.859467 + 0.511191i \(0.829205\pi\)
\(114\) 133.180 43.2727i 1.16824 0.379585i
\(115\) 0 0
\(116\) 79.4417 244.497i 0.684843 2.10773i
\(117\) −5.57133 35.1760i −0.0476182 0.300649i
\(118\) 163.151 163.151i 1.38264 1.38264i
\(119\) 5.07043 6.97885i 0.0426086 0.0586458i
\(120\) 0 0
\(121\) 46.8913 34.0685i 0.387531 0.281558i
\(122\) −255.462 40.4613i −2.09395 0.331650i
\(123\) 72.4458 + 36.9130i 0.588990 + 0.300105i
\(124\) 187.668i 1.51345i
\(125\) 0 0
\(126\) −3.26124 −0.0258828
\(127\) −18.4466 + 36.2034i −0.145249 + 0.285066i −0.952157 0.305611i \(-0.901139\pi\)
0.806908 + 0.590677i \(0.201139\pi\)
\(128\) 20.8168 131.432i 0.162631 1.02681i
\(129\) −1.55616 2.14187i −0.0120632 0.0166036i
\(130\) 0 0
\(131\) 121.554 + 88.3139i 0.927890 + 0.674152i 0.945475 0.325694i \(-0.105598\pi\)
−0.0175852 + 0.999845i \(0.505598\pi\)
\(132\) 52.9745 + 52.9745i 0.401322 + 0.401322i
\(133\) −9.18808 + 1.45525i −0.0690833 + 0.0109417i
\(134\) 124.249 + 40.3710i 0.927232 + 0.301276i
\(135\) 0 0
\(136\) 33.5399 + 103.225i 0.246617 + 0.759010i
\(137\) 14.4013 7.33780i 0.105119 0.0535606i −0.400641 0.916235i \(-0.631212\pi\)
0.505759 + 0.862675i \(0.331212\pi\)
\(138\) 31.0640 + 60.9665i 0.225101 + 0.441786i
\(139\) −45.4296 + 14.7610i −0.326832 + 0.106194i −0.467837 0.883815i \(-0.654967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(140\) 0 0
\(141\) 23.0476 70.9332i 0.163458 0.503072i
\(142\) 29.1822 + 184.249i 0.205509 + 1.29753i
\(143\) 66.6492 66.6492i 0.466079 0.466079i
\(144\) −14.3064 + 19.6910i −0.0993499 + 0.136743i
\(145\) 0 0
\(146\) 236.130 171.559i 1.61733 1.17506i
\(147\) −83.6116 13.2428i −0.568786 0.0900869i
\(148\) −40.1397 20.4522i −0.271214 0.138190i
\(149\) 108.380i 0.727379i −0.931520 0.363690i \(-0.881517\pi\)
0.931520 0.363690i \(-0.118483\pi\)
\(150\) 0 0
\(151\) −59.8487 −0.396349 −0.198175 0.980167i \(-0.563501\pi\)
−0.198175 + 0.980167i \(0.563501\pi\)
\(152\) 53.1380 104.289i 0.349592 0.686114i
\(153\) 11.4468 72.2719i 0.0748154 0.472366i
\(154\) −5.07324 6.98271i −0.0329431 0.0453423i
\(155\) 0 0
\(156\) −90.6231 65.8415i −0.580917 0.422061i
\(157\) −87.1877 87.1877i −0.555336 0.555336i 0.372640 0.927976i \(-0.378453\pi\)
−0.927976 + 0.372640i \(0.878453\pi\)
\(158\) −322.116 + 51.0181i −2.03871 + 0.322900i
\(159\) 47.9616 + 15.5837i 0.301645 + 0.0980105i
\(160\) 0 0
\(161\) −1.40464 4.32305i −0.00872449 0.0268512i
\(162\) −24.6483 + 12.5589i −0.152150 + 0.0775243i
\(163\) −42.2593 82.9386i −0.259260 0.508826i 0.724283 0.689503i \(-0.242171\pi\)
−0.983542 + 0.180677i \(0.942171\pi\)
\(164\) 243.217 79.0259i 1.48303 0.481865i
\(165\) 0 0
\(166\) 91.6093 281.944i 0.551863 1.69846i
\(167\) −37.2062 234.911i −0.222792 1.40665i −0.804837 0.593495i \(-0.797748\pi\)
0.582046 0.813156i \(-0.302252\pi\)
\(168\) −1.92750 + 1.92750i −0.0114732 + 0.0114732i
\(169\) 16.4979 22.7075i 0.0976209 0.134364i
\(170\) 0 0
\(171\) −63.8390 + 46.3818i −0.373328 + 0.271238i
\(172\) −8.22451 1.30263i −0.0478169 0.00757346i
\(173\) −29.4657 15.0135i −0.170322 0.0867833i 0.366751 0.930319i \(-0.380470\pi\)
−0.537073 + 0.843536i \(0.680470\pi\)
\(174\) 251.232i 1.44386i
\(175\) 0 0
\(176\) −64.4162 −0.366001
\(177\) −59.0268 + 115.847i −0.333485 + 0.654501i
\(178\) −82.5675 + 521.311i −0.463862 + 2.92871i
\(179\) −157.338 216.558i −0.878985 1.20982i −0.976701 0.214605i \(-0.931153\pi\)
0.0977154 0.995214i \(-0.468847\pi\)
\(180\) 0 0
\(181\) −32.1635 23.3682i −0.177699 0.129106i 0.495380 0.868676i \(-0.335029\pi\)
−0.673079 + 0.739570i \(0.735029\pi\)
\(182\) 9.12538 + 9.12538i 0.0501395 + 0.0501395i
\(183\) 143.954 22.8001i 0.786634 0.124591i
\(184\) 54.3931 + 17.6734i 0.295615 + 0.0960510i
\(185\) 0 0
\(186\) 56.6737 + 174.424i 0.304697 + 0.937762i
\(187\) 172.550 87.9186i 0.922727 0.470153i
\(188\) −106.499 209.016i −0.566483 1.11179i
\(189\) 1.74778 0.567887i 0.00924749 0.00300469i
\(190\) 0 0
\(191\) −40.9280 + 125.963i −0.214283 + 0.659495i 0.784921 + 0.619596i \(0.212704\pi\)
−0.999204 + 0.0398988i \(0.987296\pi\)
\(192\) 26.7997 + 169.207i 0.139582 + 0.881286i
\(193\) −31.7199 + 31.7199i −0.164352 + 0.164352i −0.784491 0.620140i \(-0.787076\pi\)
0.620140 + 0.784491i \(0.287076\pi\)
\(194\) −194.097 + 267.151i −1.00050 + 1.37707i
\(195\) 0 0
\(196\) −215.407 + 156.502i −1.09901 + 0.798480i
\(197\) −169.980 26.9222i −0.862844 0.136661i −0.290700 0.956814i \(-0.593888\pi\)
−0.572144 + 0.820153i \(0.693888\pi\)
\(198\) −65.2336 33.2382i −0.329462 0.167870i
\(199\) 26.7052i 0.134197i −0.997746 0.0670985i \(-0.978626\pi\)
0.997746 0.0670985i \(-0.0213742\pi\)
\(200\) 0 0
\(201\) −73.6179 −0.366258
\(202\) 149.465 293.342i 0.739927 1.45219i
\(203\) 2.61084 16.4842i 0.0128613 0.0812030i
\(204\) −135.277 186.193i −0.663122 0.912709i
\(205\) 0 0
\(206\) 237.298 + 172.407i 1.15193 + 0.836928i
\(207\) −27.2642 27.2642i −0.131711 0.131711i
\(208\) 95.1294 15.0670i 0.457353 0.0724376i
\(209\) −198.618 64.5350i −0.950326 0.308780i
\(210\) 0 0
\(211\) 4.07202 + 12.5324i 0.0192987 + 0.0593952i 0.960242 0.279169i \(-0.0900589\pi\)
−0.940943 + 0.338564i \(0.890059\pi\)
\(212\) 141.326 72.0094i 0.666634 0.339667i
\(213\) −47.7232 93.6620i −0.224052 0.439728i
\(214\) −531.414 + 172.667i −2.48324 + 0.806855i
\(215\) 0 0
\(216\) −7.14522 + 21.9907i −0.0330797 + 0.101809i
\(217\) −1.90592 12.0335i −0.00878305 0.0554540i
\(218\) −204.077 + 204.077i −0.936134 + 0.936134i
\(219\) −96.6740 + 133.060i −0.441434 + 0.607581i
\(220\) 0 0
\(221\) −234.256 + 170.197i −1.05998 + 0.770123i
\(222\) 43.4832 + 6.88706i 0.195870 + 0.0310228i
\(223\) 195.116 + 99.4164i 0.874958 + 0.445814i 0.832979 0.553305i \(-0.186634\pi\)
0.0419796 + 0.999118i \(0.486634\pi\)
\(224\) 15.1148i 0.0674769i
