Properties

Label 374.2.a.b.1.3
Level 374374
Weight 22
Character 374.1
Self dual yes
Analytic conductor 2.9862.986
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [374,2,Mod(1,374)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(374, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("374.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 374=21117 374 = 2 \cdot 11 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 374.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.986405035602.98640503560
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.785.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x26x+5 x^{3} - x^{2} - 6x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 2.38849-2.38849 of defining polynomial
Character χ\chi == 374.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+2.38849q3+1.00000q41.70488q52.38849q6+1.68361q71.00000q8+2.70488q9+1.70488q101.00000q11+2.38849q12+6.38849q131.68361q144.07210q15+1.00000q16+1.00000q172.70488q18+5.09337q191.70488q20+4.02128q21+1.00000q22+2.77698q232.38849q242.09337q256.38849q260.704883q27+1.68361q282.77698q29+4.07210q300.776979q311.00000q322.38849q331.00000q342.87035q35+2.70488q369.87035q375.09337q38+15.2588q39+1.70488q405.11465q414.02128q42+3.70488q431.00000q444.61151q452.77698q46+13.2588q47+2.38849q484.16547q49+2.09337q50+2.38849q51+6.38849q52+6.81953q53+0.704883q54+1.70488q551.68361q56+12.1655q57+2.77698q589.40977q594.07210q60+4.77698q61+0.776979q62+4.55396q63+1.00000q6410.8916q65+2.38849q6612.7770q67+1.00000q68+6.63279q69+2.87035q7011.3672q712.70488q72+2.97872q73+9.87035q745.00000q75+5.09337q761.68361q7715.2588q782.38849q791.70488q809.79826q81+5.11465q829.09337q83+4.02128q841.70488q853.70488q866.63279q87+1.00000q88+8.64733q89+4.61151q90+10.7557q91+2.77698q921.85581q9313.2588q948.68361q952.38849q969.55396q97+4.16547q982.70488q99+O(q100)q-1.00000 q^{2} +2.38849 q^{3} +1.00000 q^{4} -1.70488 q^{5} -2.38849 q^{6} +1.68361 q^{7} -1.00000 q^{8} +2.70488 q^{9} +1.70488 q^{10} -1.00000 q^{11} +2.38849 q^{12} +6.38849 q^{13} -1.68361 q^{14} -4.07210 q^{15} +1.00000 q^{16} +1.00000 q^{17} -2.70488 q^{18} +5.09337 q^{19} -1.70488 q^{20} +4.02128 q^{21} +1.00000 q^{22} +2.77698 q^{23} -2.38849 q^{24} -2.09337 q^{25} -6.38849 q^{26} -0.704883 q^{27} +1.68361 q^{28} -2.77698 q^{29} +4.07210 q^{30} -0.776979 q^{31} -1.00000 q^{32} -2.38849 q^{33} -1.00000 q^{34} -2.87035 q^{35} +2.70488 q^{36} -9.87035 q^{37} -5.09337 q^{38} +15.2588 q^{39} +1.70488 q^{40} -5.11465 q^{41} -4.02128 q^{42} +3.70488 q^{43} -1.00000 q^{44} -4.61151 q^{45} -2.77698 q^{46} +13.2588 q^{47} +2.38849 q^{48} -4.16547 q^{49} +2.09337 q^{50} +2.38849 q^{51} +6.38849 q^{52} +6.81953 q^{53} +0.704883 q^{54} +1.70488 q^{55} -1.68361 q^{56} +12.1655 q^{57} +2.77698 q^{58} -9.40977 q^{59} -4.07210 q^{60} +4.77698 q^{61} +0.776979 q^{62} +4.55396 q^{63} +1.00000 q^{64} -10.8916 q^{65} +2.38849 q^{66} -12.7770 q^{67} +1.00000 q^{68} +6.63279 q^{69} +2.87035 q^{70} -11.3672 q^{71} -2.70488 q^{72} +2.97872 q^{73} +9.87035 q^{74} -5.00000 q^{75} +5.09337 q^{76} -1.68361 q^{77} -15.2588 q^{78} -2.38849 q^{79} -1.70488 q^{80} -9.79826 q^{81} +5.11465 q^{82} -9.09337 q^{83} +4.02128 q^{84} -1.70488 q^{85} -3.70488 q^{86} -6.63279 q^{87} +1.00000 q^{88} +8.64733 q^{89} +4.61151 q^{90} +10.7557 q^{91} +2.77698 q^{92} -1.85581 q^{93} -13.2588 q^{94} -8.68361 q^{95} -2.38849 q^{96} -9.55396 q^{97} +4.16547 q^{98} -2.70488 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q2q3+3q4q5+q6+q73q8+4q9+q103q11q12+11q13q14+3q16+3q174q18+3q19q20+12q21+3q22+4q99+O(q100) 3 q - 3 q^{2} - q^{3} + 3 q^{4} - q^{5} + q^{6} + q^{7} - 3 q^{8} + 4 q^{9} + q^{10} - 3 q^{11} - q^{12} + 11 q^{13} - q^{14} + 3 q^{16} + 3 q^{17} - 4 q^{18} + 3 q^{19} - q^{20} + 12 q^{21} + 3 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 2.38849 1.37900 0.689498 0.724288i 0.257831π-0.257831\pi
0.689498 + 0.724288i 0.257831π0.257831\pi
44 1.00000 0.500000
55 −1.70488 −0.762447 −0.381223 0.924483i 0.624497π-0.624497\pi
−0.381223 + 0.924483i 0.624497π0.624497\pi
66 −2.38849 −0.975097
77 1.68361 0.636343 0.318172 0.948033i 0.396931π-0.396931\pi
0.318172 + 0.948033i 0.396931π0.396931\pi
88 −1.00000 −0.353553
99 2.70488 0.901628
1010 1.70488 0.539131
1111 −1.00000 −0.301511
1212 2.38849 0.689498
1313 6.38849 1.77185 0.885924 0.463830i 0.153525π-0.153525\pi
0.885924 + 0.463830i 0.153525π0.153525\pi
1414 −1.68361 −0.449963
1515 −4.07210 −1.05141
1616 1.00000 0.250000
1717 1.00000 0.242536
1818 −2.70488 −0.637547
1919 5.09337 1.16850 0.584250 0.811574i 0.301389π-0.301389\pi
0.584250 + 0.811574i 0.301389π0.301389\pi
2020 −1.70488 −0.381223
2121 4.02128 0.877515
2222 1.00000 0.213201
2323 2.77698 0.579040 0.289520 0.957172i 0.406504π-0.406504\pi
0.289520 + 0.957172i 0.406504π0.406504\pi
2424 −2.38849 −0.487548
2525 −2.09337 −0.418675
2626 −6.38849 −1.25289
2727 −0.704883 −0.135655
2828 1.68361 0.318172
2929 −2.77698 −0.515672 −0.257836 0.966189i 0.583009π-0.583009\pi
−0.257836 + 0.966189i 0.583009π0.583009\pi
3030 4.07210 0.743460
3131 −0.776979 −0.139550 −0.0697748 0.997563i 0.522228π-0.522228\pi
−0.0697748 + 0.997563i 0.522228π0.522228\pi
3232 −1.00000 −0.176777
3333 −2.38849 −0.415783
3434 −1.00000 −0.171499
3535 −2.87035 −0.485178
3636 2.70488 0.450814
3737 −9.87035 −1.62268 −0.811338 0.584577i 0.801260π-0.801260\pi
−0.811338 + 0.584577i 0.801260π0.801260\pi
