Properties

Label 3724.1.dj.a
Level 37243724
Weight 11
Character orbit 3724.dj
Analytic conductor 1.8591.859
Analytic rank 00
Dimension 1212
Projective image D21D_{21}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3724,1,Mod(37,3724)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3724.37"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32, 21])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3724.dj (of order 4242, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.858518107051.85851810705
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ21)\Q(\zeta_{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+x9x8+x6x4+x3x+1 x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D21D_{21}
Projective field: Galois closure of Q[x]/(x21)\mathbb{Q}[x]/(x^{21} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ423ζ42)q5ζ429q7ζ4211q9+(ζ4213ζ427)q11+(ζ4214ζ429)q17+ζ4214q19++(ζ4218ζ423)q99+O(q100) q + ( - \zeta_{42}^{3} - \zeta_{42}) q^{5} - \zeta_{42}^{9} q^{7} - \zeta_{42}^{11} q^{9} + ( - \zeta_{42}^{13} - \zeta_{42}^{7}) q^{11} + (\zeta_{42}^{14} - \zeta_{42}^{9}) q^{17} + \zeta_{42}^{14} q^{19} + \cdots + (\zeta_{42}^{18} - \zeta_{42}^{3}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12qq52q7+q95q118q176q19q23q35+2q438q45+2q472q493q55+2q61+q63+2q73+2q77+q81+2q83+4q99+O(q100) 12 q - q^{5} - 2 q^{7} + q^{9} - 5 q^{11} - 8 q^{17} - 6 q^{19} - q^{23} - q^{35} + 2 q^{43} - 8 q^{45} + 2 q^{47} - 2 q^{49} - 3 q^{55} + 2 q^{61} + q^{63} + 2 q^{73} + 2 q^{77} + q^{81} + 2 q^{83}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3724Z)×\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times.

nn 18631863 30413041 31373137
χ(n)\chi(n) 11 ζ4211-\zeta_{42}^{11} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
37.1
−0.988831 0.149042i
0.0747301 0.997204i
0.365341 0.930874i
0.826239 0.563320i
0.955573 0.294755i
−0.988831 + 0.149042i
0.826239 + 0.563320i
0.955573 + 0.294755i
0.0747301 + 0.997204i
−0.733052 0.680173i
−0.733052 + 0.680173i
0.365341 + 0.930874i
0 0 0 −1.88980 0.582926i 0 −0.222521 0.974928i 0 0.0747301 0.997204i 0
417.1 0 0 0 −0.147791 0.0222759i 0 0.623490 0.781831i 0 −0.733052 + 0.680173i 0
1101.1 0 0 0 −0.535628 0.496990i 0 −0.222521 + 0.974928i 0 0.826239 0.563320i 0
1481.1 0 0 0 0.603718 1.53825i 0 0.623490 + 0.781831i 0 0.955573 0.294755i 0
1633.1 0 0 0 1.57906 1.07659i 0 −0.900969 0.433884i 0 −0.988831 + 0.149042i 0
2013.1 0 0 0 −1.88980 + 0.582926i 0 −0.222521 + 0.974928i 0 0.0747301 + 0.997204i 0
2165.1 0 0 0 0.603718 + 1.53825i 0 0.623490 0.781831i 0 0.955573 + 0.294755i 0
2545.1 0 0 0 1.57906 + 1.07659i 0 −0.900969 + 0.433884i 0 −0.988831 0.149042i 0
2697.1 0 0 0 −0.147791 + 0.0222759i 0 0.623490 + 0.781831i 0 −0.733052 0.680173i 0
3077.1 0 0 0 −0.109562 1.46200i 0 −0.900969 0.433884i 0 0.365341 0.930874i 0
3229.1 0 0 0 −0.109562 + 1.46200i 0 −0.900969 + 0.433884i 0 0.365341 + 0.930874i 0
3609.1 0 0 0 −0.535628 + 0.496990i 0 −0.222521 0.974928i 0 0.826239 + 0.563320i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
49.g even 21 1 inner
931.bq odd 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3724.1.dj.a 12
19.b odd 2 1 CM 3724.1.dj.a 12
49.g even 21 1 inner 3724.1.dj.a 12
931.bq odd 42 1 inner 3724.1.dj.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3724.1.dj.a 12 1.a even 1 1 trivial
3724.1.dj.a 12 19.b odd 2 1 CM
3724.1.dj.a 12 49.g even 21 1 inner
3724.1.dj.a 12 931.bq odd 42 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+T511+6T59+6T58+7T57+43T56+35T55++1 T_{5}^{12} + T_{5}^{11} + 6 T_{5}^{9} + 6 T_{5}^{8} + 7 T_{5}^{7} + 43 T_{5}^{6} + 35 T_{5}^{5} + \cdots + 1 acting on S1new(3724,[χ])S_{1}^{\mathrm{new}}(3724, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
77 (T6+T5+T4++1)2 (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1111 T12+5T11++1 T^{12} + 5 T^{11} + \cdots + 1 Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 T12+8T11++1 T^{12} + 8 T^{11} + \cdots + 1 Copy content Toggle raw display
1919 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
2323 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4747 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T122T11++4096 T^{12} - 2 T^{11} + \cdots + 4096 Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less