\(225\) 0 0
\(226\) −45.3503 −0.200665
\(227\) −68.2679 + 133.983i −0.300740 + 0.590235i −0.991083 0.133247i \(-0.957460\pi\)
0.690343 + 0.723482i \(0.257460\pi\)
\(228\) −38.8254 + 245.134i −0.170287 + 1.07515i
\(229\) 218.119 + 300.215i 0.952483 + 1.31098i 0.950415 + 0.310983i \(0.100658\pi\)
0.00206788 + 0.999998i \(0.499342\pi\)
\(230\) 0 0
\(231\) 3.93478 + 2.85879i 0.0170337 + 0.0123757i
\(232\) 148.487 + 148.487i 0.640028 + 0.640028i
\(233\) 73.2641 11.6039i 0.314438 0.0498021i 0.00277928 0.999996i \(-0.499115\pi\)
0.311659 + 0.950194i \(0.399115\pi\)
\(234\) 104.111 + 33.8277i 0.444918 + 0.144563i
\(235\) 0 0
\(236\) 126.369 + 388.923i 0.535461 + 1.64798i
\(237\) 163.746 83.4326i 0.690910 0.352036i
\(238\) 12.0375 + 23.6249i 0.0505777 + 0.0992644i
\(239\) −216.055 + 70.2006i −0.903996 + 0.293726i −0.723885 0.689920i \(-0.757646\pi\)
−0.180111 + 0.983646i \(0.557646\pi\)
\(240\) 0 0
\(241\) −106.433 + 327.566i −0.441629 + 1.35919i 0.444510 + 0.895774i \(0.353378\pi\)
−0.886139 + 0.463420i \(0.846622\pi\)
\(242\) 27.8696 + 175.962i 0.115164 + 0.727115i
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 269.450 370.866i 1.10430 1.51994i
\(245\) 0 0
\(246\) −202.187 + 146.898i −0.821899 + 0.597145i
\(247\) 308.413 + 48.8478i 1.24863 + 0.197764i
\(248\) 136.586 + 69.5942i 0.550751 + 0.280622i
\(249\) 167.053i 0.670895i
\(250\) 0 0
\(251\) −210.120 −0.837130 −0.418565 0.908187i \(-0.637467\pi\)
−0.418565 + 0.908187i \(0.637467\pi\)
\(252\) 2.62410 5.15009i 0.0104131 0.0204369i
\(253\) 15.9633 100.789i 0.0630962 0.398374i
\(254\) −73.4094 101.039i −0.289013 0.397793i
\(255\) 0 0
\(256\) 10.8275 + 7.86664i 0.0422949 + 0.0307290i
\(257\) −181.816 181.816i −0.707456 0.707456i 0.258544 0.966000i \(-0.416757\pi\)
−0.966000 + 0.258544i \(0.916757\pi\)
\(258\) 8.03746 1.27301i 0.0311529 0.00493414i
\(259\) −2.78151 0.903768i −0.0107394 0.00348945i
\(260\) 0 0
\(261\) −43.7476 134.641i −0.167615 0.515867i
\(262\) −411.486 + 209.662i −1.57056 + 0.800238i
\(263\) −35.1550 68.9955i −0.133669 0.262340i 0.814464 0.580214i \(-0.197031\pi\)
−0.948133 + 0.317874i \(0.897031\pi\)
\(264\) −58.2001 + 18.9104i −0.220455 + 0.0716301i
\(265\) 0 0
\(266\) 8.83590 27.1941i 0.0332177 0.102233i
\(267\) −46.5271 293.761i −0.174259 1.10023i
\(268\) −163.728 + 163.728i −0.610926 + 0.610926i
\(269\) 187.609 258.221i 0.697430 0.959931i −0.302546 0.953135i \(-0.597837\pi\)
0.999977 0.00679606i \(-0.00216327\pi\)
\(270\) 0 0
\(271\) 286.845 208.405i 1.05847 0.769022i 0.0846638 0.996410i \(-0.473018\pi\)
0.973804 + 0.227387i \(0.0730184\pi\)
\(272\) 195.451 + 30.9564i 0.718571 + 0.113810i
\(273\) −6.47953 3.30149i −0.0237346 0.0120934i
\(274\) 49.6802i 0.181314i
\(275\) 0 0
\(276\) −121.273 −0.439393
\(277\) −150.469 + 295.312i −0.543209 + 1.06611i 0.442360 + 0.896837i \(0.354141\pi\)
−0.985570 + 0.169271i \(0.945859\pi\)
\(278\) 22.9683 145.016i 0.0826198 0.521641i
\(279\) −60.7456 83.6092i −0.217726 0.299674i
\(280\) 0 0
\(281\) −87.3274 63.4471i −0.310774 0.225790i 0.421455 0.906849i \(-0.361520\pi\)
−0.732228 + 0.681059i \(0.761520\pi\)
\(282\) 162.103 + 162.103i 0.574835 + 0.574835i
\(283\) 132.020 20.9100i 0.466503 0.0738868i 0.0812417 0.996694i \(-0.474111\pi\)
0.385261 + 0.922808i \(0.374111\pi\)
\(284\) −314.444 102.169i −1.10720 0.359751i
\(285\) 0 0
\(286\) 89.5275 + 275.537i 0.313033 + 0.963417i
\(287\) 14.7928 7.53730i 0.0515428 0.0262624i
\(288\) −58.2068 114.237i −0.202107 0.396657i
\(289\) −290.945 + 94.5339i −1.00673 + 0.327107i
\(290\) 0 0
\(291\) 57.5015 176.971i 0.197600 0.608149i
\(292\) 80.9242 + 510.935i 0.277138 + 1.74978i
\(293\) −255.208 + 255.208i −0.871017 + 0.871017i −0.992583 0.121566i \(-0.961208\pi\)
0.121566 + 0.992583i \(0.461208\pi\)
\(294\) 152.943 210.508i 0.520214 0.716013i
\(295\) 0 0
\(296\) 29.7705 21.6295i 0.100576 0.0730728i
\(297\) 40.7481 + 6.45386i 0.137199 + 0.0217302i
\(298\) 296.819 + 151.237i 0.996037 + 0.507506i
\(299\) 152.578i 0.510293i
\(300\) 0 0
\(301\) −0.540595 −0.00179600
\(302\) 83.5152 163.908i 0.276540 0.542741i
\(303\) −29.0217 + 183.236i −0.0957811 + 0.604738i
\(304\) −125.434 172.645i −0.412612 0.567912i
\(305\) 0 0
\(306\) 181.958 + 132.200i 0.594634 + 0.432027i
\(307\) −299.563 299.563i −0.975775 0.975775i 0.0239382 0.999713i \(-0.492380\pi\)
−0.999713 + 0.0239382i \(0.992380\pi\)
\(308\) 15.1091 2.39304i 0.0490555 0.00776962i
\(309\) −157.195 51.0759i −0.508723 0.165294i
\(310\) 0 0
\(311\) −11.4518 35.2451i −0.0368226 0.113328i 0.930956 0.365132i \(-0.118976\pi\)
−0.967778 + 0.251804i \(0.918976\pi\)
\(312\) 81.5263 41.5397i 0.261302 0.133140i
\(313\) −190.953 374.766i −0.610073 1.19734i −0.964953 0.262424i \(-0.915478\pi\)
0.354880 0.934912i \(-0.384522\pi\)
\(314\) 360.446 117.116i 1.14792 0.372981i
\(315\) 0 0
\(316\) 178.618 549.731i 0.565248 1.73966i
\(317\) 25.6622 + 162.025i 0.0809533 + 0.511119i 0.994530 + 0.104452i \(0.0333090\pi\)
−0.913577 + 0.406667i \(0.866691\pi\)
\(318\) −109.606 + 109.606i −0.344674 + 0.344674i
\(319\) 220.229 303.119i 0.690373 0.950218i
\(320\) 0 0
\(321\) 254.731 185.073i 0.793554 0.576550i
\(322\) 13.7996 + 2.18565i 0.0428560 + 0.00678772i
\(323\) 571.632 + 291.261i 1.76976 + 0.901738i
\(324\) 49.0296i 0.151326i
\(325\) 0 0
\(326\) 286.114 0.877652
\(327\) 73.8335 144.906i 0.225790 0.443139i
\(328\) −32.6780 + 206.321i −0.0996280 + 0.629027i
\(329\) −8.95156 12.3208i −0.0272084 0.0374491i
\(330\) 0 0
\(331\) 265.305 + 192.756i 0.801527 + 0.582343i 0.911362 0.411607i \(-0.135032\pi\)
−0.109835 + 0.993950i \(0.535032\pi\)
\(332\) 371.530 + 371.530i 1.11907 + 1.11907i
\(333\) −24.5030 + 3.88089i −0.0735825 + 0.0116543i
\(334\) 695.269 + 225.907i 2.08164 + 0.676367i