3838 −5.09337 −0.826254
3939 15.2588 2.44337
4040 1.70488 0.269566
4141 −5.11465 −0.798774 −0.399387 0.916782i 0.630777π-0.630777\pi
−0.399387 + 0.916782i 0.630777π0.630777\pi
4242 −4.02128 −0.620496
4343 3.70488 0.564989 0.282495 0.959269i 0.408838π-0.408838\pi
0.282495 + 0.959269i 0.408838π0.408838\pi
4444 −1.00000 −0.150756
4545 −4.61151 −0.687443
4646 −2.77698 −0.409443
4747 13.2588 1.93400 0.967000 0.254775i 0.0820013π-0.0820013\pi
0.967000 + 0.254775i 0.0820013π0.0820013\pi
4848 2.38849 0.344749
4949 −4.16547 −0.595067
5050 2.09337 0.296048
5151 2.38849 0.334455
5252 6.38849 0.885924
5353 6.81953 0.936735 0.468367 0.883534i 0.344842π-0.344842\pi
0.468367 + 0.883534i 0.344842π0.344842\pi
5454 0.704883 0.0959225
5555 1.70488 0.229886
5656 −1.68361 −0.224981
5757 12.1655 1.61136
5858 2.77698 0.364635
5959 −9.40977 −1.22505 −0.612524 0.790452i 0.709846π-0.709846\pi
−0.612524 + 0.790452i 0.709846π0.709846\pi
6060 −4.07210 −0.525705
6161 4.77698 0.611630 0.305815 0.952091i 0.401071π-0.401071\pi
0.305815 + 0.952091i 0.401071π0.401071\pi
6262 0.776979 0.0986765
6363 4.55396 0.573745
6464 1.00000 0.125000
6565 −10.8916 −1.35094
6666 2.38849 0.294003
6767 −12.7770 −1.56096 −0.780478 0.625183i 0.785024π-0.785024\pi
−0.780478 + 0.625183i 0.785024π0.785024\pi
6868 1.00000 0.121268
6969 6.63279 0.798494
7070 2.87035 0.343073
7171 −11.3672 −1.34904 −0.674520 0.738257i 0.735649π-0.735649\pi
−0.674520 + 0.738257i 0.735649π0.735649\pi
7272 −2.70488 −0.318774
7373 2.97872 0.348633 0.174317 0.984690i 0.444228π-0.444228\pi
0.174317 + 0.984690i 0.444228π0.444228\pi
7474 9.87035 1.14741
7575 −5.00000 −0.577350
7676 5.09337 0.584250
7777 −1.68361 −0.191865
7878 −15.2588 −1.72772
7979 −2.38849 −0.268726 −0.134363 0.990932i 0.542899π-0.542899\pi
−0.134363 + 0.990932i 0.542899π0.542899\pi
8080 −1.70488 −0.190612
8181 −9.79826 −1.08870
8282 5.11465 0.564819
8383 −9.09337 −0.998127 −0.499064 0.866565i 0.666323π-0.666323\pi
−0.499064 + 0.866565i 0.666323π0.666323\pi
8484 4.02128 0.438757
8585 −1.70488 −0.184921
8686 −3.70488 −0.399508
8787 −6.63279 −0.711109
8888 1.00000 0.106600
8989 8.64733 0.916615 0.458308 0.888794i 0.348456π-0.348456\pi
0.458308 + 0.888794i 0.348456π0.348456\pi
9090 4.61151 0.486096
9191 10.7557 1.12750
9292 2.77698 0.289520
9393 −1.85581 −0.192438
9494 −13.2588 −1.36755
9595 −8.68361 −0.890919
9696 −2.38849 −0.243774
9797 −9.55396 −0.970058 −0.485029 0.874498i 0.661191π-0.661191\pi
−0.485029 + 0.874498i 0.661191π0.661191\pi
9898 4.16547 0.420776
9999 −2.70488 −0.271851
100100 −2.09337 −0.209337
101101 −1.25884 −0.125259 −0.0626297 0.998037i 0.519949π-0.519949\pi
−0.0626297 + 0.998037i 0.519949π0.519949\pi
102102 −2.38849 −0.236496
103103 1.02128 0.100629 0.0503147 0.998733i 0.483978π-0.483978\pi
0.0503147 + 0.998733i 0.483978π0.483978\pi
104104 −6.38849 −0.626443
105105 −6.85581 −0.669058
106106 −6.81953 −0.662372
107107 −4.73443 −0.457694 −0.228847 0.973462i 0.573496π-0.573496\pi
−0.228847 + 0.973462i 0.573496π0.573496\pi
108108 −0.704883 −0.0678274
109109 −3.55396 −0.340408 −0.170204 0.985409i 0.554443π-0.554443\pi
−0.170204 + 0.985409i 0.554443π0.554443\pi
110110 −1.70488 −0.162554
111111 −23.5752 −2.23766
112112 1.68361 0.159086
113113 −8.59023 −0.808101 −0.404051 0.914737i 0.632398π-0.632398\pi
−0.404051 + 0.914737i 0.632398π0.632398\pi
114114 −12.1655 −1.13940
115115 −4.73443 −0.441487
116116 −2.77698 −0.257836
117117 17.2801 1.59755
118118 9.40977 0.866239
119119 1.68361 0.154336
120120 4.07210 0.371730
121121 1.00000 0.0909091
122122 −4.77698 −0.432487
123123 −12.2163 −1.10151
124124 −0.776979 −0.0697748
125125 12.0934 1.08166
126126 −4.55396 −0.405699
127127 −5.95745 −0.528638 −0.264319 0.964435i 0.585147π-0.585147\pi
−0.264319 + 0.964435i 0.585147π0.585147\pi
128128 −1.00000 −0.0883883
129129 8.84908 0.779118
130130 10.8916 0.955259
131131 −6.81953 −0.595825 −0.297913 0.954593i 0.596290π-0.596290\pi
−0.297913 + 0.954593i 0.596290π0.596290\pi
132132 −2.38849 −0.207891
133133 8.57524 0.743567
134134 12.7770 1.10376
135135 1.20174 0.103430
136136 −1.00000 −0.0857493
137137 1.61151 0.137681 0.0688403 0.997628i 0.478070π-0.478070\pi
0.0688403 + 0.997628i 0.478070π0.478070\pi
138138 −6.63279 −0.564620
139139 22.3309 1.89409 0.947043 0.321108i 0.104055π-0.104055\pi
0.947043 + 0.321108i 0.104055π0.104055\pi
140140 −2.87035 −0.242589
141141 31.6686 2.66698
142142 11.3672 0.953915
143143 −6.38849 −0.534232
144144 2.70488 0.225407
145145 4.73443 0.393173
146146 −2.97872 −0.246521
147147 −9.94918 −0.820595
148148 −9.87035 −0.811338
149149 −0.345936 −0.0283402 −0.0141701 0.999900i 0.504511π-0.504511\pi
−0.0141701 + 0.999900i 0.504511π0.504511\pi
150150 5.00000 0.408248
151151 −21.1079 −1.71774 −0.858869 0.512195i 0.828832π-0.828832\pi
−0.858869 + 0.512195i 0.828832π0.828832\pi
152152 −5.09337 −0.413127
153153 2.70488 0.218677
154154 1.68361 0.135669
155155 1.32466 0.106399
156156 15.2588 1.22169
157157 15.5114 1.23794 0.618972 0.785413i 0.287549π-0.287549\pi
0.618972 + 0.785413i 0.287549π0.287549\pi
158158 2.38849 0.190018
159159 16.2884 1.29175
160160 1.70488 0.134783
161161 4.67534 0.368468
162162 9.79826 0.769824
163163 −12.5244 −0.980988 −0.490494 0.871445i 0.663184π-0.663184\pi
−0.490494 + 0.871445i 0.663184π0.663184\pi
164164 −5.11465 −0.399387
165165 4.07210 0.317012
166166 9.09337 0.705783
167167 5.11465 0.395783 0.197892 0.980224i 0.436591π-0.436591\pi
