Properties

Label 3744.2.c.l.3457.5
Level $3744$
Weight $2$
Character 3744.3457
Analytic conductor $29.896$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3744,2,Mod(3457,3744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3744.3457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-12,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 1248)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3457.5
Root \(1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 3744.3457
Dual form 3744.2.c.l.3457.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49396i q^{5} -1.10992i q^{7} -3.60388i q^{11} +(3.49396 - 0.890084i) q^{13} -2.00000 q^{17} +1.10992i q^{19} -7.20775 q^{23} -1.21983 q^{25} +5.20775 q^{29} -6.09783i q^{31} +2.76809 q^{35} -11.2078i q^{37} +7.48188i q^{41} -9.42758 q^{43} -7.60388i q^{47} +5.76809 q^{49} -4.76809 q^{53} +8.98792 q^{55} +1.38404i q^{59} -10.1957 q^{61} +(2.21983 + 8.71379i) q^{65} -11.8780i q^{67} +1.82371i q^{71} -4.98792i q^{73} -4.00000 q^{77} -0.439665 q^{79} -0.591794i q^{83} -4.98792i q^{85} +1.06638i q^{89} +(-0.987918 - 3.87800i) q^{91} -2.76809 q^{95} +3.01208i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{13} - 12 q^{17} - 8 q^{23} - 10 q^{25} - 4 q^{29} - 24 q^{35} - 24 q^{43} - 6 q^{49} + 12 q^{53} + 16 q^{55} + 12 q^{61} + 16 q^{65} - 24 q^{77} - 8 q^{79} + 32 q^{91} + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.49396i 1.11533i 0.830065 + 0.557666i \(0.188303\pi\)
−0.830065 + 0.557666i \(0.811697\pi\)
\(6\) 0 0
\(7\) 1.10992i 0.419509i −0.977754 0.209754i \(-0.932734\pi\)
0.977754 0.209754i \(-0.0672665\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.60388i 1.08661i −0.839536 0.543305i \(-0.817173\pi\)
0.839536 0.543305i \(-0.182827\pi\)
\(12\) 0 0
\(13\) 3.49396 0.890084i 0.969050 0.246865i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 1.10992i 0.254632i 0.991862 + 0.127316i \(0.0406363\pi\)
−0.991862 + 0.127316i \(0.959364\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.20775 −1.50292 −0.751460 0.659779i \(-0.770650\pi\)
−0.751460 + 0.659779i \(0.770650\pi\)
\(24\) 0 0
\(25\) −1.21983 −0.243967
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.20775 0.967055 0.483528 0.875329i \(-0.339355\pi\)
0.483528 + 0.875329i \(0.339355\pi\)
\(30\) 0 0
\(31\) 6.09783i 1.09520i −0.836739 0.547602i \(-0.815541\pi\)
0.836739 0.547602i \(-0.184459\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.76809 0.467892
\(36\) 0 0
\(37\) 11.2078i 1.84254i −0.388920 0.921271i \(-0.627152\pi\)
0.388920 0.921271i \(-0.372848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.48188i 1.16847i 0.811583 + 0.584236i \(0.198606\pi\)
−0.811583 + 0.584236i \(0.801394\pi\)
\(42\) 0 0
\(43\) −9.42758 −1.43769 −0.718847 0.695169i \(-0.755330\pi\)
−0.718847 + 0.695169i \(0.755330\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.60388i 1.10914i −0.832137 0.554570i \(-0.812883\pi\)
0.832137 0.554570i \(-0.187117\pi\)
\(48\) 0 0
\(49\) 5.76809 0.824012
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.76809 −0.654947 −0.327473 0.944860i \(-0.606197\pi\)
−0.327473 + 0.944860i \(0.606197\pi\)
\(54\) 0 0
\(55\) 8.98792 1.21193
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.38404i 0.180187i 0.995933 + 0.0900935i \(0.0287166\pi\)
−0.995933 + 0.0900935i \(0.971283\pi\)
\(60\) 0 0
\(61\) −10.1957 −1.30542 −0.652711 0.757607i \(-0.726368\pi\)
−0.652711 + 0.757607i \(0.726368\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.21983 + 8.71379i 0.275336 + 1.08081i
\(66\) 0 0
\(67\) 11.8780i 1.45113i −0.688154 0.725564i \(-0.741579\pi\)
0.688154 0.725564i \(-0.258421\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.82371i 0.216434i 0.994127 + 0.108217i \(0.0345142\pi\)
−0.994127 + 0.108217i \(0.965486\pi\)
\(72\) 0 0
\(73\) 4.98792i 0.583792i −0.956450 0.291896i \(-0.905714\pi\)
0.956450 0.291896i \(-0.0942861\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −0.439665 −0.0494662 −0.0247331 0.999694i \(-0.507874\pi\)
