gp: [N,k,chi] = [3724,1,Mod(37,3724)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3724.37");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([0, 32, 21]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = [12,0,0,0,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3724 Z ) × \left(\mathbb{Z}/3724\mathbb{Z}\right)^\times ( Z / 3 7 2 4 Z ) × .
n n n
1863 1863 1 8 6 3
3041 3041 3 0 4 1
3137 3137 3 1 3 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 42 11 -\zeta_{42}^{11} − ζ 4 2 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + T 5 11 + 6 T 5 9 + 6 T 5 8 + 7 T 5 7 + 43 T 5 6 + 35 T 5 5 + ⋯ + 1 T_{5}^{12} + T_{5}^{11} + 6 T_{5}^{9} + 6 T_{5}^{8} + 7 T_{5}^{7} + 43 T_{5}^{6} + 35 T_{5}^{5} + \cdots + 1 T 5 1 2 + T 5 1 1 + 6 T 5 9 + 6 T 5 8 + 7 T 5 7 + 4 3 T 5 6 + 3 5 T 5 5 + ⋯ + 1
T5^12 + T5^11 + 6*T5^9 + 6*T5^8 + 7*T5^7 + 43*T5^6 + 35*T5^5 + 90*T5^4 + 104*T5^3 + 70*T5^2 + 15*T5 + 1
acting on S 1 n e w ( 3724 , [ χ ] ) S_{1}^{\mathrm{new}}(3724, [\chi]) S 1 n e w ( 3 7 2 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 + 6*T^9 + 6*T^8 + 7*T^7 + 43*T^6 + 35*T^5 + 90*T^4 + 104*T^3 + 70*T^2 + 15*T + 1
7 7 7
( T 6 + T 5 + T 4 + ⋯ + 1 ) 2 (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} ( T 6 + T 5 + T 4 + ⋯ + 1 ) 2
(T^6 + T^5 + T^4 + T^3 + T^2 + T + 1)^2
11 11 1 1
T 12 + 5 T 11 + ⋯ + 1 T^{12} + 5 T^{11} + \cdots + 1 T 1 2 + 5 T 1 1 + ⋯ + 1
T^12 + 5*T^11 + 14*T^10 + 29*T^9 + 47*T^8 + 56*T^7 + 57*T^6 + 56*T^5 + 31*T^4 + T^3 + 3*T + 1
13 13 1 3
T 12 T^{12} T 1 2
T^12
17 17 1 7
T 12 + 8 T 11 + ⋯ + 1 T^{12} + 8 T^{11} + \cdots + 1 T 1 2 + 8 T 1 1 + ⋯ + 1
T^12 + 8*T^11 + 35*T^10 + 104*T^9 + 230*T^8 + 392*T^7 + 519*T^6 + 518*T^5 + 349*T^4 + 118*T^3 - 6*T + 1
19 19 1 9
( T 2 + T + 1 ) 6 (T^{2} + T + 1)^{6} ( T 2 + T + 1 ) 6
(T^2 + T + 1)^6
23 23 2 3
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 + 6*T^9 + 6*T^8 + 7*T^7 + 43*T^6 + 35*T^5 + 90*T^4 + 104*T^3 + 70*T^2 + 15*T + 1
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
T 12 T^{12} T 1 2
T^12
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 + 3*T^10 + 3*T^9 - 9*T^8 + T^7 + 49*T^6 - 97*T^5 + 96*T^4 - 46*T^3 + 52*T^2 - 9*T + 1
47 47 4 7
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 - 6*T^9 + 12*T^8 + 7*T^7 + T^6 - 28*T^5 + 3*T^4 + 8*T^3 + 7*T^2 + 3*T + 1
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 - 6*T^9 + 12*T^8 + 7*T^7 + T^6 - 28*T^5 + 3*T^4 + 8*T^3 + 7*T^2 + 3*T + 1
67 67 6 7
T 12 T^{12} T 1 2
T^12
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 − 2 T 11 + ⋯ + 4096 T^{12} - 2 T^{11} + \cdots + 4096 T 1 2 − 2 T 1 1 + ⋯ + 4 0 9 6
T^12 - 2*T^11 + 8*T^9 - 16*T^8 + 64*T^6 - 256*T^4 + 512*T^3 - 2048*T + 4096
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 + 3*T^10 - 4*T^9 + 12*T^8 - 6*T^7 + 7*T^6 - 6*T^5 + 54*T^4 + 94*T^3 + 52*T^2 + 5*T + 1
89 89 8 9
T 12 T^{12} T 1 2
T^12
97 97 9 7
T 12 T^{12} T 1 2
T^12
show more
show less