\(335\) 0 0
\(336\) 1.53578 + 4.72666i 0.00457079 + 0.0140674i
\(337\) −408.154 + 207.965i −1.21114 + 0.617107i −0.938590 0.345035i \(-0.887867\pi\)
−0.272550 + 0.962142i \(0.587867\pi\)
\(338\) 39.1671 + 76.8697i 0.115879 + 0.227425i
\(339\) 24.3043 7.89696i 0.0716942 0.0232949i
\(340\) 0 0
\(341\) 84.5206 260.128i 0.247861 0.762838i
\(342\) −37.9424 239.559i −0.110943 0.700465i
\(343\) −24.4768 + 24.4768i −0.0713608 + 0.0713608i
\(344\) 3.99802 5.50280i 0.0116221 0.0159965i
\(345\) 0 0
\(346\) 82.2351 59.7473i 0.237674 0.172680i
\(347\) 383.531 + 60.7454i 1.10528 + 0.175059i 0.682293 0.731078i \(-0.260983\pi\)
0.422984 + 0.906137i \(0.360983\pi\)
\(348\) −396.742 202.150i −1.14006 0.580891i
\(349\) 160.925i 0.461103i −0.973060 0.230552i \(-0.925947\pi\)
0.973060 0.230552i \(-0.0740530\pi\)
\(350\) 0 0
\(351\) −61.6860 −0.175744
\(352\) 154.049 302.338i 0.437638 0.858913i
\(353\) −11.1745 + 70.5532i −0.0316559 + 0.199868i −0.998448 0.0556979i \(-0.982262\pi\)
0.966792 + 0.255565i \(0.0822616\pi\)
\(354\) −234.901 323.313i −0.663562 0.913315i
\(355\) 0 0
\(356\) −756.809 549.854i −2.12587 1.54453i
\(357\) −10.5650 10.5650i −0.0295940 0.0295940i
\(358\) 812.643 128.710i 2.26995 0.359525i
\(359\) −96.8130 31.4565i −0.269674 0.0876225i 0.171058 0.985261i \(-0.445281\pi\)
−0.440733 + 0.897638i \(0.645281\pi\)
\(360\) 0 0
\(361\) −102.240 314.661i −0.283212 0.871638i
\(362\) 108.881 55.4774i 0.300775 0.153253i
\(363\) −45.5766 89.4491i −0.125555 0.246416i
\(364\) −21.7533 + 7.06806i −0.0597617 + 0.0194177i
\(365\) 0 0
\(366\) −138.436 + 426.063i −0.378241 + 1.16411i
\(367\) 65.6306 + 414.375i 0.178830 + 1.12909i 0.899858 + 0.436183i \(0.143670\pi\)
−0.721028 + 0.692906i \(0.756330\pi\)
\(368\) 73.7328 73.7328i 0.200361 0.200361i
\(369\) 82.7774 113.933i 0.224329 0.308762i
\(370\) 0 0
\(371\) 8.33070 6.05261i 0.0224547 0.0163143i
\(372\) −321.049 50.8492i −0.863035 0.136691i
\(373\) −352.748 179.734i −0.945705 0.481861i −0.0880667 0.996115i \(-0.528069\pi\)
−0.857638 + 0.514254i \(0.828069\pi\)
\(374\) 595.248i 1.59157i
\(375\) 0 0
\(376\) 191.617 0.509620
\(377\) −254.333 + 499.156i −0.674623 + 1.32402i
\(378\) −0.883640 + 5.57908i −0.00233767 + 0.0147595i
\(379\) 364.178 + 501.248i 0.960892 + 1.32255i 0.946516 + 0.322657i \(0.104576\pi\)
0.0143757 + 0.999897i \(0.495424\pi\)
\(380\) 0 0
\(381\) 56.9360 + 41.3665i 0.149438 + 0.108573i
\(382\) −287.864 287.864i −0.753570 0.753570i
\(383\) 242.068 38.3398i 0.632031 0.100104i 0.167804 0.985820i \(-0.446332\pi\)
0.464227 + 0.885716i \(0.346332\pi\)
\(384\) −219.204 71.2237i −0.570844 0.185478i
\(385\) 0 0
\(386\) −42.6081 131.134i −0.110384 0.339726i
\(387\) −4.08580 + 2.08182i −0.0105576 + 0.00537937i
\(388\) −265.704 521.474i −0.684805 1.34401i
\(389\) −21.1457 + 6.87066i −0.0543591 + 0.0176624i −0.336070 0.941837i \(-0.609098\pi\)
0.281711 + 0.959499i \(0.409098\pi\)
\(390\) 0 0
\(391\) −96.8717 + 298.141i −0.247754 + 0.762508i
\(392\) −34.0228 214.811i −0.0867928 0.547988i
\(393\) 184.016 184.016i 0.468234 0.468234i
\(394\) 310.929 427.957i 0.789159 1.08618i
\(395\) 0 0
\(396\) 104.978 76.2712i 0.265097 0.192604i
\(397\) −172.591 27.3358i −0.434739 0.0688559i −0.0647705 0.997900i \(-0.520632\pi\)
−0.369968 + 0.929044i \(0.620632\pi\)
\(398\) 73.1375 + 37.2654i 0.183763 + 0.0936317i
\(399\) 16.1126i 0.0403824i
\(400\) 0 0
\(401\) −352.160 −0.878204 −0.439102 0.898437i \(-0.644703\pi\)
−0.439102 + 0.898437i \(0.644703\pi\)
\(402\) 102.729 201.618i 0.255545 0.501536i
\(403\) −63.9753 + 403.924i −0.158748 + 1.00229i
\(404\) 342.976 + 472.066i 0.848951 + 1.16848i
\(405\) 0 0
\(406\) 41.5021 + 30.1530i 0.102222 + 0.0742685i
\(407\) −46.4267 46.4267i −0.114070 0.114070i
\(408\) 185.678 29.4085i 0.455093 0.0720797i
\(409\) 454.282 + 147.605i 1.11071 + 0.360893i 0.806217 0.591620i \(-0.201511\pi\)
0.304498 + 0.952513i \(0.401511\pi\)
\(410\) 0 0
\(411\) −8.65092 26.6248i −0.0210485 0.0647805i
\(412\) −463.201 + 236.013i −1.12427 + 0.572846i
\(413\) 12.0527 + 23.6548i 0.0291834 + 0.0572756i
\(414\) 112.714 36.6230i 0.272256 0.0884613i
\(415\) 0 0
\(416\) −156.781 + 482.522i −0.376877 + 1.15991i
\(417\) 12.9427 + 81.7172i 0.0310377 + 0.195965i
\(418\) 453.901 453.901i 1.08589 1.08589i
\(419\) −362.429 + 498.840i −0.864985 + 1.19055i 0.115373 + 0.993322i \(0.463194\pi\)
−0.980358 + 0.197227i \(0.936806\pi\)
\(420\) 0 0
\(421\) 374.959 272.424i 0.890639 0.647087i −0.0454057 0.998969i \(-0.514458\pi\)
0.936044 + 0.351882i \(0.114458\pi\)
\(422\) −40.0047 6.33613i −0.0947980 0.0150145i
\(423\) −115.103 58.6477i −0.272110 0.138647i
\(424\) 129.562i 0.305571i
\(425\) 0 0
\(426\) 323.107 0.758467
\(427\) 13.5110 26.5168i 0.0316417 0.0621003i
\(428\) 154.921 978.134i 0.361966 2.28536i
\(429\) −95.9598 132.077i −0.223683 0.307873i
\(430\) 0 0
\(431\) −19.0751 13.8589i −0.0442578 0.0321552i 0.565436 0.824792i \(-0.308708\pi\)
−0.609694 + 0.792637i \(0.708708\pi\)
\(432\) 29.8096 + 29.8096i 0.0690038 + 0.0690038i
\(433\) −110.943 + 17.5716i −0.256218 + 0.0405810i −0.283222 0.959054i \(-0.591403\pi\)
0.0270038 + 0.999635i \(0.491403\pi\)
\(434\) 35.6158 + 11.5723i 0.0820640 + 0.0266642i
\(435\) 0 0
\(436\) −158.068 486.483i −0.362541 1.11579i
\(437\) 301.213 153.476i 0.689276 0.351203i
\(438\) −229.510 450.439i −0.523995 1.02840i
\(439\) −519.678 + 168.854i −1.18378 + 0.384632i −0.833768 0.552114i \(-0.813821\pi\)
−0.350008 + 0.936747i \(0.613821\pi\)
\(440\) 0 0
\(441\) −45.3095 + 139.448i −0.102743 + 0.316210i
\(442\) −139.229 879.057i −0.314998 1.98882i
\(443\) −165.809 + 165.809i −0.374287 + 0.374287i −0.869036 0.494749i \(-0.835260\pi\)
0.494749 + 0.869036i \(0.335260\pi\)
\(444\) −45.8640 + 63.1264i −0.103297 + 0.142177i