−0.0247331 + 0.999694i \(0.507874\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.591794i 0.0649578i −0.999472 0.0324789i \(-0.989660\pi\)
0.999472 0.0324789i \(-0.0103402\pi\)
\(84\) 0 0
\(85\) 4.98792i 0.541016i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.06638i 0.113036i 0.998402 + 0.0565178i \(0.0179998\pi\)
−0.998402 + 0.0565178i \(0.982000\pi\)
\(90\) 0 0
\(91\) −0.987918 3.87800i −0.103562 0.406525i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.76809 −0.284000
\(96\) 0 0
\(97\) 3.01208i 0.305831i 0.988239 + 0.152915i \(0.0488662\pi\)
−0.988239 + 0.152915i \(0.951134\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.1836 −1.90884 −0.954419 0.298470i \(-0.903524\pi\)
−0.954419 + 0.298470i \(0.903524\pi\)
\(102\) 0 0
\(103\) 8.54825 0.842284 0.421142 0.906995i \(-0.361629\pi\)
0.421142 + 0.906995i \(0.361629\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.20775 −0.310105 −0.155052 0.987906i \(-0.549555\pi\)
−0.155052 + 0.987906i \(0.549555\pi\)
\(108\) 0 0
\(109\) 1.78017i 0.170509i −0.996359 0.0852546i \(-0.972830\pi\)
0.996359 0.0852546i \(-0.0271704\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.97584 0.750304 0.375152 0.926963i \(-0.377591\pi\)
0.375152 + 0.926963i \(0.377591\pi\)
\(114\) 0 0
\(115\) 17.9758i 1.67626i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.21983i 0.203492i
\(120\) 0 0
\(121\) −1.98792 −0.180720
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.42758i 0.843229i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.1836 1.85082 0.925409 0.378969i \(-0.123721\pi\)
0.925409 + 0.378969i \(0.123721\pi\)
\(132\) 0 0
\(133\) 1.23191 0.106821
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.9215i 1.01853i −0.860611 0.509263i \(-0.829918\pi\)
0.860611 0.509263i \(-0.170082\pi\)
\(138\) 0 0
\(139\) 12.9879 1.10162 0.550810 0.834630i \(-0.314319\pi\)
0.550810 + 0.834630i \(0.314319\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.20775 12.5918i −0.268246 1.05298i
\(144\) 0 0
\(145\) 12.9879i 1.07859i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.4940i 1.51508i −0.652786 0.757542i \(-0.726400\pi\)
0.652786 0.757542i \(-0.273600\pi\)
\(150\) 0 0
\(151\) 12.5133i 1.01832i −0.860672 0.509160i \(-0.829956\pi\)
0.860672 0.509160i \(-0.170044\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.2078 1.22152
\(156\) 0 0
\(157\) 9.64742 0.769948 0.384974 0.922927i \(-0.374210\pi\)
0.384974 + 0.922927i \(0.374210\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) 16.8659i 1.32104i −0.750808 0.660520i \(-0.770336\pi\)
0.750808 0.660520i \(-0.229664\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.16421i 0.244854i −0.992478 0.122427i \(-0.960932\pi\)
0.992478 0.122427i \(-0.0390677\pi\)
\(168\) 0 0
\(169\) 11.4155 6.21983i 0.878116 0.478449i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.20775 −0.0918236 −0.0459118 0.998945i \(-0.514619\pi\)
−0.0459118 + 0.998945i \(0.514619\pi\)
\(174\) 0 0
\(175\) 1.35391i 0.102346i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.76809 0.505870 0.252935 0.967483i \(-0.418604\pi\)
0.252935 + 0.967483i \(0.418604\pi\)
\(180\) 0 0
\(181\) 0.768086 0.0570914 0.0285457 0.999592i \(-0.490912\pi\)
0.0285457 + 0.999592i \(0.490912\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 27.9517 2.05505
\(186\) 0 0
\(187\) 7.20775i 0.527083i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.7681 0.779151 0.389576 0.920994i \(-0.372622\pi\)
0.389576 + 0.920994i \(0.372622\pi\)
\(192\) 0 0
\(193\) 6.41550i 0.461798i 0.972978 + 0.230899i \(0.0741667\pi\)
−0.972978 + 0.230899i \(0.925833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.0422i 1.35670i −0.734738 0.678351i \(-0.762695\pi\)
0.734738 0.678351i \(-0.237305\pi\)
\(198\) 0 0
\(199\) 12.0000 0.850657 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.78017i 0.405688i
\(204\) 0 0
\(205\) −18.6595 −1.30324
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −20.3913 −1.40380 −0.701899 0.712277i \(-0.747664\pi\)
−0.701899 + 0.712277i \(0.747664\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 23.5120i 1.60351i