0.197892 + 0.980224i 0.436591π0.436591\pi
168168 −4.02128 −0.310248
169169 27.8128 2.13945
170170 1.70488 0.130759
171171 13.7770 1.05355
172172 3.70488 0.282495
173173 −5.18047 −0.393864 −0.196932 0.980417i 0.563098π-0.563098\pi
−0.196932 + 0.980417i 0.563098π0.563098\pi
174174 6.63279 0.502830
175175 −3.52442 −0.266421
176176 −1.00000 −0.0753778
177177 −22.4751 −1.68933
178178 −8.64733 −0.648145
179179 0.632787 0.0472967 0.0236484 0.999720i 0.492472π-0.492472\pi
0.0236484 + 0.999720i 0.492472π0.492472\pi
180180 −4.61151 −0.343722
181181 16.6178 1.23519 0.617595 0.786496i 0.288107π-0.288107\pi
0.617595 + 0.786496i 0.288107π0.288107\pi
182182 −10.7557 −0.797266
183183 11.4098 0.843434
184184 −2.77698 −0.204722
185185 16.8278 1.23720
186186 1.85581 0.136074
187187 −1.00000 −0.0731272
188188 13.2588 0.967000
189189 −1.18675 −0.0863231
190190 8.68361 0.629975
191191 1.79826 0.130117 0.0650586 0.997881i 0.479277π-0.479277\pi
0.0650586 + 0.997881i 0.479277π0.479277\pi
192192 2.38849 0.172374
193193 −25.3097 −1.82183 −0.910915 0.412595i 0.864623π-0.864623\pi
−0.910915 + 0.412595i 0.864623π0.864623\pi
194194 9.55396 0.685934
195195 −26.0145 −1.86294
196196 −4.16547 −0.297534
197197 25.0063 1.78162 0.890812 0.454372i 0.150136π-0.150136\pi
0.890812 + 0.454372i 0.150136π0.150136\pi
198198 2.70488 0.192228
199199 14.1867 1.00567 0.502836 0.864382i 0.332290π-0.332290\pi
0.502836 + 0.864382i 0.332290π0.332290\pi
200200 2.09337 0.148024
201201 −30.5177 −2.15255
202202 1.25884 0.0885718
203203 −4.67534 −0.328145
204204 2.38849 0.167228
205205 8.71988 0.609023
206206 −1.02128 −0.0711557
207207 7.51141 0.522079
208208 6.38849 0.442962
209209 −5.09337 −0.352316
210210 6.85581 0.473096
211211 27.1930 1.87205 0.936023 0.351940i 0.114478π-0.114478\pi
0.936023 + 0.351940i 0.114478π0.114478\pi
212212 6.81953 0.468367
213213 −27.1505 −1.86032
214214 4.73443 0.323639
215215 −6.31639 −0.430774
216216 0.704883 0.0479612
217217 −1.30813 −0.0888015
218218 3.55396 0.240704
219219 7.11465 0.480763
220220 1.70488 0.114943
221221 6.38849 0.429736
222222 23.5752 1.58227
223223 −7.91291 −0.529887 −0.264944 0.964264i 0.585353π-0.585353\pi
−0.264944 + 0.964264i 0.585353π0.585353\pi
224224 −1.68361 −0.112491
225225 −5.66233 −0.377489
226226 8.59023 0.571414
227227 −0.186746 −0.0123948 −0.00619739 0.999981i 0.501973π-0.501973\pi
−0.00619739 + 0.999981i 0.501973π0.501973\pi
228228 12.1655 0.805678
229229 −10.6328 −0.702634 −0.351317 0.936257i 0.614266π-0.614266\pi
−0.351317 + 0.936257i 0.614266π0.614266\pi
230230 4.73443 0.312179
231231 −4.02128 −0.264581
232232 2.77698 0.182318
233233 19.3522 1.26781 0.633903 0.773413i 0.281452π-0.281452\pi
0.633903 + 0.773413i 0.281452π0.281452\pi
234234 −17.2801 −1.12964
235235 −22.6048 −1.47457
236236 −9.40977 −0.612524
237237 −5.70488 −0.370572
238238 −1.68361 −0.109132
239239 5.18047 0.335097 0.167548 0.985864i 0.446415π-0.446415\pi
0.167548 + 0.985864i 0.446415π0.446415\pi
240240 −4.07210 −0.262853
241241 −15.5540 −1.00192 −0.500959 0.865471i 0.667019π-0.667019\pi
−0.500959 + 0.865471i 0.667019π0.667019\pi
242242 −1.00000 −0.0642824
243243 −21.2884 −1.36565
244244 4.77698 0.305815
245245 7.10164 0.453707
246246 12.2163 0.778882
247247 32.5390 2.07040
248248 0.776979 0.0493382
249249 −21.7194 −1.37641
250250 −12.0934 −0.764852
251251 −20.7044 −1.30685 −0.653426 0.756990i 0.726669π-0.726669\pi
−0.653426 + 0.756990i 0.726669π0.726669\pi
252252 4.55396 0.286872
253253 −2.77698 −0.174587
254254 5.95745 0.373803
255255 −4.07210 −0.255005
256256 1.00000 0.0625000
257257 10.5457 0.657822 0.328911 0.944361i 0.393318π-0.393318\pi
0.328911 + 0.944361i 0.393318π0.393318\pi
258258 −8.84908 −0.550919
259259 −16.6178 −1.03258
260260 −10.8916 −0.675470
261261 −7.51141 −0.464944
262262 6.81953 0.421312
263263 −23.3672 −1.44088 −0.720442 0.693515i 0.756061π-0.756061\pi
−0.720442 + 0.693515i 0.756061π0.756061\pi
264264 2.38849 0.147001
265265 −11.6265 −0.714211
266266 −8.57524 −0.525781
267267 20.6541 1.26401
268268 −12.7770 −0.780478
269269 −7.76871 −0.473667 −0.236833 0.971550i 0.576110π-0.576110\pi
−0.236833 + 0.971550i 0.576110π0.576110\pi
270270 −1.20174 −0.0731358
271271 2.00000 0.121491 0.0607457 0.998153i 0.480652π-0.480652\pi
0.0607457 + 0.998153i 0.480652π0.480652\pi
272272 1.00000 0.0606339
273273 25.6899 1.55482
274274 −1.61151 −0.0973549
275275 2.09337 0.126235
276276 6.63279 0.399247
277277 21.6982 1.30372 0.651858 0.758341i 0.273990π-0.273990\pi
0.651858 + 0.758341i 0.273990π0.273990\pi
278278 −22.3309 −1.33932
279279 −2.10164 −0.125822
280280 2.87035 0.171536
281281 29.5540 1.76304 0.881521 0.472145i 0.156520π-0.156520\pi
0.881521 + 0.472145i 0.156520π0.156520\pi
282282 −31.6686 −1.88584
283283 −14.7344 −0.875871 −0.437935 0.899006i 0.644290π-0.644290\pi
−0.437935 + 0.899006i 0.644290π0.644290\pi
284284 −11.3672 −0.674520
285285 −20.7407 −1.22857
286286 6.38849 0.377759
287287 −8.61106 −0.508295
288288 −2.70488 −0.159387
289289 1.00000 0.0588235
290290 −4.73443 −0.278015
291291 −22.8195 −1.33770
292292 2.97872 0.174317
293293 3.02954 0.176988 0.0884939 0.996077i 0.471795π-0.471795\pi
0.0884939 + 0.996077i 0.471795π0.471795\pi
294294 9.94918 0.580248
295295 16.0426 0.934034
296296 9.87035 0.573703
297297 0.704883 0.0409015
298298 0.345936 0.0200395
299299 17.7407 1.02597
300300 −5.00000 −0.288675
301301 6.23757 0.359527
302302 21.1079 1.21462
303303 −3.00673 −0.172732