\(445\) 0 0
\(446\) −544.544 + 395.634i −1.22095 + 0.887072i
\(447\) −185.408 29.3657i −0.414782 0.0656951i
\(448\) 31.1685 + 15.8811i 0.0695725 + 0.0354490i
\(449\) 201.205i 0.448119i −0.974576 0.224059i \(-0.928069\pi\)
0.974576 0.224059i \(-0.0719309\pi\)
\(450\) 0 0
\(451\) 372.715 0.826419
\(452\) 36.4904 71.6165i 0.0807311 0.158444i
\(453\) −16.2162 + 102.385i −0.0357973 + 0.226015i
\(454\) −271.677 373.931i −0.598407 0.823636i
\(455\) 0 0
\(456\) −164.013 119.162i −0.359677 0.261320i
\(457\) 449.591 + 449.591i 0.983788 + 0.983788i 0.999871 0.0160822i \(-0.00511934\pi\)
−0.0160822 + 0.999871i \(0.505119\pi\)
\(458\) −1126.57 + 178.431i −2.45976 + 0.389587i
\(459\) −120.536 39.1645i −0.262606 0.0853258i
\(460\) 0 0
\(461\) −130.749 402.403i −0.283620 0.872892i −0.986809 0.161889i \(-0.948241\pi\)
0.703189 0.711003i \(-0.251759\pi\)
\(462\) −13.3201 + 6.78694i −0.0288314 + 0.0146903i
\(463\) 298.580 + 585.996i 0.644881 + 1.26565i 0.949676 + 0.313233i \(0.101412\pi\)
−0.304795 + 0.952418i \(0.598588\pi\)
\(464\) 364.122 118.310i 0.784746 0.254979i
\(465\) 0 0
\(466\) −70.4559 + 216.841i −0.151193 + 0.465324i
\(467\) −102.897 649.664i −0.220335 1.39114i −0.811387 0.584509i \(-0.801287\pi\)
0.591052 0.806634i \(-0.298713\pi\)
\(468\) −137.191 + 137.191i −0.293144 + 0.293144i
\(469\) −8.83566 + 12.1612i −0.0188394 + 0.0259302i
\(470\) 0 0
\(471\) −172.778 + 125.531i −0.366832 + 0.266519i
\(472\) −329.923 52.2547i −0.698990 0.110709i
\(473\) −10.8134 5.50968i −0.0228612 0.0116484i
\(474\) 564.875i 1.19172i
\(475\) 0 0
\(476\) −46.9939 −0.0987267
\(477\) 39.6547 77.8267i 0.0831336 0.163159i
\(478\) 109.233 689.671i 0.228521 1.44283i
\(479\) 394.709 + 543.270i 0.824026 + 1.13418i 0.989006 + 0.147878i \(0.0472443\pi\)
−0.164979 + 0.986297i \(0.552756\pi\)
\(480\) 0 0
\(481\) 79.4218 + 57.7033i 0.165118 + 0.119965i
\(482\) −748.584 748.584i −1.55308 1.55308i
\(483\) −7.77614 + 1.23162i −0.0160997 + 0.00254994i
\(484\) −300.301 97.5736i −0.620456 0.201598i
\(485\) 0 0
\(486\) 14.8064 + 45.5694i 0.0304658 + 0.0937642i
\(487\) 93.9218 47.8556i 0.192858 0.0982660i −0.354895 0.934906i \(-0.615483\pi\)
0.547753 + 0.836640i \(0.315483\pi\)
\(488\) 169.997 + 333.638i 0.348355 + 0.683685i
\(489\) −153.336 + 49.8218i −0.313570 + 0.101885i
\(490\) 0 0
\(491\) 52.5414 161.706i 0.107009 0.329340i −0.883188 0.469020i \(-0.844607\pi\)
0.990197 + 0.139680i \(0.0446073\pi\)
\(492\) −69.2916 437.490i −0.140836 0.889207i
\(493\) −813.888 + 813.888i −1.65089 + 1.65089i
\(494\) −564.150 + 776.486i −1.14200 + 1.57183i
\(495\) 0 0
\(496\) 226.111 164.280i 0.455870 0.331209i
\(497\) −21.2002 3.35778i −0.0426563 0.00675609i
\(498\) −457.508 233.112i −0.918690 0.468096i
\(499\) 290.197i 0.581557i −0.956790 0.290779i \(-0.906086\pi\)
0.956790 0.290779i \(-0.0939143\pi\)
\(500\) 0 0
\(501\) −411.949 −0.822254
\(502\) 293.209 575.455i 0.584081 1.14632i
\(503\) 20.4555 129.151i 0.0406671 0.256762i −0.958976 0.283488i \(-0.908508\pi\)
0.999643 + 0.0267264i \(0.00850830\pi\)
\(504\) 2.77516 + 3.81969i 0.00550628 + 0.00757874i
\(505\) 0 0
\(506\) 253.754 + 184.363i 0.501490 + 0.364354i
\(507\) −34.3761 34.3761i −0.0678029 0.0678029i
\(508\) 218.627 34.6272i 0.430369 0.0681637i
\(509\) 88.4961 + 28.7541i 0.173863 + 0.0564914i 0.394655 0.918830i \(-0.370864\pi\)
−0.220792 + 0.975321i \(0.570864\pi\)
\(510\) 0 0
\(511\) 10.3779 + 31.9399i 0.0203090 + 0.0625048i
\(512\) 437.613 222.975i 0.854713 0.435498i
\(513\) 62.0492 + 121.778i 0.120954 + 0.237385i
\(514\) 751.653 244.227i 1.46236 0.475150i
\(515\) 0 0
\(516\) −4.45690 + 13.7169i −0.00863741 + 0.0265832i
\(517\) −53.4836 337.682i −0.103450 0.653157i
\(518\) 6.35658 6.35658i 0.0122714 0.0122714i
\(519\) −33.6678 + 46.3398i −0.0648706 + 0.0892867i
\(520\) 0 0
\(521\) −55.2207 + 40.1202i −0.105990 + 0.0770062i −0.639518 0.768776i \(-0.720866\pi\)
0.533528 + 0.845782i \(0.320866\pi\)
\(522\) 429.789 + 68.0720i 0.823351 + 0.130406i
\(523\) −766.544 390.574i −1.46567 0.746795i −0.474605 0.880199i \(-0.657409\pi\)
−0.991062 + 0.133404i \(0.957409\pi\)
\(524\) 818.513i 1.56205i
\(525\) 0 0
\(526\) 238.015 0.452499
\(527\) −381.461 + 748.660i −0.723835 + 1.42061i
\(528\) −17.4537 + 110.199i −0.0330563 + 0.208709i
\(529\) −213.845 294.332i −0.404243 0.556393i
\(530\) 0 0
\(531\) 182.188 + 132.368i 0.343104 + 0.249280i
\(532\) 35.8348 + 35.8348i 0.0673587 + 0.0673587i
\(533\) −550.423 + 87.1784i −1.03269 + 0.163562i
\(534\) 869.448 + 282.501i 1.62818 + 0.529028i
\(535\) 0 0
\(536\) −58.4463 179.879i −0.109042 0.335595i
\(537\) −413.102 + 210.486i −0.769278 + 0.391967i
\(538\) 445.395 + 874.136i 0.827871 + 1.62479i
\(539\) −369.061 + 119.915i −0.684713 + 0.222477i
\(540\) 0 0
\(541\) −6.85938 + 21.1110i −0.0126791 + 0.0390222i −0.957196 0.289441i \(-0.906531\pi\)
0.944517 + 0.328463i \(0.106531\pi\)
\(542\) 170.485 + 1076.40i 0.314548 + 1.98598i
\(543\) −48.6913 + 48.6913i −0.0896710 + 0.0896710i
\(544\) −612.707 + 843.319i −1.12630 + 1.55022i
\(545\) 0 0
\(546\) 18.0836 13.1385i 0.0331201 0.0240632i
\(547\) 428.590 + 67.8821i 0.783529 + 0.124099i 0.535367 0.844620i \(-0.320173\pi\)
0.248162 + 0.968718i \(0.420173\pi\)
\(548\) −78.4541 39.9744i −0.143164 0.0729459i
\(549\) 252.444i 0.459825i
\(550\) 0 0
\(551\) 1241.25 2.25272
\(552\) 44.9723 88.2631i 0.0814715 0.159897i
\(553\) 5.87027 37.0634i 0.0106153 0.0670225i
\(554\) −598.801 824.179i −1.08087 1.48769i
\(555\) 0 0
\(556\) 210.526 + 152.956i 0.378644 + 0.275101i
\(557\) −161.067 161.067i −0.289169 0.289169i 0.547583 0.836752i \(-0.315548\pi\)
−0.836752 + 0.547583i \(0.815548\pi\)
\(558\) 313.747 49.6927i 0.562271 0.0890550i
\(559\) 17.2578 + 5.60740i 0.0308727 + 0.0100311i
\(560\) 0 0