\(216\) 0 0
\(217\) −6.76809 −0.459448
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.98792 + 1.78017i −0.470058 + 0.119747i
\(222\) 0 0
\(223\) 12.1220i 0.811749i −0.913929 0.405875i \(-0.866967\pi\)
0.913929 0.405875i \(-0.133033\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0194i 1.19599i −0.801501 0.597994i \(-0.795965\pi\)
0.801501 0.597994i \(-0.204035\pi\)
\(228\) 0 0
\(229\) 18.1715i 1.20081i 0.799697 + 0.600403i \(0.204993\pi\)
−0.799697 + 0.600403i \(0.795007\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.9758 1.57071 0.785355 0.619046i \(-0.212481\pi\)
0.785355 + 0.619046i \(0.212481\pi\)
\(234\) 0 0
\(235\) 18.9638 1.23706
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.3599i 1.51103i 0.655134 + 0.755513i \(0.272612\pi\)
−0.655134 + 0.755513i \(0.727388\pi\)
\(240\) 0 0
\(241\) 8.54825i 0.550641i 0.961352 + 0.275321i \(0.0887840\pi\)
−0.961352 + 0.275321i \(0.911216\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 14.3854i 0.919048i
\(246\) 0 0
\(247\) 0.987918 + 3.87800i 0.0628597 + 0.246751i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.3913 −0.782134 −0.391067 0.920362i \(-0.627894\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(252\) 0 0
\(253\) 25.9758i 1.63309i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.8552 −0.801883 −0.400942 0.916104i \(-0.631317\pi\)
−0.400942 + 0.916104i \(0.631317\pi\)
\(258\) 0 0
\(259\) −12.4397 −0.772963
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.97584 −0.615136 −0.307568 0.951526i \(-0.599515\pi\)
−0.307568 + 0.951526i \(0.599515\pi\)
\(264\) 0 0
\(265\) 11.8914i 0.730484i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.64742 −0.344329 −0.172165 0.985068i \(-0.555076\pi\)
−0.172165 + 0.985068i \(0.555076\pi\)
\(270\) 0 0
\(271\) 4.67025i 0.283698i −0.989888 0.141849i \(-0.954695\pi\)
0.989888 0.141849i \(-0.0453047\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.39612i 0.265096i
\(276\) 0 0
\(277\) −15.5362 −0.933478 −0.466739 0.884395i \(-0.654571\pi\)
−0.466739 + 0.884395i \(0.654571\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.36121i 0.498788i −0.968402 0.249394i \(-0.919769\pi\)
0.968402 0.249394i \(-0.0802314\pi\)
\(282\) 0 0
\(283\) 7.56033 0.449415 0.224708 0.974426i \(-0.427857\pi\)
0.224708 + 0.974426i \(0.427857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.30426 0.490185
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.06638i 0.529663i −0.964295 0.264832i \(-0.914684\pi\)
0.964295 0.264832i \(-0.0853164\pi\)
\(294\) 0 0
\(295\) −3.45175 −0.200968
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −25.1836 + 6.41550i −1.45640 + 0.371018i
\(300\) 0 0
\(301\) 10.4638i 0.603125i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 25.4276i 1.45598i
\(306\) 0 0
\(307\) 32.9530i 1.88073i 0.340171 + 0.940364i \(0.389515\pi\)
−0.340171 + 0.940364i \(0.610485\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.2319 −0.750313 −0.375157 0.926961i \(-0.622411\pi\)
−0.375157 + 0.926961i \(0.622411\pi\)
\(312\) 0 0
\(313\) 21.8431 1.23464 0.617322 0.786711i \(-0.288218\pi\)
0.617322 + 0.786711i \(0.288218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.45771i 0.531198i −0.964084 0.265599i \(-0.914430\pi\)
0.964084 0.265599i \(-0.0855697\pi\)
\(318\) 0 0
\(319\) 18.7681i 1.05081i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.21983i 0.123515i
\(324\) 0 0
\(325\) −4.26205 + 1.08575i −0.236416 + 0.0602267i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.43967 −0.465294
\(330\) 0 0
\(331\) 1.19700i 0.0657929i −0.999459 0.0328965i \(-0.989527\pi\)
0.999459 0.0328965i \(-0.0104732\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.6233 1.61849
\(336\) 0 0
\(337\) 2.98792 0.162762 0.0813811 0.996683i \(-0.474067\pi\)
0.0813811 + 0.996683i \(0.474067\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −21.9758 −1.19006
\(342\) 0 0
\(343\) 14.1715i 0.765189i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.41550 0.129671 0.0648355 0.997896i \(-0.479348\pi\)