304304 5.09337 0.292125
305305 −8.14419 −0.466335
306306 −2.70488 −0.154628
307307 16.2443 0.927111 0.463556 0.886068i 0.346573π-0.346573\pi
0.463556 + 0.886068i 0.346573π0.346573\pi
308308 −1.68361 −0.0959324
309309 2.43931 0.138767
310310 −1.32466 −0.0752356
311311 25.1930 1.42857 0.714283 0.699857i 0.246753π-0.246753\pi
0.714283 + 0.699857i 0.246753π0.246753\pi
312312 −15.2588 −0.863862
313313 4.96373 0.280566 0.140283 0.990111i 0.455199π-0.455199\pi
0.140283 + 0.990111i 0.455199π0.455199\pi
314314 −15.5114 −0.875359
315315 −7.76397 −0.437450
316316 −2.38849 −0.134363
317317 −6.37349 −0.357971 −0.178985 0.983852i 0.557282π-0.557282\pi
−0.178985 + 0.983852i 0.557282π0.557282\pi
318318 −16.2884 −0.913407
319319 2.77698 0.155481
320320 −1.70488 −0.0953059
321321 −11.3081 −0.631158
322322 −4.67534 −0.260547
323323 5.09337 0.283403
324324 −9.79826 −0.544348
325325 −13.3735 −0.741828
326326 12.5244 0.693663
327327 −8.48859 −0.469420
328328 5.11465 0.282409
329329 22.3227 1.23069
330330 −4.07210 −0.224162
331331 −10.4460 −0.574166 −0.287083 0.957906i 0.592686π-0.592686\pi
−0.287083 + 0.957906i 0.592686π0.592686\pi
332332 −9.09337 −0.499064
333333 −26.6982 −1.46305
334334 −5.11465 −0.279861
335335 21.7833 1.19015
336336 4.02128 0.219379
337337 −6.07838 −0.331110 −0.165555 0.986201i 0.552942π-0.552942\pi
−0.165555 + 0.986201i 0.552942π0.552942\pi
338338 −27.8128 −1.51282
339339 −20.5177 −1.11437
340340 −1.70488 −0.0924603
341341 0.776979 0.0420758
342342 −13.7770 −0.744974
343343 −18.7983 −1.01501
344344 −3.70488 −0.199754
345345 −11.3081 −0.608809
346346 5.18047 0.278504
347347 −35.9275 −1.92869 −0.964343 0.264654i 0.914742π-0.914742\pi
−0.964343 + 0.264654i 0.914742π0.914742\pi
348348 −6.63279 −0.355555
349349 18.2884 0.978955 0.489477 0.872016i 0.337188π-0.337188\pi
0.489477 + 0.872016i 0.337188π0.337188\pi
350350 3.52442 0.188388
351351 −4.50314 −0.240360
352352 1.00000 0.0533002
353353 1.25884 0.0670014 0.0335007 0.999439i 0.489334π-0.489334\pi
0.0335007 + 0.999439i 0.489334π0.489334\pi
354354 22.4751 1.19454
355355 19.3798 1.02857
356356 8.64733 0.458308
357357 4.02128 0.212829
358358 −0.632787 −0.0334438
359359 26.3309 1.38969 0.694847 0.719158i 0.255472π-0.255472\pi
0.694847 + 0.719158i 0.255472π0.255472\pi
360360 4.61151 0.243048
361361 6.94245 0.365392
362362 −16.6178 −0.873412
363363 2.38849 0.125363
364364 10.7557 0.563752
365365 −5.07838 −0.265814
366366 −11.4098 −0.596398
367367 −23.0654 −1.20400 −0.602001 0.798495i 0.705630π-0.705630\pi
−0.602001 + 0.798495i 0.705630π0.705630\pi
368368 2.77698 0.144760
369369 −13.8345 −0.720197
370370 −16.8278 −0.874836
371371 11.4814 0.596085
372372 −1.85581 −0.0962191
373373 12.7324 0.659261 0.329630 0.944110i 0.393076π-0.393076\pi
0.329630 + 0.944110i 0.393076π0.393076\pi
374374 1.00000 0.0517088
375375 28.8849 1.49161
376376 −13.2588 −0.683773
377377 −17.7407 −0.913693
378378 1.18675 0.0610396
379379 14.8854 0.764609 0.382305 0.924036i 0.375131π-0.375131\pi
0.382305 + 0.924036i 0.375131π0.375131\pi
380380 −8.68361 −0.445460
381381 −14.2293 −0.728989
382382 −1.79826 −0.0920068
383383 3.91489 0.200042 0.100021 0.994985i 0.468109π-0.468109\pi
0.100021 + 0.994985i 0.468109π0.468109\pi
384384 −2.38849 −0.121887
385385 2.87035 0.146287
386386 25.3097 1.28823
387387 10.0213 0.509410
388388 −9.55396 −0.485029
389389 37.6982 1.91137 0.955686 0.294388i 0.0951157π-0.0951157\pi
0.955686 + 0.294388i 0.0951157π0.0951157\pi
390390 26.0145 1.31730
391391 2.77698 0.140438
392392 4.16547 0.210388
393393 −16.2884 −0.821640
394394 −25.0063 −1.25980
395395 4.07210 0.204889
396396 −2.70488 −0.135925
397397 19.0508 0.956133 0.478067 0.878324i 0.341338π-0.341338\pi
0.478067 + 0.878324i 0.341338π0.341338\pi
398398 −14.1867 −0.711117
399399 20.4819 1.02538
400400 −2.09337 −0.104669
401401 −13.0063 −0.649503 −0.324751 0.945799i 0.605281π-0.605281\pi
−0.324751 + 0.945799i 0.605281π0.605281\pi
402402 30.5177 1.52208
403403 −4.96373 −0.247261
404404 −1.25884 −0.0626297
405405 16.7049 0.830072
406406 4.67534 0.232033
407407 9.87035 0.489255
408408 −2.38849 −0.118248
409409 2.81953 0.139417 0.0697085 0.997567i 0.477793π-0.477793\pi
0.0697085 + 0.997567i 0.477793π0.477793\pi
410410 −8.71988 −0.430644
411411 3.84908 0.189861
412412 1.02128 0.0503147
413413 −15.8423 −0.779551
414414 −7.51141 −0.369165
415415 15.5031 0.761019
416416 −6.38849 −0.313221
417417 53.3372 2.61193
418418 5.09337 0.249125
419419 −7.32267 −0.357736 −0.178868 0.983873i 0.557244π-0.557244\pi
−0.178868 + 0.983873i 0.557244π0.557244\pi
420420 −6.85581 −0.334529
421421 13.5540 0.660580 0.330290 0.943880i 0.392854π-0.392854\pi
0.330290 + 0.943880i 0.392854π0.392854\pi
422422 −27.1930 −1.32374
423423 35.8636 1.74375
424424 −6.81953 −0.331186
425425 −2.09337 −0.101544
426426 27.1505 1.31544
427427 8.04255 0.389206
428428 −4.73443 −0.228847
429429 −15.2588 −0.736704
430430 6.31639 0.304604
431431 −2.40150 −0.115676 −0.0578381 0.998326i 0.518421π-0.518421\pi
−0.0578381 + 0.998326i 0.518421π0.518421\pi
432432 −0.704883 −0.0339137
433433 25.5472 1.22772 0.613861 0.789414i 0.289616π-0.289616\pi
0.613861 + 0.789414i 0.289616π0.289616\pi
434434 1.30813 0.0627921
435435 11.3081 0.542183
436436 −3.55396 −0.170204
437437 14.1442 0.676608
438438 −7.11465 −0.339951
439439 12.2226 0.583351 0.291676 0.956517i 0.405787π-0.405787\pi
0.291676 + 0.956517i 0.405787π0.405787\pi