\(561\) −103.652 319.007i −0.184763 0.568641i
\(562\) 295.623 150.627i 0.526019 0.268020i
\(563\) 86.4014 + 169.572i 0.153466 + 0.301194i 0.954920 0.296862i \(-0.0959401\pi\)
−0.801454 + 0.598056i \(0.795940\pi\)
\(564\) −386.425 + 125.557i −0.685151 + 0.222619i
\(565\) 0 0
\(566\) −126.960 + 390.743i −0.224311 + 0.690358i
\(567\) −0.497935 3.14384i −0.000878192 0.00554468i
\(568\) 190.967 190.967i 0.336210 0.336210i
\(569\) 249.297 343.128i 0.438132 0.603036i −0.531664 0.846955i \(-0.678433\pi\)
0.969796 + 0.243919i \(0.0784331\pi\)
\(570\) 0 0
\(571\) −148.638 + 107.992i −0.260312 + 0.189128i −0.710285 0.703914i \(-0.751434\pi\)
0.449972 + 0.893042i \(0.351434\pi\)
\(572\) −507.161 80.3264i −0.886645 0.140431i
\(573\) 204.400 + 104.147i 0.356718 + 0.181757i
\(574\) 51.0308i 0.0889039i
\(575\) 0 0
\(576\) 296.728 0.515153
\(577\) −344.292 + 675.710i −0.596693 + 1.17108i 0.373248 + 0.927732i \(0.378244\pi\)
−0.969940 + 0.243343i \(0.921756\pi\)
\(578\) 147.096 928.728i 0.254492 1.60680i
\(579\) 45.6694 + 62.8586i 0.0788764 + 0.108564i
\(580\) 0 0
\(581\) 27.5961 + 20.0498i 0.0474977 + 0.0345091i
\(582\) 404.432 + 404.432i 0.694900 + 0.694900i
\(583\) 228.324 36.1630i 0.391637 0.0620292i
\(584\) −401.872 130.576i −0.688137 0.223589i
\(585\) 0 0
\(586\) −342.811 1055.07i −0.585002 1.80045i
\(587\) 243.176 123.904i 0.414269 0.211081i −0.234418 0.972136i \(-0.575318\pi\)
0.648687 + 0.761055i \(0.275318\pi\)
\(588\) 209.367 + 410.907i 0.356067 + 0.698821i
\(589\) 861.765 280.004i 1.46310 0.475389i
\(590\) 0 0
\(591\) −92.1131 + 283.495i −0.155860 + 0.479687i
\(592\) −10.4954 66.2655i −0.0177287 0.111935i
\(593\) 367.718 367.718i 0.620098 0.620098i −0.325458 0.945556i \(-0.605519\pi\)
0.945556 + 0.325458i \(0.105519\pi\)
\(594\) −74.5366 + 102.591i −0.125482 + 0.172712i
\(595\) 0 0
\(596\) −477.662 + 347.042i −0.801446 + 0.582284i
\(597\) −45.6853 7.23584i −0.0765247 0.0121203i
\(598\) −417.865 212.913i −0.698770 0.356041i
\(599\) 654.311i 1.09234i −0.837675 0.546170i \(-0.816085\pi\)
0.837675 0.546170i \(-0.183915\pi\)
\(600\) 0 0
\(601\) −233.449 −0.388434 −0.194217 0.980959i \(-0.562217\pi\)
−0.194217 + 0.980959i \(0.562217\pi\)
\(602\) 0.754367 1.48053i 0.00125310 0.00245935i
\(603\) −19.9470 + 125.940i −0.0330795 + 0.208856i
\(604\) 191.641 + 263.772i 0.317287 + 0.436708i
\(605\) 0 0
\(606\) −461.330 335.176i −0.761270 0.553095i
\(607\) 581.645 + 581.645i 0.958229 + 0.958229i 0.999162 0.0409329i \(-0.0130330\pi\)
−0.0409329 + 0.999162i \(0.513033\pi\)
\(608\) 1110.28 175.851i 1.82612 0.289229i
\(609\) −27.4926 8.93287i −0.0451438 0.0146681i
\(610\) 0 0
\(611\) 157.968 + 486.176i 0.258541 + 0.795706i
\(612\) −355.178 + 180.972i −0.580357 + 0.295706i
\(613\) 324.087 + 636.056i 0.528689 + 1.03761i 0.988729 + 0.149713i \(0.0478350\pi\)
−0.460040 + 0.887898i \(0.652165\pi\)
\(614\) 1238.44 402.392i 2.01700 0.655361i
\(615\) 0 0
\(616\) −3.86133 + 11.8839i −0.00626838 + 0.0192921i
\(617\) −41.3960 261.364i −0.0670924 0.423605i −0.998258 0.0590070i \(-0.981207\pi\)
0.931165 0.364598i \(-0.118793\pi\)
\(618\) 359.238 359.238i 0.581291 0.581291i
\(619\) 159.169 219.077i 0.257138 0.353921i −0.660857 0.750512i \(-0.729807\pi\)
0.917995 + 0.396591i \(0.129807\pi\)
\(620\) 0 0
\(621\) −54.0288 + 39.2543i −0.0870030 + 0.0632114i
\(622\) 112.506 + 17.8192i 0.180878 + 0.0286482i
\(623\) −54.1117 27.5713i −0.0868566 0.0442557i
\(624\) 166.823i 0.267344i
\(625\) 0 0
\(626\) 1292.84 2.06523
\(627\) −164.218 + 322.295i −0.261910 + 0.514028i
\(628\) −105.080 + 663.446i −0.167324 + 1.05644i
\(629\) 118.556 + 163.179i 0.188484 + 0.259426i
\(630\) 0 0
\(631\) −777.204 564.672i −1.23170 0.894884i −0.234686 0.972071i \(-0.575406\pi\)
−0.997017 + 0.0771869i \(0.975406\pi\)
\(632\) 333.860 + 333.860i 0.528260 + 0.528260i
\(633\) 22.5428 3.57043i 0.0356127 0.00564049i
\(634\) −479.547 155.814i −0.756384 0.245764i
\(635\) 0 0
\(636\) −84.8956 261.282i −0.133484 0.410821i
\(637\) 516.978 263.413i 0.811582 0.413522i
\(638\) 522.837 + 1026.13i 0.819494 + 1.60835i
\(639\) −173.161 + 56.2634i −0.270987 + 0.0880491i
\(640\) 0 0
\(641\) 252.698 777.724i 0.394224 1.21330i −0.535340 0.844637i \(-0.679816\pi\)
0.929564 0.368661i \(-0.120184\pi\)
\(642\) 151.398 + 955.889i 0.235822 + 1.48892i
\(643\) 865.400 865.400i 1.34588 1.34588i 0.455794 0.890085i \(-0.349356\pi\)
0.890085 0.455794i \(-0.150644\pi\)
\(644\) −14.5552 + 20.0335i −0.0226012 + 0.0311079i
\(645\) 0 0
\(646\) −1595.35 + 1159.09i −2.46959 + 1.79426i
\(647\) 168.866 + 26.7458i 0.260999 + 0.0413381i 0.285562 0.958360i \(-0.407820\pi\)
−0.0245637 + 0.999698i \(0.507820\pi\)
\(648\) 35.6841 + 18.1820i 0.0550681 + 0.0280586i
\(649\) 596.001i 0.918338i
\(650\) 0 0
\(651\) −21.1025 −0.0324155
\(652\) −230.218 + 451.827i −0.353094 + 0.692987i
\(653\) 122.734 774.910i 0.187954 1.18669i −0.695623 0.718407i \(-0.744872\pi\)
0.883577 0.468286i \(-0.155128\pi\)
\(654\) 293.825 + 404.416i 0.449274 + 0.618373i
\(655\) 0 0
\(656\) 308.119 + 223.862i 0.469694 + 0.341253i
\(657\) 201.436 + 201.436i 0.306599 + 0.306599i
\(658\) 46.2342 7.32278i 0.0702648 0.0111289i
\(659\) −259.236 84.2308i −0.393377 0.127816i 0.105648 0.994404i \(-0.466308\pi\)
−0.499025 + 0.866588i \(0.666308\pi\)
\(660\) 0 0
\(661\) 212.501 + 654.010i 0.321484 + 0.989426i 0.973003 + 0.230793i \(0.0741321\pi\)
−0.651519 + 0.758632i \(0.725868\pi\)
\(662\) −898.117 + 457.613i −1.35667 + 0.691259i
\(663\) 227.688 + 446.864i 0.343421 + 0.674002i
\(664\) −408.179 + 132.625i −0.614728 + 0.199737i
\(665\) 0 0
\(666\) 23.5638 72.5218i 0.0353810 0.108892i
\(667\) 94.8788 + 599.041i 0.142247 + 0.898113i
\(668\) −916.186 + 916.186i −1.37154 + 1.37154i
\(669\) 222.941 306.853i 0.333246 0.458673i