0.0648355 + 0.997896i \(0.479348\pi\)
\(348\) 0 0
\(349\) 12.7922i 0.684753i −0.939563 0.342377i \(-0.888768\pi\)
0.939563 0.342377i \(-0.111232\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.9095i 1.75159i −0.482680 0.875797i \(-0.660336\pi\)
0.482680 0.875797i \(-0.339664\pi\)
\(354\) 0 0
\(355\) −4.54825 −0.241396
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0435i 0.635634i −0.948152 0.317817i \(-0.897050\pi\)
0.948152 0.317817i \(-0.102950\pi\)
\(360\) 0 0
\(361\) 17.7681 0.935162
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.4397 0.651122
\(366\) 0 0
\(367\) −27.4034 −1.43045 −0.715223 0.698896i \(-0.753675\pi\)
−0.715223 + 0.698896i \(0.753675\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.29218i 0.274756i
\(372\) 0 0
\(373\) 3.42758 0.177474 0.0887368 0.996055i \(-0.471717\pi\)
0.0887368 + 0.996055i \(0.471717\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.1957 4.63533i 0.937125 0.238732i
\(378\) 0 0
\(379\) 31.2814i 1.60682i −0.595427 0.803409i \(-0.703017\pi\)
0.595427 0.803409i \(-0.296983\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.3720i 0.938763i 0.882995 + 0.469382i \(0.155523\pi\)
−0.882995 + 0.469382i \(0.844477\pi\)
\(384\) 0 0
\(385\) 9.97584i 0.508416i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −21.6474 −1.09757 −0.548784 0.835964i \(-0.684909\pi\)
−0.548784 + 0.835964i \(0.684909\pi\)
\(390\) 0 0
\(391\) 14.4155 0.729023
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.09651i 0.0551712i
\(396\) 0 0
\(397\) 33.6233i 1.68750i 0.536734 + 0.843751i \(0.319658\pi\)
−0.536734 + 0.843751i \(0.680342\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.4819i 1.57213i 0.618144 + 0.786065i \(0.287885\pi\)
−0.618144 + 0.786065i \(0.712115\pi\)
\(402\) 0 0
\(403\) −5.42758 21.3056i −0.270367 1.06131i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −40.3913 −2.00212
\(408\) 0 0
\(409\) 24.5483i 1.21383i 0.794766 + 0.606917i \(0.207594\pi\)
−0.794766 + 0.606917i \(0.792406\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.53617 0.0755901
\(414\) 0 0
\(415\) 1.47591 0.0724496
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.7439 −1.20882 −0.604410 0.796674i \(-0.706591\pi\)
−0.604410 + 0.796674i \(0.706591\pi\)
\(420\) 0 0
\(421\) 33.2922i 1.62256i −0.584657 0.811281i \(-0.698771\pi\)
0.584657 0.811281i \(-0.301229\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.43967 0.118341
\(426\) 0 0
\(427\) 11.3163i 0.547636i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.8745i 1.58351i −0.610838 0.791756i \(-0.709167\pi\)
0.610838 0.791756i \(-0.290833\pi\)
\(432\) 0 0
\(433\) 8.21983 0.395020 0.197510 0.980301i \(-0.436715\pi\)
0.197510 + 0.980301i \(0.436715\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) −25.4276 −1.21359 −0.606796 0.794857i \(-0.707546\pi\)
−0.606796 + 0.794857i \(0.707546\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.67158 −0.269465 −0.134732 0.990882i \(-0.543017\pi\)
−0.134732 + 0.990882i \(0.543017\pi\)
\(444\) 0 0
\(445\) −2.65950 −0.126072
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.3370i 0.865379i 0.901543 + 0.432689i \(0.142435\pi\)
−0.901543 + 0.432689i \(0.857565\pi\)
\(450\) 0 0
\(451\) 26.9638 1.26967
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.67158 2.46383i 0.453411 0.115506i
\(456\) 0 0
\(457\) 34.5241i 1.61497i 0.589889 + 0.807484i \(0.299172\pi\)
−0.589889 + 0.807484i \(0.700828\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.3250i 0.713755i 0.934151 + 0.356877i \(0.116159\pi\)
−0.934151 + 0.356877i \(0.883841\pi\)
\(462\) 0 0
\(463\) 3.32975i 0.154747i 0.997002 + 0.0773733i \(0.0246533\pi\)
−0.997002 + 0.0773733i \(0.975347\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.0965 0.976230 0.488115 0.872779i \(-0.337685\pi\)
0.488115 + 0.872779i \(0.337685\pi\)
\(468\) 0 0
\(469\) −13.1836 −0.608762
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.9758i 1.56221i
\(474\) 0 0
\(475\) 1.35391i 0.0621217i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.3599i 1.06734i 0.845693 + 0.533670i \(0.179188\pi\)