440440 −1.70488 −0.0812771
441441 −11.2671 −0.536529
442442 −6.38849 −0.303869
443443 −34.6619 −1.64684 −0.823418 0.567436i 0.807936π-0.807936\pi
−0.823418 + 0.567436i 0.807936π0.807936\pi
444444 −23.5752 −1.11883
445445 −14.7427 −0.698871
446446 7.91291 0.374687
447447 −0.826265 −0.0390810
448448 1.68361 0.0795429
449449 21.9700 1.03683 0.518414 0.855130i 0.326523π-0.326523\pi
0.518414 + 0.855130i 0.326523π0.326523\pi
450450 5.66233 0.266925
451451 5.11465 0.240839
452452 −8.59023 −0.404051
453453 −50.4160 −2.36875
454454 0.186746 0.00876443
455455 −18.3372 −0.859662
456456 −12.1655 −0.569700
457457 −27.7407 −1.29766 −0.648828 0.760935i 0.724740π-0.724740\pi
−0.648828 + 0.760935i 0.724740π0.724740\pi
458458 10.6328 0.496838
459459 −0.704883 −0.0329011
460460 −4.73443 −0.220744
461461 −27.0504 −1.25986 −0.629931 0.776651i 0.716917π-0.716917\pi
−0.629931 + 0.776651i 0.716917π0.716917\pi
462462 4.02128 0.187087
463463 −37.6832 −1.75128 −0.875642 0.482960i 0.839562π-0.839562\pi
−0.875642 + 0.482960i 0.839562π0.839562\pi
464464 −2.77698 −0.128918
465465 3.16394 0.146724
466466 −19.3522 −0.896474
467467 26.7770 1.23909 0.619545 0.784961i 0.287317π-0.287317\pi
0.619545 + 0.784961i 0.287317π0.287317\pi
468468 17.2801 0.798774
469469 −21.5114 −0.993304
470470 22.6048 1.04268
471471 37.0488 1.70712
472472 9.40977 0.433120
473473 −3.70488 −0.170351
474474 5.70488 0.262034
475475 −10.6623 −0.489221
476476 1.68361 0.0771680
477477 18.4460 0.844586
478478 −5.18047 −0.236949
479479 −18.2734 −0.834932 −0.417466 0.908692i 0.637082π-0.637082\pi
−0.417466 + 0.908692i 0.637082π0.637082\pi
480480 4.07210 0.185865
481481 −63.0566 −2.87514
482482 15.5540 0.708463
483483 11.1670 0.508116
484484 1.00000 0.0454545
485485 16.2884 0.739617
486486 21.2884 0.965661
487487 −42.0716 −1.90645 −0.953224 0.302265i 0.902257π-0.902257\pi
−0.953224 + 0.302265i 0.902257π0.902257\pi
488488 −4.77698 −0.216244
489489 −29.9144 −1.35278
490490 −7.10164 −0.320819
491491 35.9933 1.62435 0.812177 0.583411i 0.198282π-0.198282\pi
0.812177 + 0.583411i 0.198282π0.198282\pi
492492 −12.2163 −0.550753
493493 −2.77698 −0.125069
494494 −32.5390 −1.46400
495495 4.61151 0.207272
496496 −0.776979 −0.0348874
497497 −19.1379 −0.858453
498498 21.7194 0.973271
499499 −20.3159 −0.909466 −0.454733 0.890628i 0.650265π-0.650265\pi
−0.454733 + 0.890628i 0.650265π0.650265\pi
500500 12.0934 0.540832
501501 12.2163 0.545784
502502 20.7044 0.924084
503503 −16.7915 −0.748697 −0.374349 0.927288i 0.622134π-0.622134\pi
−0.374349 + 0.927288i 0.622134π0.622134\pi
504504 −4.55396 −0.202849
505505 2.14618 0.0955037
506506 2.77698 0.123452
507507 66.4306 2.95029
508508 −5.95745 −0.264319
509509 12.5602 0.556723 0.278361 0.960476i 0.410209π-0.410209\pi
0.278361 + 0.960476i 0.410209π0.410209\pi
510510 4.07210 0.180315
511511 5.01500 0.221850
512512 −1.00000 −0.0441942
513513 −3.59023 −0.158513
514514 −10.5457 −0.465151
515515 −1.74116 −0.0767246
516516 8.84908 0.389559
517517 −13.2588 −0.583123
518518 16.6178 0.730144
519519 −12.3735 −0.543136
520520 10.8916 0.477630
521521 31.6982 1.38872 0.694361 0.719627i 0.255687π-0.255687\pi
0.694361 + 0.719627i 0.255687π0.255687\pi
522522 7.51141 0.328765
523523 21.2588 0.929584 0.464792 0.885420i 0.346129π-0.346129\pi
0.464792 + 0.885420i 0.346129π0.346129\pi
524524 −6.81953 −0.297913
525525 −8.41803 −0.367393
526526 23.3672 1.01886
527527 −0.776979 −0.0338458
528528 −2.38849 −0.103946
529529 −15.2884 −0.664712
530530 11.6265 0.505023
531531 −25.4523 −1.10454
532532 8.57524 0.371784
533533 −32.6749 −1.41531
534534 −20.6541 −0.893789
535535 8.07164 0.348968
536536 12.7770 0.551881
537537 1.51141 0.0652220
538538 7.76871 0.334933
539539 4.16547 0.179419
540540 1.20174 0.0517148
541541 −8.54768 −0.367493 −0.183747 0.982974i 0.558823π-0.558823\pi
−0.183747 + 0.982974i 0.558823π0.558823\pi
542542 −2.00000 −0.0859074
543543 39.6914 1.70332
544544 −1.00000 −0.0428746
545545 6.05909 0.259543
546546 −25.6899 −1.09943
547547 −17.1930 −0.735121 −0.367560 0.930000i 0.619807π-0.619807\pi
−0.367560 + 0.930000i 0.619807π0.619807\pi
548548 1.61151 0.0688403
549549 12.9212 0.551462
550550 −2.09337 −0.0892617
551551 −14.1442 −0.602563
552552 −6.63279 −0.282310
553553 −4.02128 −0.171002
554554 −21.6982 −0.921866
555555 40.1930 1.70610
556556 22.3309 0.947043
557557 15.0295 0.636822 0.318411 0.947953i 0.396851π-0.396851\pi
0.318411 + 0.947953i 0.396851π0.396851\pi
558558 2.10164 0.0889695
559559 23.6686 1.00108
560560 −2.87035 −0.121295
561561 −2.38849 −0.100842
562562 −29.5540 −1.24666
563563 15.7900 0.665469 0.332734 0.943021i 0.392029π-0.392029\pi
0.332734 + 0.943021i 0.392029π0.392029\pi
564564 31.6686 1.33349
565565 14.6453 0.616134
566566 14.7344 0.619334
567567 −16.4964 −0.692784
568568 11.3672 0.476958
569569 27.5965 1.15691 0.578453 0.815716i 0.303657π-0.303657\pi
0.578453 + 0.815716i 0.303657π0.303657\pi
570570 20.7407 0.868733
571571 0.547680 0.0229197 0.0114598 0.999934i 0.496352π-0.496352\pi
0.0114598 + 0.999934i 0.496352π0.496352\pi
572572 −6.38849 −0.267116
573573 4.29512 0.179431
574574 8.61106 0.359419
575575 −5.81325 −0.242429
576576 2.70488 0.112703
577577 −40.9357 −1.70418 −0.852088 0.523398i 0.824664π-0.824664\pi
−0.852088 + 0.523398i 0.824664π0.824664\pi
578578 −1.00000 −0.0415945
579579 −60.4519 −2.51229
580580 4.73443 0.196586
581581 −15.3097 −0.635152
582582 22.8195 0.945900
583583 −6.81953 −0.282436