\(670\) 0 0
\(671\) 540.513 392.706i 0.805534 0.585255i
\(672\) −25.8573 4.09540i −0.0384782 0.00609435i
\(673\) −67.4786 34.3821i −0.100265 0.0510878i 0.403139 0.915139i \(-0.367919\pi\)
−0.503404 + 0.864051i \(0.667919\pi\)
\(674\) 1408.01i 2.08904i
\(675\) 0 0
\(676\) −152.907 −0.226193
\(677\) 384.015 753.672i 0.567230 1.11325i −0.412129 0.911125i \(-0.635215\pi\)
0.979359 0.202127i \(-0.0647853\pi\)
\(678\) −12.2878 + 77.5820i −0.0181236 + 0.114428i
\(679\) −22.3333 30.7391i −0.0328914 0.0452711i
\(680\) 0 0
\(681\) 210.712 + 153.091i 0.309415 + 0.224803i
\(682\) 594.469 + 594.469i 0.871655 + 0.871655i
\(683\) −1104.20 + 174.888i −1.61669 + 0.256059i −0.898236 0.439513i \(-0.855151\pi\)
−0.718457 + 0.695572i \(0.755151\pi\)
\(684\) 408.837 + 132.839i 0.597715 + 0.194209i
\(685\) 0 0
\(686\) −32.8787 101.190i −0.0479282 0.147508i
\(687\) 572.685 291.798i 0.833602 0.424742i
\(688\) −5.63004 11.0496i −0.00818319 0.0160604i
\(689\) −328.729 + 106.811i −0.477110 + 0.155022i
\(690\) 0 0
\(691\) −326.956 + 1006.27i −0.473163 + 1.45625i 0.375257 + 0.926921i \(0.377555\pi\)
−0.848419 + 0.529325i \(0.822445\pi\)
\(692\) 28.1828 + 177.939i 0.0407266 + 0.257137i
\(693\) 5.95674 5.95674i 0.00859559 0.00859559i
\(694\) −701.558 + 965.611i −1.01089 + 1.39137i
\(695\) 0 0
\(696\) 294.253 213.787i 0.422777 0.307165i
\(697\) −1130.89 179.115i −1.62251 0.256980i
\(698\) 440.725 + 224.561i 0.631412 + 0.321720i
\(699\) 128.479i 0.183804i
\(700\) 0 0
\(701\) −406.455 −0.579822 −0.289911 0.957054i \(-0.593626\pi\)
−0.289911 + 0.957054i \(0.593626\pi\)
\(702\) 86.0790 168.940i 0.122620 0.240655i
\(703\) 34.0265 214.835i 0.0484018 0.305597i
\(704\) 461.595 + 635.331i 0.655675 + 0.902459i
\(705\) 0 0
\(706\) −177.631 129.056i −0.251602 0.182799i
\(707\) 26.7863 + 26.7863i 0.0378872 + 0.0378872i
\(708\) 699.581 110.803i 0.988109 0.156501i
\(709\) −767.230 249.288i −1.08213 0.351605i −0.286929 0.957952i \(-0.592635\pi\)
−0.795201 + 0.606346i \(0.792635\pi\)
\(710\) 0 0
\(711\) −98.3631 302.730i −0.138345 0.425781i
\(712\) 680.840 346.905i 0.956236 0.487227i
\(713\) 201.006 + 394.496i 0.281915 + 0.553290i
\(714\) 43.6774 14.1916i 0.0611728 0.0198762i
\(715\) 0 0
\(716\) −450.624 + 1386.88i −0.629363 + 1.93698i
\(717\) 61.5533 + 388.632i 0.0858484 + 0.542025i
\(718\) 221.246 221.246i 0.308143 0.308143i
\(719\) −189.988 + 261.496i −0.264239 + 0.363694i −0.920434 0.390897i \(-0.872165\pi\)
0.656195 + 0.754591i \(0.272165\pi\)
\(720\) 0 0
\(721\) −27.3041 + 19.8376i −0.0378698 + 0.0275140i
\(722\) 1004.43 + 159.086i 1.39118 + 0.220341i
\(723\) 531.537 + 270.832i 0.735182 + 0.374594i
\(724\) 216.582i 0.299146i
\(725\) 0 0
\(726\) 308.574 0.425033
\(727\) −303.885 + 596.408i −0.417999 + 0.820369i 0.581975 + 0.813206i \(0.302280\pi\)
−0.999974 + 0.00716266i \(0.997720\pi\)
\(728\) 2.92271 18.4533i 0.00401471 0.0253479i
\(729\) −15.8702 21.8435i −0.0217698 0.0299636i
\(730\) 0 0
\(731\) 30.1620 + 21.9140i 0.0412613 + 0.0299781i
\(732\) −561.442 561.442i −0.766997 0.766997i
\(733\) −799.081 + 126.562i −1.09015 + 0.172663i −0.675531 0.737332i \(-0.736086\pi\)
−0.414620 + 0.909995i \(0.636086\pi\)
\(734\) −1226.43 398.492i −1.67089 0.542905i
\(735\) 0 0
\(736\) 169.736 + 522.394i 0.230620 + 0.709775i
\(737\) −300.683 + 153.206i −0.407983 + 0.207878i
\(738\) 196.518 + 385.689i 0.266285 + 0.522614i
\(739\) −225.122 + 73.1467i −0.304631 + 0.0989806i −0.457344 0.889290i \(-0.651199\pi\)
0.152713 + 0.988271i \(0.451199\pi\)
\(740\) 0 0
\(741\) 167.130 514.374i 0.225547 0.694162i
\(742\) 4.95131 + 31.2614i 0.00667293 + 0.0421312i
\(743\) 820.748 820.748i 1.10464 1.10464i 0.110797 0.993843i \(-0.464660\pi\)
0.993843 0.110797i \(-0.0353404\pi\)
\(744\) 156.065 214.805i 0.209765 0.288717i
\(745\) 0 0
\(746\) 984.475 715.263i 1.31967 0.958798i
\(747\) 285.782 + 45.2634i 0.382573 + 0.0605935i
\(748\) −940.005 478.957i −1.25669 0.640316i
\(749\) 64.2925i 0.0858378i
\(750\) 0 0
\(751\) 622.914 0.829446 0.414723 0.909948i \(-0.363878\pi\)
0.414723 + 0.909948i \(0.363878\pi\)
\(752\) 158.606 311.282i 0.210912 0.413938i
\(753\) −56.9324 + 359.457i −0.0756075 + 0.477367i
\(754\) −1012.13 1393.08i −1.34235 1.84759i
\(755\) 0 0
\(756\) −8.09939 5.88455i −0.0107135 0.00778380i
\(757\) −588.326 588.326i −0.777180 0.777180i 0.202170 0.979350i \(-0.435201\pi\)
−0.979350 + 0.202170i \(0.935201\pi\)
\(758\) −1880.96 + 297.914i −2.48147 + 0.393027i
\(759\) −168.096 54.6178i −0.221471 0.0719602i
\(760\) 0 0
\(761\) −383.044 1178.89i −0.503343 1.54913i −0.803538 0.595254i \(-0.797052\pi\)
0.300194 0.953878i \(-0.402948\pi\)
\(762\) −192.741 + 98.2065i −0.252941 + 0.128880i
\(763\) −15.0761 29.5886i −0.0197590 0.0387793i
\(764\) 686.215 222.965i 0.898187 0.291839i
\(765\) 0 0
\(766\) −232.789 + 716.452i −0.303903 + 0.935316i
\(767\) −139.405 880.170i −0.181754 1.14755i
\(768\) 16.3914 16.3914i 0.0213430 0.0213430i
\(769\) −48.2171 + 66.3651i −0.0627010 + 0.0863006i −0.839216 0.543798i \(-0.816986\pi\)
0.776515 + 0.630099i \(0.216986\pi\)
\(770\) 0 0
\(771\) −360.301 + 261.774i −0.467317 + 0.339525i
\(772\) 241.369 + 38.2291i 0.312654 + 0.0495196i
\(773\) −668.593 340.665i −0.864933 0.440705i −0.0355381 0.999368i \(-0.511314\pi\)
−0.829395 + 0.558663i \(0.811314\pi\)
\(774\) 14.0948i 0.0182104i
\(775\) 0 0
\(776\) 478.066 0.616064
\(777\) −2.29976 + 4.51353i −0.00295979 + 0.00580892i
\(778\) 10.6908 67.4993i 0.0137414 0.0867601i
\(779\) 725.768 + 998.934i 0.931666 + 1.28233i
\(780\) 0 0
\(781\) −389.839 283.234i −0.499153 0.362656i
\(782\) −681.339 681.339i −0.871278 0.871278i
\(783\) −242.188 + 38.3588i −0.309308 + 0.0489895i
\(784\) −377.122 122.534i −0.481023 0.156294i
\(785\) 0 0