−0.845693 + 0.533670i \(0.820812\pi\)
\(480\) 0 0
\(481\) −9.97584 39.1594i −0.454859 1.78552i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.51201 −0.341103
\(486\) 0 0
\(487\) 34.2935i 1.55399i 0.629509 + 0.776994i \(0.283256\pi\)
−0.629509 + 0.776994i \(0.716744\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −43.5120 −1.96367 −0.981835 0.189738i \(-0.939236\pi\)
−0.981835 + 0.189738i \(0.939236\pi\)
\(492\) 0 0
\(493\) −10.4155 −0.469091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.02416 0.0907961
\(498\) 0 0
\(499\) 32.0737i 1.43581i 0.696139 + 0.717907i \(0.254900\pi\)
−0.696139 + 0.717907i \(0.745100\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.9517 1.60301 0.801503 0.597991i \(-0.204034\pi\)
0.801503 + 0.597991i \(0.204034\pi\)
\(504\) 0 0
\(505\) 47.8431i 2.12899i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 27.9215i 1.23760i −0.785548 0.618800i \(-0.787619\pi\)
0.785548 0.618800i \(-0.212381\pi\)
\(510\) 0 0
\(511\) −5.53617 −0.244906
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.3190i 0.939427i
\(516\) 0 0
\(517\) −27.4034 −1.20520
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.39134 0.280010 0.140005 0.990151i \(-0.455288\pi\)
0.140005 + 0.990151i \(0.455288\pi\)
\(522\) 0 0
\(523\) 39.3551 1.72088 0.860439 0.509553i \(-0.170189\pi\)
0.860439 + 0.509553i \(0.170189\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.1957i 0.531252i
\(528\) 0 0
\(529\) 28.9517 1.25877
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.65950 + 26.1414i 0.288455 + 1.13231i
\(534\) 0 0
\(535\) 8.00000i 0.345870i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20.7875i 0.895379i
\(540\) 0 0
\(541\) 35.0508i 1.50695i −0.657475 0.753477i \(-0.728375\pi\)
0.657475 0.753477i \(-0.271625\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.43967 0.190174
\(546\) 0 0
\(547\) −6.57242 −0.281016 −0.140508 0.990080i \(-0.544874\pi\)
−0.140508 + 0.990080i \(0.544874\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.78017i 0.246243i
\(552\) 0 0
\(553\) 0.487991i 0.0207515i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0543i 0.934470i 0.884133 + 0.467235i \(0.154750\pi\)
−0.884133 + 0.467235i \(0.845250\pi\)
\(558\) 0 0
\(559\) −32.9396 + 8.39134i −1.39320 + 0.354916i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.67158 0.239029 0.119514 0.992832i \(-0.461866\pi\)
0.119514 + 0.992832i \(0.461866\pi\)
\(564\) 0 0
\(565\) 19.8914i 0.836838i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 44.8068 1.87840 0.939200 0.343370i \(-0.111568\pi\)
0.939200 + 0.343370i \(0.111568\pi\)
\(570\) 0 0
\(571\) 13.2707 0.555360 0.277680 0.960674i \(-0.410434\pi\)
0.277680 + 0.960674i \(0.410434\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.79225 0.366662
\(576\) 0 0
\(577\) 27.2465i 1.13429i 0.823619 + 0.567143i \(0.191951\pi\)
−0.823619 + 0.567143i \(0.808049\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.656842 −0.0272504
\(582\) 0 0
\(583\) 17.1836i 0.711671i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.0944i 0.953207i 0.879118 + 0.476603i \(0.158132\pi\)
−0.879118 + 0.476603i \(0.841868\pi\)
\(588\) 0 0
\(589\) 6.76809 0.278874
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.94571i 0.408421i 0.978927 + 0.204211i \(0.0654627\pi\)
−0.978927 + 0.204211i \(0.934537\pi\)
\(594\) 0 0
\(595\) −5.53617 −0.226961
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.2707 1.03253 0.516266 0.856428i \(-0.327322\pi\)
0.516266 + 0.856428i \(0.327322\pi\)
\(600\) 0 0
\(601\) 20.0844 0.819261 0.409630 0.912252i \(-0.365658\pi\)
0.409630 + 0.912252i \(0.365658\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.95779i 0.201563i
\(606\) 0 0
\(607\) −36.9879 −1.50129 −0.750647 0.660704i \(-0.770258\pi\)
−0.750647 + 0.660704i \(0.770258\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.76809 26.5676i −0.273807 1.07481i
\(612\) 0 0
\(613\) 34.0146i 1.37384i −0.726735 0.686918i \(-0.758963\pi\)