584584 −2.97872 −0.123260
585585 −29.4606 −1.21805
586586 −3.02954 −0.125149
587587 9.22302 0.380675 0.190337 0.981719i 0.439042π-0.439042\pi
0.190337 + 0.981719i 0.439042π0.439042\pi
588588 −9.94918 −0.410297
589589 −3.95745 −0.163064
590590 −16.0426 −0.660461
591591 59.7272 2.45685
592592 −9.87035 −0.405669
593593 19.5114 0.801237 0.400619 0.916245i 0.368795π-0.368795\pi
0.400619 + 0.916245i 0.368795π0.368795\pi
594594 −0.704883 −0.0289217
595595 −2.87035 −0.117673
596596 −0.345936 −0.0141701
597597 33.8849 1.38682
598598 −17.7407 −0.725471
599599 −47.8549 −1.95530 −0.977649 0.210243i 0.932574π-0.932574\pi
−0.977649 + 0.210243i 0.932574π0.932574\pi
600600 5.00000 0.204124
601601 −4.94918 −0.201881 −0.100941 0.994892i 0.532185π-0.532185\pi
−0.100941 + 0.994892i 0.532185π0.532185\pi
602602 −6.23757 −0.254224
603603 −34.5602 −1.40740
604604 −21.1079 −0.858869
605605 −1.70488 −0.0693134
606606 3.00673 0.122140
607607 −13.7900 −0.559718 −0.279859 0.960041i 0.590288π-0.590288\pi
−0.279859 + 0.960041i 0.590288π0.590288\pi
608608 −5.09337 −0.206564
609609 −11.1670 −0.452510
610610 8.14419 0.329749
611611 84.7040 3.42676
612612 2.70488 0.109338
613613 46.5748 1.88114 0.940569 0.339603i 0.110293π-0.110293\pi
0.940569 + 0.339603i 0.110293π0.110293\pi
614614 −16.2443 −0.655566
615615 20.8273 0.839840
616616 1.68361 0.0678344
617617 −15.2821 −0.615234 −0.307617 0.951510i 0.599532π-0.599532\pi
−0.307617 + 0.951510i 0.599532π0.599532\pi
618618 −2.43931 −0.0981234
619619 48.3159 1.94198 0.970991 0.239117i 0.0768579π-0.0768579\pi
0.970991 + 0.239117i 0.0768579π0.0768579\pi
620620 1.32466 0.0531996
621621 −1.95745 −0.0785496
622622 −25.1930 −1.01015
623623 14.5587 0.583282
624624 15.2588 0.610843
625625 −10.1509 −0.406037
626626 −4.96373 −0.198390
627627 −12.1655 −0.485842
628628 15.5114 0.618972
629629 −9.87035 −0.393557
630630 7.76397 0.309324
631631 32.9062 1.30997 0.654987 0.755640i 0.272674π-0.272674\pi
0.654987 + 0.755640i 0.272674π0.272674\pi
632632 2.38849 0.0950090
633633 64.9503 2.58154
634634 6.37349 0.253124
635635 10.1568 0.403058
636636 16.2884 0.645876
637637 −26.6111 −1.05437
638638 −2.77698 −0.109942
639639 −30.7470 −1.21633
640640 1.70488 0.0673914
641641 −32.3309 −1.27700 −0.638498 0.769624i 0.720444π-0.720444\pi
−0.638498 + 0.769624i 0.720444π0.720444\pi
642642 11.3081 0.446296
643643 −5.26557 −0.207654 −0.103827 0.994595i 0.533109π-0.533109\pi
−0.103827 + 0.994595i 0.533109π0.533109\pi
644644 4.67534 0.184234
645645 −15.0866 −0.594036
646646 −5.09337 −0.200396
647647 −28.8211 −1.13307 −0.566537 0.824037i 0.691717π-0.691717\pi
−0.566537 + 0.824037i 0.691717π0.691717\pi
648648 9.79826 0.384912
649649 9.40977 0.369366
650650 13.3735 0.524552
651651 −3.12445 −0.122457
652652 −12.5244 −0.490494
653653 34.1587 1.33673 0.668367 0.743831i 0.266993π-0.266993\pi
0.668367 + 0.743831i 0.266993π0.266993\pi
654654 8.48859 0.331930
655655 11.6265 0.454285
656656 −5.11465 −0.199694
657657 8.05710 0.314337
658658 −22.3227 −0.870228
659659 33.2076 1.29358 0.646792 0.762667i 0.276110π-0.276110\pi
0.646792 + 0.762667i 0.276110π0.276110\pi
660660 4.07210 0.158506
661661 −23.0654 −0.897139 −0.448569 0.893748i 0.648066π-0.648066\pi
−0.448569 + 0.893748i 0.648066π0.648066\pi
662662 10.4460 0.405997
663663 15.2588 0.592604
664664 9.09337 0.352891
665665 −14.6198 −0.566931
666666 26.6982 1.03453
667667 −7.71162 −0.298595
668668 5.11465 0.197892
669669 −18.8999 −0.730712
670670 −21.7833 −0.841561
671671 −4.77698 −0.184413
672672 −4.02128 −0.155124
673673 −40.8128 −1.57322 −0.786609 0.617452i 0.788165π-0.788165\pi
−0.786609 + 0.617452i 0.788165π0.788165\pi
674674 6.07838 0.234130
675675 1.47558 0.0567952
676676 27.8128 1.06972
677677 −27.8423 −1.07007 −0.535034 0.844830i 0.679701π-0.679701\pi
−0.535034 + 0.844830i 0.679701π0.679701\pi
678678 20.5177 0.787977
679679 −16.0851 −0.617290
680680 1.70488 0.0653793
681681 −0.446041 −0.0170923
682682 −0.776979 −0.0297521
683683 4.74116 0.181415 0.0907077 0.995878i 0.471087π-0.471087\pi
0.0907077 + 0.995878i 0.471087π0.471087\pi
684684 13.7770 0.526776
685685 −2.74744 −0.104974
686686 18.7983 0.717721
687687 −25.3963 −0.968929
688688 3.70488 0.141247
689689 43.5665 1.65975
690690 11.3081 0.430493
691691 −28.8766 −1.09852 −0.549259 0.835652i 0.685090π-0.685090\pi
−0.549259 + 0.835652i 0.685090π0.685090\pi
692692 −5.18047 −0.196932
693693 −4.55396 −0.172991
694694 35.9275 1.36379
695695 −38.0716 −1.44414
696696 6.63279 0.251415
697697 −5.11465 −0.193731
698698 −18.2884 −0.692226
699699 46.2226 1.74830
700700 −3.52442 −0.133210
701701 45.2801 1.71021 0.855103 0.518458i 0.173494π-0.173494\pi
0.855103 + 0.518458i 0.173494π0.173494\pi
702702 4.50314 0.169960
703703 −50.2734 −1.89610
704704 −1.00000 −0.0376889
705705 −53.9913 −2.03343
706706 −1.25884 −0.0473772
707707 −2.11939 −0.0797081
708708 −22.4751 −0.844667
709709 −17.3227 −0.650567 −0.325283 0.945617i 0.605460π-0.605460\pi
−0.325283 + 0.945617i 0.605460π0.605460\pi
710710 −19.3798 −0.727310
711711 −6.46059 −0.242291
712712 −8.64733 −0.324072
713713 −2.15766 −0.0808049
714714 −4.02128 −0.150493
715715 10.8916 0.407324
716716 0.632787 0.0236484
717717 12.3735 0.462097
718718 −26.3309 −0.982662
719719 36.9337 1.37740 0.688698 0.725048i 0.258183π-0.258183\pi
0.688698 + 0.725048i 0.258183π0.258183\pi
720720 −4.61151 −0.171861
721721 1.71943 0.0640349
722722 −6.94245 −0.258371
723723 −37.1505 −1.38164