\(786\) 247.182 + 760.748i 0.314481 + 0.967873i
\(787\) 451.355 229.977i 0.573513 0.292219i −0.143080 0.989711i \(-0.545701\pi\)
0.716593 + 0.697492i \(0.245701\pi\)
\(788\) 425.638 + 835.363i 0.540150 + 1.06010i
\(789\) −127.558 + 41.4460i −0.161670 + 0.0525298i
\(790\) 0 0
\(791\) 1.61249 4.96273i 0.00203854 0.00627399i
\(792\) 16.5810 + 104.688i 0.0209356 + 0.132182i
\(793\) −706.372 + 706.372i −0.890759 + 0.890759i
\(794\) 315.705 434.531i 0.397613 0.547268i
\(795\) 0 0
\(796\) −117.698 + 85.5126i −0.147862 + 0.107428i
\(797\) −1084.00 171.689i −1.36010 0.215419i −0.566605 0.823990i \(-0.691743\pi\)
−0.793500 + 0.608570i \(0.791743\pi\)
\(798\) −44.1276 22.4841i −0.0552977 0.0281756i
\(799\) 1050.29i 1.31451i
\(800\) 0 0
\(801\) −515.150 −0.643134
\(802\) 491.417 964.461i 0.612740 1.20257i
\(803\) −117.942 + 744.656i −0.146877 + 0.927342i
\(804\) 235.732 + 324.457i 0.293199 + 0.403553i
\(805\) 0 0
\(806\) −1016.95 738.860i −1.26173 0.916700i
\(807\) −390.913 390.913i −0.484403 0.484403i
\(808\) −470.761 + 74.5613i −0.582626 + 0.0922788i
\(809\) 67.5579 + 21.9509i 0.0835079 + 0.0271334i 0.350473 0.936573i \(-0.386021\pi\)
−0.266965 + 0.963706i \(0.586021\pi\)
\(810\) 0 0
\(811\) −19.2331 59.1935i −0.0237153 0.0729882i 0.938498 0.345284i \(-0.112217\pi\)
−0.962214 + 0.272295i \(0.912217\pi\)
\(812\) −81.0111 + 41.2772i −0.0997674 + 0.0508340i
\(813\) −278.803 547.181i −0.342931 0.673039i
\(814\) 191.934 62.3633i 0.235792 0.0766133i
\(815\) 0 0
\(816\) 105.916 325.976i 0.129799 0.399480i
\(817\) −6.28947 39.7102i −0.00769825 0.0486049i
\(818\) −1038.17 + 1038.17i −1.26916 + 1.26916i
\(819\) −7.40359 + 10.1902i −0.00903979 + 0.0124422i
\(820\) 0 0
\(821\) −292.676 + 212.641i −0.356487 + 0.259003i −0.751585 0.659636i \(-0.770710\pi\)
0.395099 + 0.918639i \(0.370710\pi\)
\(822\) 84.9892 + 13.4610i 0.103393 + 0.0163759i
\(823\) 9.88181 + 5.03504i 0.0120071 + 0.00611791i 0.459984 0.887927i \(-0.347855\pi\)
−0.447977 + 0.894045i \(0.647855\pi\)
\(824\) 424.643i 0.515344i
\(825\) 0 0
\(826\) −81.6024 −0.0987923
\(827\) 708.250 1390.02i 0.856408 1.68080i 0.132191 0.991224i \(-0.457799\pi\)
0.724218 0.689571i \(-0.242201\pi\)
\(828\) −32.8591 + 207.464i −0.0396849 + 0.250560i
\(829\) 5.75207 + 7.91705i 0.00693857 + 0.00955012i 0.812472 0.583000i \(-0.198121\pi\)
−0.805534 + 0.592550i \(0.798121\pi\)
\(830\) 0 0
\(831\) 464.428 + 337.427i 0.558878 + 0.406049i
\(832\) −830.285 830.285i −0.997939 0.997939i
\(833\) 1177.43 186.486i 1.41348 0.223873i
\(834\) −241.860 78.5850i −0.290000 0.0942266i
\(835\) 0 0
\(836\) 351.569 + 1082.02i 0.420537 + 1.29428i
\(837\) −159.492 + 81.2650i −0.190552 + 0.0970908i
\(838\) −860.428 1688.68i −1.02676 2.01514i
\(839\) −576.373 + 187.275i −0.686976 + 0.223212i −0.631647 0.775256i \(-0.717621\pi\)
−0.0553292 + 0.998468i \(0.517621\pi\)
\(840\) 0 0
\(841\) −428.268 + 1318.07i −0.509237 + 1.56727i
\(842\) 222.855 + 1407.05i 0.264673 + 1.67108i
\(843\) −132.202 + 132.202i −0.156823 + 0.156823i
\(844\) 42.1951 58.0766i 0.0499942 0.0688111i
\(845\) 0 0
\(846\) 321.237 233.392i 0.379713 0.275877i
\(847\) −20.2466 3.20674i −0.0239039 0.00378600i
\(848\) 210.474 + 107.242i 0.248200 + 0.126464i
\(849\) 231.516i 0.272693i
\(850\) 0 0
\(851\) 106.283 0.124892
\(852\) −259.983 + 510.245i −0.305144 + 0.598880i
\(853\) 87.9451 555.263i 0.103101 0.650953i −0.880969 0.473173i \(-0.843108\pi\)
0.984070 0.177780i \(-0.0568916\pi\)
\(854\) 53.7679 + 74.0052i 0.0629601 + 0.0866571i
\(855\) 0 0
\(856\) 654.443 + 475.481i 0.764537 + 0.555468i
\(857\) 1005.55 + 1005.55i 1.17333 + 1.17333i 0.981410 + 0.191924i \(0.0614726\pi\)
0.191924 + 0.981410i \(0.438527\pi\)
\(858\) 495.626 78.4995i 0.577653 0.0914913i
\(859\) −1176.31 382.208i −1.36940 0.444945i −0.470229 0.882544i \(-0.655829\pi\)
−0.899170 + 0.437600i \(0.855829\pi\)
\(860\) 0 0
\(861\) −8.88612 27.3487i −0.0103207 0.0317638i
\(862\) 64.5735 32.9018i 0.0749112 0.0381692i
\(863\) −371.006 728.140i −0.429902 0.843731i −0.999758 0.0219863i \(-0.993001\pi\)
0.569856 0.821745i \(-0.306999\pi\)
\(864\) −211.200 + 68.6231i −0.244445 + 0.0794249i
\(865\) 0 0
\(866\) 106.690 328.359i 0.123199 0.379167i
\(867\) 82.8892 + 523.342i 0.0956047 + 0.603624i
\(868\) −46.9324 + 46.9324i −0.0540696 + 0.0540696i
\(869\) 495.168 681.540i 0.569813 0.784281i
\(870\) 0 0
\(871\) 408.212 296.583i 0.468670 0.340509i
\(872\) 412.684 + 65.3627i 0.473261 + 0.0749572i
\(873\) −287.170 146.320i −0.328946 0.167606i
\(874\) 1039.10i 1.18890i
\(875\) 0 0
\(876\) 895.997 1.02283
\(877\) 387.593 760.694i 0.441953 0.867382i −0.557358 0.830272i \(-0.688185\pi\)
0.999311 0.0371096i \(-0.0118151\pi\)
\(878\) 262.739 1658.87i 0.299247 1.88937i
\(879\) 367.442 + 505.740i 0.418022 + 0.575359i
\(880\) 0 0
\(881\) 425.461 + 309.115i 0.482929 + 0.350869i 0.802459 0.596708i \(-0.203525\pi\)
−0.319529 + 0.947576i \(0.603525\pi\)
\(882\) −318.681 318.681i −0.361316 0.361316i
\(883\) 979.657 155.162i 1.10946 0.175722i 0.425302 0.905051i \(-0.360168\pi\)
0.684163 + 0.729330i \(0.260168\pi\)
\(884\) 1500.22 + 487.451i 1.69708 + 0.551416i
\(885\) 0 0
\(886\) −222.725 685.477i −0.251383 0.773676i
\(887\) −698.883 + 356.099i −0.787918 + 0.401464i −0.801162 0.598448i \(-0.795784\pi\)
0.0132438 + 0.999912i \(0.495784\pi\)
\(888\) −28.9358 56.7898i −0.0325854 0.0639525i
\(889\) 13.6670 4.44067i 0.0153734 0.00499513i
\(890\) 0 0
\(891\) 22.0816 67.9601i 0.0247829 0.0762740i
\(892\) −186.621 1178.28i −0.209216 1.32094i
\(893\) 800.894 800.894i 0.896858 0.896858i
\(894\) 339.149 466.798i 0.379361 0.522146i
\(895\) 0 0
\(896\) −38.0747 + 27.6629i −0.0424941 + 0.0308738i
\(897\) 261.019 + 41.3413i 0.290991 + 0.0460884i
\(898\) 551.041 + 280.769i 0.613631 + 0.312661i