0.726735 0.686918i \(-0.241037\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.4940i 0.744539i −0.928125 0.372269i \(-0.878580\pi\)
0.928125 0.372269i \(-0.121420\pi\)
\(618\) 0 0
\(619\) 15.6823i 0.630326i 0.949038 + 0.315163i \(0.102059\pi\)
−0.949038 + 0.315163i \(0.897941\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.18359 0.0474194
\(624\) 0 0
\(625\) −29.6112 −1.18445
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.4155i 0.893765i
\(630\) 0 0
\(631\) 12.2693i 0.488435i 0.969721 + 0.244217i \(0.0785310\pi\)
−0.969721 + 0.244217i \(0.921469\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.97584i 0.395879i
\(636\) 0 0
\(637\) 20.1535 5.13408i 0.798509 0.203420i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.14483 −0.282204 −0.141102 0.989995i \(-0.545065\pi\)
−0.141102 + 0.989995i \(0.545065\pi\)
\(642\) 0 0
\(643\) 30.0978i 1.18694i 0.804855 + 0.593471i \(0.202243\pi\)
−0.804855 + 0.593471i \(0.797757\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.391339 −0.0153851 −0.00769256 0.999970i \(-0.502449\pi\)
−0.00769256 + 0.999970i \(0.502449\pi\)
\(648\) 0 0
\(649\) 4.98792 0.195793
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.6233 −1.23751 −0.618757 0.785583i \(-0.712363\pi\)
−0.618757 + 0.785583i \(0.712363\pi\)
\(654\) 0 0
\(655\) 52.8310i 2.06428i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.831004 0.0323713 0.0161857 0.999869i \(-0.494848\pi\)
0.0161857 + 0.999869i \(0.494848\pi\)
\(660\) 0 0
\(661\) 26.3284i 1.02406i −0.858968 0.512028i \(-0.828894\pi\)
0.858968 0.512028i \(-0.171106\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.07234i 0.119140i
\(666\) 0 0
\(667\) −37.5362 −1.45341
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.7439i 1.41848i
\(672\) 0 0
\(673\) −36.0146 −1.38826 −0.694130 0.719849i \(-0.744211\pi\)
−0.694130 + 0.719849i \(0.744211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0871 −0.695143 −0.347571 0.937653i \(-0.612994\pi\)
−0.347571 + 0.937653i \(0.612994\pi\)
\(678\) 0 0
\(679\) 3.34316 0.128299
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 43.1159i 1.64978i −0.565291 0.824892i \(-0.691236\pi\)
0.565291 0.824892i \(-0.308764\pi\)
\(684\) 0 0
\(685\) 29.7318 1.13600
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −16.6595 + 4.24400i −0.634676 + 0.161683i
\(690\) 0 0
\(691\) 46.8805i 1.78342i 0.452608 + 0.891709i \(0.350494\pi\)
−0.452608 + 0.891709i \(0.649506\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 32.3913i 1.22867i
\(696\) 0 0
\(697\) 14.9638i 0.566793i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19.8888 −0.751188 −0.375594 0.926784i \(-0.622561\pi\)
−0.375594 + 0.926784i \(0.622561\pi\)
\(702\) 0 0
\(703\) 12.4397 0.469171
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.2922i 0.800775i
\(708\) 0 0
\(709\) 3.75600i 0.141060i 0.997510 + 0.0705299i \(0.0224690\pi\)
−0.997510 + 0.0705299i \(0.977531\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 43.9517i 1.64600i
\(714\) 0 0
\(715\) 31.4034 8.00000i 1.17442 0.299183i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.67158 −0.360689 −0.180345 0.983604i \(-0.557721\pi\)
−0.180345 + 0.983604i \(0.557721\pi\)
\(720\) 0 0
\(721\) 9.48785i 0.353346i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.35258 −0.235929
\(726\) 0 0
\(727\) 45.2707 1.67900 0.839498 0.543363i \(-0.182849\pi\)
0.839498 + 0.543363i \(0.182849\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.8552 0.697384
\(732\) 0 0
\(733\) 47.4905i 1.75410i −0.480398 0.877051i \(-0.659508\pi\)
0.480398 0.877051i \(-0.340492\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42.8068 −1.57681
\(738\) 0 0
\(739\) 14.7332i 0.541968i −0.962584 0.270984i \(-0.912651\pi\)
0.962584 0.270984i \(-0.0873491\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.7512i 1.16484i 0.812888 + 0.582420i \(0.197894\pi\)
−0.812888 + 0.582420i \(0.802106\pi\)
\(744\) 0 0
\(745\) 46.1232 1.68982
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.56033i 0.130092i
\(750\) 0 0
\(751\) −0.156915 −0.00572590 −0.00286295 0.999996i \(-0.500911\pi\)