724724 16.6178 0.617595
725725 5.81325 0.215899
726726 −2.38849 −0.0886452
727727 18.9487 0.702769 0.351385 0.936231i 0.385711π-0.385711\pi
0.351385 + 0.936231i 0.385711π0.385711\pi
728728 −10.7557 −0.398633
729729 −21.4523 −0.794530
730730 5.07838 0.187959
731731 3.70488 0.137030
732732 11.4098 0.421717
733733 14.4393 0.533328 0.266664 0.963790i 0.414079π-0.414079\pi
0.266664 + 0.963790i 0.414079π0.414079\pi
734734 23.0654 0.851358
735735 16.9622 0.625660
736736 −2.77698 −0.102361
737737 12.7770 0.470646
738738 13.8345 0.509256
739739 22.4901 0.827313 0.413656 0.910433i 0.364251π-0.364251\pi
0.413656 + 0.910433i 0.364251π0.364251\pi
740740 16.8278 0.618602
741741 77.7190 2.85508
742742 −11.4814 −0.421496
743743 −12.4393 −0.456354 −0.228177 0.973620i 0.573276π-0.573276\pi
−0.228177 + 0.973620i 0.573276π0.573276\pi
744744 1.85581 0.0680372
745745 0.589781 0.0216079
746746 −12.7324 −0.466168
747747 −24.5965 −0.899939
748748 −1.00000 −0.0365636
749749 −7.97091 −0.291251
750750 −28.8849 −1.05473
751751 4.40349 0.160686 0.0803428 0.996767i 0.474399π-0.474399\pi
0.0803428 + 0.996767i 0.474399π0.474399\pi
752752 13.2588 0.483500
753753 −49.4523 −1.80214
754754 17.7407 0.646078
755755 35.9865 1.30968
756756 −1.18675 −0.0431615
757757 −21.8684 −0.794819 −0.397410 0.917641i 0.630091π-0.630091\pi
−0.397410 + 0.917641i 0.630091π0.630091\pi
758758 −14.8854 −0.540660
759759 −6.63279 −0.240755
760760 8.68361 0.314988
761761 10.4886 0.380211 0.190106 0.981764i 0.439117π-0.439117\pi
0.190106 + 0.981764i 0.439117π0.439117\pi
762762 14.2293 0.515473
763763 −5.98347 −0.216616
764764 1.79826 0.0650586
765765 −4.61151 −0.166730
766766 −3.91489 −0.141451
767767 −60.1142 −2.17060
768768 2.38849 0.0861872
769769 −27.2947 −0.984271 −0.492135 0.870519i 0.663784π-0.663784\pi
−0.492135 + 0.870519i 0.663784π0.663784\pi
770770 −2.87035 −0.103440
771771 25.1883 0.907134
772772 −25.3097 −0.910915
773773 33.4689 1.20379 0.601895 0.798575i 0.294412π-0.294412\pi
0.601895 + 0.798575i 0.294412π0.294412\pi
774774 −10.0213 −0.360207
775775 1.62651 0.0584259
776776 9.55396 0.342967
777777 −39.6914 −1.42392
778778 −37.6982 −1.35154
779779 −26.0508 −0.933367
780780 −26.0145 −0.931470
781781 11.3672 0.406751
782782 −2.77698 −0.0993046
783783 1.95745 0.0699534
784784 −4.16547 −0.148767
785785 −26.4451 −0.943867
786786 16.2884 0.580987
787787 14.8195 0.528259 0.264130 0.964487i 0.414915π-0.414915\pi
0.264130 + 0.964487i 0.414915π0.414915\pi
788788 25.0063 0.890812
789789 −55.8123 −1.98697
790790 −4.07210 −0.144879
791791 −14.4626 −0.514230
792792 2.70488 0.0961138
793793 30.5177 1.08371
794794 −19.0508 −0.676088
795795 −27.7698 −0.984893
796796 14.1867 0.502836
797797 −15.8423 −0.561165 −0.280582 0.959830i 0.590528π-0.590528\pi
−0.280582 + 0.959830i 0.590528π0.590528\pi
798798 −20.4819 −0.725050
799799 13.2588 0.469064
800800 2.09337 0.0740119
801801 23.3900 0.826446
802802 13.0063 0.459268
803803 −2.97872 −0.105117
804804 −30.5177 −1.07628
805805 −7.97091 −0.280938
806806 4.96373 0.174840
807807 −18.5555 −0.653184
808808 1.25884 0.0442859
809809 −12.8195 −0.450711 −0.225355 0.974277i 0.572354π-0.572354\pi
−0.225355 + 0.974277i 0.572354π0.572354\pi
810810 −16.7049 −0.586950
811811 15.6391 0.549162 0.274581 0.961564i 0.411461π-0.411461\pi
0.274581 + 0.961564i 0.411461π0.411461\pi
812812 −4.67534 −0.164072
813813 4.77698 0.167536
814814 −9.87035 −0.345956
815815 21.3527 0.747951
816816 2.38849 0.0836139
817817 18.8704 0.660190
818818 −2.81953 −0.0985827
819819 29.0929 1.01659
820820 8.71988 0.304511
821821 −24.8195 −0.866208 −0.433104 0.901344i 0.642582π-0.642582\pi
−0.433104 + 0.901344i 0.642582π0.642582\pi
822822 −3.84908 −0.134252
823823 −1.66906 −0.0581798 −0.0290899 0.999577i 0.509261π-0.509261\pi
−0.0290899 + 0.999577i 0.509261π0.509261\pi
824824 −1.02128 −0.0355779
825825 5.00000 0.174078
826826 15.8423 0.551226
827827 16.8486 0.585884 0.292942 0.956130i 0.405366π-0.405366\pi
0.292942 + 0.956130i 0.405366π0.405366\pi
828828 7.51141 0.261039
829829 −48.0716 −1.66960 −0.834799 0.550555i 0.814416π-0.814416\pi
−0.834799 + 0.550555i 0.814416π0.814416\pi
830830 −15.5031 −0.538122
831831 51.8258 1.79782
832832 6.38849 0.221481
833833 −4.16547 −0.144325
834834 −53.3372 −1.84692
835835 −8.71988 −0.301764
836836 −5.09337 −0.176158
837837 0.547680 0.0189306
838838 7.32267 0.252958
839839 −50.9637 −1.75946 −0.879732 0.475471i 0.842278π-0.842278\pi
−0.879732 + 0.475471i 0.842278π0.842278\pi
840840 6.85581 0.236548
841841 −21.2884 −0.734082
842842 −13.5540 −0.467100
843843 70.5893 2.43123
844844 27.1930 0.936023
845845 −47.4176 −1.63121
846846 −35.8636 −1.23302
847847 1.68361 0.0578494
848848 6.81953 0.234184
849849 −35.1930 −1.20782
850850 2.09337 0.0718021
851851 −27.4098 −0.939595
852852 −27.1505 −0.930160
853853 −37.0228 −1.26764 −0.633818 0.773482i 0.718513π-0.718513\pi
−0.633818 + 0.773482i 0.718513π0.718513\pi
854854 −8.04255 −0.275211
855855 −23.4881 −0.803278
856856 4.73443 0.161819
857857 −41.2376 −1.40865 −0.704324 0.709878i 0.748750π-0.748750\pi
−0.704324 + 0.709878i 0.748750π0.748750\pi
858858 15.2588 0.520928
859859 −30.5177 −1.04125 −0.520625 0.853785i 0.674301π-0.674301\pi
−0.520625 + 0.853785i 0.674301π0.674301\pi
860860 −6.31639 −0.215387
861861 −20.5674 −0.700936
862862 2.40150 0.0817954
863863 −0.375479 −0.0127814 −0.00639072 0.999980i 0.502034π-0.502034\pi