\(899\) 1625.65i 1.80828i
\(900\) 0 0
\(901\) −710.158 −0.788189
\(902\) −520.101 + 1020.76i −0.576608 + 1.13166i
\(903\) −0.146475 + 0.924810i −0.000162210 + 0.00102415i
\(904\) 38.5911 + 53.1160i 0.0426892 + 0.0587567i
\(905\) 0 0
\(906\) −257.773 187.283i −0.284517 0.206714i
\(907\) 249.974 + 249.974i 0.275605 + 0.275605i 0.831352 0.555747i \(-0.187568\pi\)
−0.555747 + 0.831352i \(0.687568\pi\)
\(908\) 809.106 128.150i 0.891086 0.141134i
\(909\) 305.603 + 99.2963i 0.336197 + 0.109237i
\(910\) 0 0
\(911\) 232.883 + 716.740i 0.255634 + 0.786761i 0.993704 + 0.112037i \(0.0357375\pi\)
−0.738070 + 0.674724i \(0.764262\pi\)
\(912\) −329.336 + 167.805i −0.361114 + 0.183997i
\(913\) 347.652 + 682.306i 0.380780 + 0.747324i
\(914\) −1858.67 + 603.919i −2.03356 + 0.660743i
\(915\) 0 0
\(916\) 624.701 1922.63i 0.681988 2.09894i
\(917\) −8.31266 52.4841i −0.00906506 0.0572345i
\(918\) 275.460 275.460i 0.300066 0.300066i
\(919\) 548.369 754.765i 0.596701 0.821289i −0.398700 0.917081i \(-0.630538\pi\)
0.995401 + 0.0957924i \(0.0305385\pi\)
\(920\) 0 0
\(921\) −593.638 + 431.303i −0.644558 + 0.468299i
\(922\) 1284.51 + 203.447i 1.39318 + 0.220658i
\(923\) 641.960 + 327.095i 0.695514 + 0.354382i
\(924\) 26.4959i 0.0286752i
\(925\) 0 0
\(926\) −2021.52 −2.18306
\(927\) −129.969 + 255.079i −0.140204 + 0.275166i
\(928\) −315.493 + 1991.94i −0.339970 + 2.14649i
\(929\) 702.940 + 967.513i 0.756663 + 1.04146i 0.997484 + 0.0708875i \(0.0225831\pi\)
−0.240822 + 0.970569i \(0.577417\pi\)
\(930\) 0 0
\(931\) −1040.04 755.635i −1.11712 0.811638i
\(932\) −285.741 285.741i −0.306589 0.306589i
\(933\) −63.3975 + 10.0412i −0.0679502 + 0.0107623i
\(934\) 1922.82 + 624.762i 2.05869 + 0.668910i
\(935\) 0 0
\(936\) −48.9734 150.724i −0.0523220 0.161030i
\(937\) 939.280 478.587i 1.00243 0.510766i 0.125868 0.992047i \(-0.459829\pi\)
0.876566 + 0.481282i \(0.159829\pi\)
\(938\) −20.9764 41.1685i −0.0223629 0.0438897i
\(939\) −692.861 + 225.124i −0.737872 + 0.239749i
\(940\) 0 0
\(941\) 179.429 552.226i 0.190679 0.586850i −0.809321 0.587367i \(-0.800165\pi\)
1.00000 0.000517053i \(0.000164583\pi\)
\(942\) −102.690 648.358i −0.109012 0.688278i
\(943\) −426.622 + 426.622i −0.452409 + 0.452409i
\(944\) −357.973 + 492.708i −0.379209 + 0.521936i
\(945\) 0 0
\(946\) 30.1787 21.9261i 0.0319014 0.0231777i
\(947\) −596.940 94.5461i −0.630349 0.0998375i −0.166918 0.985971i \(-0.553382\pi\)
−0.463431 + 0.886133i \(0.653382\pi\)
\(948\) −892.042 454.518i −0.940973 0.479450i
\(949\) 1127.29i 1.18787i
\(950\) 0 0
\(951\) 284.133 0.298773
\(952\) 17.4271 34.2025i 0.0183057 0.0359270i
\(953\) −7.62845 + 48.1641i −0.00800467 + 0.0505395i −0.991367 0.131114i \(-0.958145\pi\)
0.983363 + 0.181653i \(0.0581448\pi\)
\(954\) 157.808 + 217.205i 0.165418 + 0.227678i
\(955\) 0 0
\(956\) 1001.22 + 727.432i 1.04731 + 0.760912i
\(957\) −458.883 458.883i −0.479501 0.479501i
\(958\) −2038.65 + 322.890i −2.12802 + 0.337046i
\(959\) −5.43655 1.76644i −0.00566897 0.00184196i
\(960\) 0 0
\(961\) 69.7529 + 214.677i 0.0725837 + 0.223390i
\(962\) −268.860 + 136.991i −0.279481 + 0.142403i
\(963\) −247.589 485.920i −0.257102 0.504590i
\(964\) 1784.49 579.816i 1.85113 0.601468i
\(965\) 0 0
\(966\) 7.47808 23.0152i 0.00774129 0.0238252i
\(967\) −229.127 1446.65i −0.236946 1.49602i −0.763461 0.645854i \(-0.776501\pi\)
0.526514 0.850166i \(-0.323499\pi\)
\(968\) 182.377 182.377i 0.188406 0.188406i
\(969\) 653.153 898.989i 0.674049 0.927749i
\(970\) 0 0
\(971\) −676.512 + 491.514i −0.696716 + 0.506194i −0.878861 0.477078i \(-0.841696\pi\)
0.182145 + 0.983272i \(0.441696\pi\)
\(972\) −83.8762 13.2847i −0.0862924 0.0136674i
\(973\) 15.0526 + 7.66968i 0.0154703 + 0.00788250i
\(974\) 324.003i 0.332652i
\(975\) 0 0
\(976\) 682.705 0.699493
\(977\) 238.509 468.100i 0.244124 0.479120i −0.736136 0.676834i \(-0.763352\pi\)
0.980260 + 0.197714i \(0.0633517\pi\)
\(978\) 77.5234 489.463i 0.0792673 0.500474i
\(979\) −801.377 1103.00i −0.818567 1.12666i
\(980\) 0 0
\(981\) −227.890 165.572i −0.232304 0.168778i
\(982\) 369.546 + 369.546i 0.376320 + 0.376320i
\(983\) 1402.94 222.203i 1.42720 0.226046i 0.605443 0.795888i \(-0.292996\pi\)
0.821754 + 0.569842i \(0.192996\pi\)
\(984\) 344.104 + 111.806i 0.349699 + 0.113624i
\(985\) 0 0
\(986\) −1093.27 3364.72i −1.10879 3.41250i
\(987\) −23.5029 + 11.9753i −0.0238125 + 0.0121331i
\(988\) −772.280 1515.68i −0.781660 1.53409i
\(989\) 18.6839 6.07076i 0.0188917 0.00613828i
\(990\) 0 0
\(991\) 451.716 1390.24i 0.455819 1.40287i −0.414352 0.910117i \(-0.635992\pi\)
0.870171 0.492750i \(-0.164008\pi\)
\(992\) 230.310 + 1454.12i 0.232168 + 1.46585i
\(993\) 401.637 401.637i 0.404468 0.404468i
\(994\) 38.7795 53.3753i 0.0390135 0.0536975i
\(995\) 0 0
\(996\) 736.253 534.919i 0.739210 0.537067i
\(997\) −1836.66 290.899i −1.84219 0.291774i −0.864627 0.502414i \(-0.832445\pi\)
−0.977564 + 0.210639i \(0.932445\pi\)
\(998\) 794.763 + 404.952i 0.796355 + 0.405763i
\(999\) 42.9694i 0.0430124i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.3.k.c.232.2 80
5.2 odd 4 375.3.k.a.268.2 80
5.3 odd 4 75.3.k.a.58.9 yes 80
5.4 even 2 375.3.k.b.232.9 80
15.8 even 4 225.3.r.b.208.2 80
25.3 odd 20 inner 375.3.k.c.118.2 80
25.4 even 10 375.3.k.a.7.2 80
25.21 even 5 75.3.k.a.22.9 80
25.22 odd 20 375.3.k.b.118.9 80
75.71 odd 10 225.3.r.b.172.2 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.k.a.22.9 80 25.21 even 5
75.3.k.a.58.9 yes 80 5.3 odd 4
225.3.r.b.172.2 80 75.71 odd 10
225.3.r.b.208.2 80 15.8 even 4
375.3.k.a.7.2 80 25.4 even 10
375.3.k.a.268.2 80 5.2 odd 4
375.3.k.b.118.9 80 25.22 odd 20
375.3.k.b.232.9 80 5.4 even 2
375.3.k.c.118.2 80 25.3 odd 20 inner
375.3.k.c.232.2 80 1.1 even 1 trivial