−0.00286295 + 0.999996i \(0.500911\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31.2078 1.13577
\(756\) 0 0
\(757\) 27.7318 1.00793 0.503965 0.863724i \(-0.331874\pi\)
0.503965 + 0.863724i \(0.331874\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.05429i 0.219468i 0.993961 + 0.109734i \(0.0349999\pi\)
−0.993961 + 0.109734i \(0.965000\pi\)
\(762\) 0 0
\(763\) −1.97584 −0.0715301
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.23191 + 4.83579i 0.0444818 + 0.174610i
\(768\) 0 0
\(769\) 32.3913i 1.16806i 0.811732 + 0.584031i \(0.198525\pi\)
−0.811732 + 0.584031i \(0.801475\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 48.9095i 1.75915i −0.475759 0.879576i \(-0.657827\pi\)
0.475759 0.879576i \(-0.342173\pi\)
\(774\) 0 0
\(775\) 7.43834i 0.267193i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.30426 −0.297531
\(780\) 0 0
\(781\) 6.57242 0.235180
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24.0603i 0.858748i
\(786\) 0 0
\(787\) 25.9022i 0.923312i −0.887059 0.461656i \(-0.847255\pi\)
0.887059 0.461656i \(-0.152745\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.85251i 0.314759i
\(792\) 0 0
\(793\) −35.6233 + 9.07500i −1.26502 + 0.322263i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 45.5991 1.61520 0.807601 0.589729i \(-0.200765\pi\)
0.807601 + 0.589729i \(0.200765\pi\)
\(798\) 0 0
\(799\) 15.2078i 0.538012i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.9758 −0.634354
\(804\) 0 0
\(805\) −19.9517 −0.703204
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.3672 −0.997337 −0.498668 0.866793i \(-0.666177\pi\)
−0.498668 + 0.866793i \(0.666177\pi\)
\(810\) 0 0
\(811\) 54.6461i 1.91888i 0.281907 + 0.959442i \(0.409033\pi\)
−0.281907 + 0.959442i \(0.590967\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 42.0629 1.47340
\(816\) 0 0
\(817\) 10.4638i 0.366083i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.33704i 0.0815634i 0.999168 + 0.0407817i \(0.0129848\pi\)
−0.999168 + 0.0407817i \(0.987015\pi\)
\(822\) 0 0
\(823\) −17.8189 −0.621129 −0.310564 0.950552i \(-0.600518\pi\)
−0.310564 + 0.950552i \(0.600518\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.51679i 0.122291i 0.998129 + 0.0611455i \(0.0194754\pi\)
−0.998129 + 0.0611455i \(0.980525\pi\)
\(828\) 0 0
\(829\) 21.4905 0.746396 0.373198 0.927752i \(-0.378261\pi\)
0.373198 + 0.927752i \(0.378261\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.5362 −0.399705
\(834\) 0 0
\(835\) 7.89141 0.273094
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.6160i 0.366504i −0.983066 0.183252i \(-0.941338\pi\)
0.983066 0.183252i \(-0.0586624\pi\)
\(840\) 0 0
\(841\) −1.87933 −0.0648045
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.5120 + 28.4698i 0.533629 + 0.979391i
\(846\) 0 0
\(847\) 2.20642i 0.0758136i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 80.7827i 2.76919i
\(852\) 0 0
\(853\) 38.4543i 1.31665i 0.752734 + 0.658324i \(0.228734\pi\)
−0.752734 + 0.658324i \(0.771266\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.2413 0.418156 0.209078 0.977899i \(-0.432954\pi\)
0.209078 + 0.977899i \(0.432954\pi\)
\(858\) 0 0
\(859\) −30.8552 −1.05276 −0.526382 0.850248i \(-0.676452\pi\)
−0.526382 + 0.850248i \(0.676452\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.9952i 0.816807i −0.912802 0.408403i \(-0.866086\pi\)
0.912802 0.408403i \(-0.133914\pi\)
\(864\) 0 0
\(865\) 3.01208i 0.102414i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.58450i 0.0537504i
\(870\) 0 0
\(871\) −10.5724 41.5013i −0.358233 1.40622i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.4638 0.353742
\(876\) 0 0
\(877\) 41.8404i 1.41285i 0.707787 + 0.706425i \(0.249693\pi\)
−0.707787 + 0.706425i \(0.750307\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.3913 1.02391 0.511955 0.859012i \(-0.328921\pi\)
0.511955 + 0.859012i \(0.328921\pi\)
\(882\) 0 0
\(883\) −42.4155 −1.42740 −0.713698 0.700454i \(-0.752981\pi\)