−0.00639072 + 0.999980i 0.502034π0.502034\pi
864864 0.704883 0.0239806
865865 8.83209 0.300300
866866 −25.5472 −0.868130
867867 2.38849 0.0811174
868868 −1.30813 −0.0444007
869869 2.38849 0.0810240
870870 −11.3081 −0.383381
871871 −81.6256 −2.76578
872872 3.55396 0.120352
873873 −25.8423 −0.874631
874874 −14.1442 −0.478434
875875 20.3605 0.688310
876876 7.11465 0.240382
877877 34.2584 1.15682 0.578412 0.815745i 0.303673π-0.303673\pi
0.578412 + 0.815745i 0.303673π0.303673\pi
878878 −12.2226 −0.412492
879879 7.23603 0.244065
880880 1.70488 0.0574716
881881 38.3309 1.29140 0.645701 0.763590i 0.276565π-0.276565\pi
0.645701 + 0.763590i 0.276565π0.276565\pi
882882 11.2671 0.379383
883883 35.7833 1.20420 0.602101 0.798420i 0.294330π-0.294330\pi
0.602101 + 0.798420i 0.294330π0.294330\pi
884884 6.38849 0.214868
885885 38.3175 1.28803
886886 34.6619 1.16449
887887 15.4078 0.517343 0.258671 0.965965i 0.416715π-0.416715\pi
0.258671 + 0.965965i 0.416715π0.416715\pi
888888 23.5752 0.791133
889889 −10.0300 −0.336395
890890 14.7427 0.494176
891891 9.79826 0.328254
892892 −7.91291 −0.264944
893893 67.5322 2.25988
894894 0.826265 0.0276344
895895 −1.07883 −0.0360612
896896 −1.68361 −0.0562453
897897 42.3735 1.41481
898898 −21.9700 −0.733149
899899 2.15766 0.0719619
900900 −5.66233 −0.188744
901901 6.81953 0.227192
902902 −5.11465 −0.170299
903903 14.8984 0.495786
904904 8.59023 0.285707
905905 −28.3314 −0.941767
906906 50.4160 1.67496
907907 30.3885 1.00903 0.504517 0.863402i 0.331671π-0.331671\pi
0.504517 + 0.863402i 0.331671π0.331671\pi
908908 −0.186746 −0.00619739
909909 −3.40502 −0.112937
910910 18.3372 0.607873
911911 −28.2158 −0.934832 −0.467416 0.884037i 0.654815π-0.654815\pi
−0.467416 + 0.884037i 0.654815π0.654815\pi
912912 12.1655 0.402839
913913 9.09337 0.300947
914914 27.7407 0.917581
915915 −19.4523 −0.643074
916916 −10.6328 −0.351317
917917 −11.4814 −0.379150
918918 0.704883 0.0232646
919919 −8.28838 −0.273409 −0.136704 0.990612i 0.543651π-0.543651\pi
−0.136704 + 0.990612i 0.543651π0.543651\pi
920920 4.73443 0.156089
921921 38.7993 1.27848
922922 27.0504 0.890856
923923 −72.6193 −2.39029
924924 −4.02128 −0.132290
925925 20.6623 0.679373
926926 37.6832 1.23835
927927 2.76243 0.0907303
928928 2.77698 0.0911588
929929 8.01653 0.263014 0.131507 0.991315i 0.458018π-0.458018\pi
0.131507 + 0.991315i 0.458018π0.458018\pi
930930 −3.16394 −0.103750
931931 −21.2163 −0.695336
932932 19.3522 0.633903
933933 60.1733 1.96998
934934 −26.7770 −0.876170
935935 1.70488 0.0557556
936936 −17.2801 −0.564818
937937 20.3735 0.665573 0.332786 0.943002i 0.392011π-0.392011\pi
0.332786 + 0.943002i 0.392011π0.392011\pi
938938 21.5114 0.702372
939939 11.8558 0.386900
940940 −22.6048 −0.737287
941941 −12.3144 −0.401438 −0.200719 0.979649i 0.564328π-0.564328\pi
−0.200719 + 0.979649i 0.564328π0.564328\pi
942942 −37.0488 −1.20712
943943 −14.2033 −0.462522
944944 −9.40977 −0.306262
945945 2.02326 0.0658168
946946 3.70488 0.120456
947947 −6.88535 −0.223744 −0.111872 0.993723i 0.535685π-0.535685\pi
−0.111872 + 0.993723i 0.535685π0.535685\pi
948948 −5.70488 −0.185286
949949 19.0295 0.617725
950950 10.6623 0.345932
951951 −15.2230 −0.493640
952952 −1.68361 −0.0545660
953953 −50.1993 −1.62611 −0.813057 0.582183i 0.802199π-0.802199\pi
−0.813057 + 0.582183i 0.802199π0.802199\pi
954954 −18.4460 −0.597213
955955 −3.06582 −0.0992075
956956 5.18047 0.167548
957957 6.63279 0.214408
958958 18.2734 0.590386
959959 2.71315 0.0876122
960960 −4.07210 −0.131426
961961 −30.3963 −0.980526
962962 63.0566 2.03303
963963 −12.8061 −0.412670
964964 −15.5540 −0.500959
965965 43.1500 1.38905
966966 −11.1670 −0.359292
967967 8.50513 0.273506 0.136753 0.990605i 0.456333π-0.456333\pi
0.136753 + 0.990605i 0.456333π0.456333\pi
968968 −1.00000 −0.0321412
969969 12.1655 0.390811
970970 −16.2884 −0.522989
971971 9.46885 0.303870 0.151935 0.988390i 0.451450π-0.451450\pi
0.151935 + 0.988390i 0.451450π0.451450\pi
972972 −21.2884 −0.682825
973973 37.5965 1.20529
974974 42.0716 1.34806
975975 −31.9424 −1.02298
976976 4.77698 0.152907
977977 39.7765 1.27256 0.636282 0.771457i 0.280472π-0.280472\pi
0.636282 + 0.771457i 0.280472π0.280472\pi
978978 29.9144 0.956558
979979 −8.64733 −0.276370
980980 7.10164 0.226854
981981 −9.61304 −0.306921
982982 −35.9933 −1.14859
983983 −14.9637 −0.477269 −0.238634 0.971109i 0.576700π-0.576700\pi
−0.238634 + 0.971109i 0.576700π0.576700\pi
984984 12.2163 0.389441
985985 −42.6328 −1.35839
986986 2.77698 0.0884370
987987 53.3175 1.69711
988988 32.5390 1.03520
989989 10.2884 0.327152
990990 −4.61151 −0.146563
991991 −4.63279 −0.147165 −0.0735827 0.997289i 0.523443π-0.523443\pi
−0.0735827 + 0.997289i 0.523443π0.523443\pi
992992 0.776979 0.0246691
993993 −24.9503 −0.791773
994994 19.1379 0.607018
995995 −24.1867 −0.766771
996996 −21.7194 −0.688206
997997 57.8123 1.83094 0.915468 0.402391i 0.131821π-0.131821\pi
0.915468 + 0.402391i 0.131821π0.131821\pi
998998 20.3159 0.643090
999999 6.95745 0.220124
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 374.2.a.b.1.3 3
3.2 odd 2 3366.2.a.bd.1.2 3
4.3 odd 2 2992.2.a.q.1.1 3
5.4 even 2 9350.2.a.cf.1.1 3
11.10 odd 2 4114.2.a.s.1.3 3
17.16 even 2 6358.2.a.o.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
374.2.a.b.1.3 3 1.1 even 1 trivial
2992.2.a.q.1.1 3 4.3 odd 2
3366.2.a.bd.1.2 3 3.2 odd 2
4114.2.a.s.1.3 3 11.10 odd 2
6358.2.a.o.1.1 3 17.16 even 2
9350.2.a.cf.1.1 3 5.4 even 2