−0.713698 + 0.700454i \(0.752981\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.3284 −0.749715 −0.374857 0.927082i \(-0.622308\pi\)
−0.374857 + 0.927082i \(0.622308\pi\)
\(888\) 0 0
\(889\) 4.43967i 0.148902i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.43967 0.282423
\(894\) 0 0
\(895\) 16.8793i 0.564214i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.7560i 1.05912i
\(900\) 0 0
\(901\) 9.53617 0.317696
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.91557i 0.0636759i
\(906\) 0 0
\(907\) 38.8552 1.29016 0.645082 0.764113i \(-0.276823\pi\)
0.645082 + 0.764113i \(0.276823\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.3767 −0.343797 −0.171898 0.985115i \(-0.554990\pi\)
−0.171898 + 0.985115i \(0.554990\pi\)
\(912\) 0 0
\(913\) −2.13275 −0.0705838
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.5120i 0.776435i
\(918\) 0 0
\(919\) 18.8068 0.620380 0.310190 0.950675i \(-0.399607\pi\)
0.310190 + 0.950675i \(0.399607\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.62325 + 6.37196i 0.0534300 + 0.209736i
\(924\) 0 0
\(925\) 13.6716i 0.449519i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48.0301i 1.57582i −0.615792 0.787909i \(-0.711164\pi\)
0.615792 0.787909i \(-0.288836\pi\)
\(930\) 0 0
\(931\) 6.40209i 0.209820i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.9758 −0.587873
\(936\) 0 0
\(937\) −44.6112 −1.45738 −0.728692 0.684842i \(-0.759871\pi\)
−0.728692 + 0.684842i \(0.759871\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.53020i 0.115081i 0.998343 + 0.0575407i \(0.0183259\pi\)
−0.998343 + 0.0575407i \(0.981674\pi\)
\(942\) 0 0
\(943\) 53.9275i 1.75612i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.3505i 0.596310i −0.954518 0.298155i \(-0.903629\pi\)
0.954518 0.298155i \(-0.0963712\pi\)
\(948\) 0 0
\(949\) −4.43967 17.4276i −0.144118 0.565723i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26.8310 0.869141 0.434571 0.900638i \(-0.356900\pi\)
0.434571 + 0.900638i \(0.356900\pi\)
\(954\) 0 0
\(955\) 26.8552i 0.869013i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.2319 −0.427281
\(960\) 0 0
\(961\) −6.18359 −0.199471
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) 30.5590i 0.982711i 0.870959 + 0.491356i \(0.163498\pi\)
−0.870959 + 0.491356i \(0.836502\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −51.6862 −1.65869 −0.829344 0.558738i \(-0.811286\pi\)
−0.829344 + 0.558738i \(0.811286\pi\)
\(972\) 0 0
\(973\) 14.4155i 0.462140i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.78879i 0.0572285i 0.999591 + 0.0286143i \(0.00910944\pi\)
−0.999591 + 0.0286143i \(0.990891\pi\)
\(978\) 0 0
\(979\) 3.84309 0.122826
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.94438i 0.285281i 0.989775 + 0.142641i \(0.0455593\pi\)
−0.989775 + 0.142641i \(0.954441\pi\)
\(984\) 0 0
\(985\) 47.4905 1.51317
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 67.9517 2.16074
\(990\) 0 0
\(991\) −23.4517 −0.744969 −0.372485 0.928038i \(-0.621494\pi\)
−0.372485 + 0.928038i \(0.621494\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 29.9275i 0.948766i
\(996\) 0 0
\(997\) −25.1207 −0.795580 −0.397790 0.917477i \(-0.630223\pi\)
−0.397790 + 0.917477i \(0.630223\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.c.l.3457.5 6
3.2 odd 2 1248.2.c.a.961.2 6
4.3 odd 2 3744.2.c.m.3457.5 6
12.11 even 2 1248.2.c.b.961.2 yes 6
13.12 even 2 inner 3744.2.c.l.3457.2 6
24.5 odd 2 2496.2.c.p.961.5 6
24.11 even 2 2496.2.c.o.961.5 6
39.38 odd 2 1248.2.c.a.961.5 yes 6
52.51 odd 2 3744.2.c.m.3457.2 6
156.155 even 2 1248.2.c.b.961.5 yes 6
312.77 odd 2 2496.2.c.p.961.2 6
312.155 even 2 2496.2.c.o.961.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.c.a.961.2 6 3.2 odd 2
1248.2.c.a.961.5 yes 6 39.38 odd 2
1248.2.c.b.961.2 yes 6 12.11 even 2
1248.2.c.b.961.5 yes 6 156.155 even 2
2496.2.c.o.961.2 6 312.155 even 2
2496.2.c.o.961.5 6 24.11 even 2
2496.2.c.p.961.2 6 312.77 odd 2
2496.2.c.p.961.5 6 24.5 odd 2
3744.2.c.l.3457.2 6 13.12 even 2 inner
3744.2.c.l.3457.5 6 1.1 even 1 trivial
3744.2.c.m.3457.2 6 52.51 odd 2
3744.2.c.m.3457.5 6 4.3 odd 2