Properties

Label 372.2.j.c
Level $372$
Weight $2$
Character orbit 372.j
Analytic conductor $2.970$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [372,2,Mod(97,372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("372.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(372, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 372 = 2^{2} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 372.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.97043495519\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 29 x^{9} + 148 x^{8} - 21 x^{7} + 897 x^{6} + 81 x^{5} + 6453 x^{4} + \cdots + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{8} + \beta_{7} + \beta_{6} - 1) q^{3} - \beta_{3} q^{5} + ( - \beta_{7} - \beta_{6} + \beta_{2}) q^{7} - \beta_{6} q^{9} + (\beta_{9} + \beta_{4}) q^{11} + (\beta_{11} + \beta_{9} + \cdots - \beta_{7}) q^{13}+ \cdots + ( - \beta_{11} + \beta_{10} + \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 2 q^{5} - 3 q^{7} - 3 q^{9} - 2 q^{11} - 5 q^{13} + 2 q^{15} - q^{17} - 8 q^{19} + 7 q^{21} + 3 q^{23} + 18 q^{25} - 3 q^{27} - 6 q^{31} + 3 q^{33} + 21 q^{35} - 10 q^{37} + 10 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} + 13 x^{10} - 29 x^{9} + 148 x^{8} - 21 x^{7} + 897 x^{6} + 81 x^{5} + 6453 x^{4} + \cdots + 1296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 460834567 \nu^{11} - 947475468 \nu^{10} + 2822343043 \nu^{9} + 8527874974 \nu^{8} + \cdots + 27975633786576 ) / 44525669308560 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 270690548 \nu^{11} - 2159218725 \nu^{10} + 6717463707 \nu^{9} - 23081777314 \nu^{8} + \cdots - 4579861436064 ) / 7420944884760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 62399137 \nu^{11} + 488600566 \nu^{10} - 1884753323 \nu^{9} + 7348817586 \nu^{8} + \cdots + 8946376547472 ) / 1349262706320 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 6827099144 \nu^{11} + 19828580379 \nu^{10} - 84006360167 \nu^{9} + 178695981064 \nu^{8} + \cdots + 12212237403648 ) / 22262834654280 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 9423022688 \nu^{11} - 21441968920 \nu^{10} + 102670714565 \nu^{9} - 189261297785 \nu^{8} + \cdots + 2322653864400 ) / 22262834654280 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 19229120353 \nu^{11} + 46118140626 \nu^{10} - 224224191649 \nu^{9} + \cdots + 39885935747904 ) / 44525669308560 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10601531102 \nu^{11} + 30992521662 \nu^{10} - 131342248151 \nu^{9} + \cdots + 41007485391264 ) / 22262834654280 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 21976359115 \nu^{11} + 62129478294 \nu^{10} - 310502944321 \nu^{9} + \cdots - 5723380100304 ) / 44525669308560 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 17498898295 \nu^{11} + 39685451257 \nu^{10} - 190109677708 \nu^{9} + 350451630546 \nu^{8} + \cdots - 4294492778592 ) / 7420944884760 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 58902125149 \nu^{11} + 172724256948 \nu^{10} - 732603207715 \nu^{9} + \cdots + 252535874400288 ) / 22262834654280 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{10} + \beta_{9} - 6\beta_{7} - \beta_{5} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} + \beta_{10} + \beta_{9} - 6 \beta_{8} - 6 \beta_{7} - 6 \beta_{6} - 10 \beta_{5} + \beta_{4} + \cdots + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 11\beta_{11} + \beta_{9} - 60\beta_{8} - 6\beta_{7} - 6\beta_{6} - 4\beta_{5} + \beta_{4} - 20\beta_{2} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 14\beta_{11} - 14\beta_{10} - 24\beta_{8} - 24\beta_{6} + 7\beta_{4} + 91\beta_{3} - 23\beta_{2} - 23\beta _1 - 96 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -128\beta_{10} - 30\beta_{9} + 138\beta_{7} - 546\beta_{6} + 96\beta_{5} + 96\beta_{3} - 215\beta _1 - 138 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 194 \beta_{11} - 341 \beta_{10} - 341 \beta_{9} + 576 \beta_{8} + 1866 \beta_{7} + 1409 \beta_{5} + \cdots - 576 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 1603 \beta_{11} - 569 \beta_{10} - 1603 \beta_{9} + 8454 \beta_{8} + 8454 \beta_{7} + 5922 \beta_{6} + \cdots - 5922 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 5061 \beta_{11} - 2761 \beta_{9} + 26952 \beta_{8} + 10362 \beta_{7} + 10362 \beta_{6} + \cdots + 7000 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 9300 \beta_{11} + 9300 \beta_{10} + 42000 \beta_{8} + 42000 \beta_{6} - 11785 \beta_{4} + \cdots + 67944 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 72520 \beta_{10} + 39730 \beta_{9} - 167670 \beta_{7} + 211650 \beta_{6} - 109630 \beta_{5} + \cdots + 167670 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/372\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(187\) \(313\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
−2.04360 1.48476i
0.316459 + 0.229921i
3.03616 + 2.20590i
0.814352 + 2.50632i
0.358338 + 1.10285i
−0.981706 3.02138i
0.814352 2.50632i
0.358338 1.10285i
−0.981706 + 3.02138i
−2.04360 + 1.48476i
0.316459 0.229921i
3.03616 2.20590i
0 0.309017 0.951057i 0 −2.52603 0 −2.54360 + 1.84803i 0 −0.809017 0.587785i 0
97.2 0 0.309017 0.951057i 0 0.391165 0 −0.183541 + 0.133351i 0 −0.809017 0.587785i 0
97.3 0 0.309017 0.951057i 0 3.75289 0 2.53616 1.84262i 0 −0.809017 0.587785i 0
109.1 0 −0.809017 0.587785i 0 −2.63530 0 0.314352 0.967475i 0 0.309017 + 0.951057i 0
109.2 0 −0.809017 0.587785i 0 −1.15961 0 −0.141662 + 0.435992i 0 0.309017 + 0.951057i 0
109.3 0 −0.809017 0.587785i 0 3.17687 0 −1.48171 + 4.56022i 0 0.309017 + 0.951057i 0
157.1 0 −0.809017 + 0.587785i 0 −2.63530 0 0.314352 + 0.967475i 0 0.309017 0.951057i 0
157.2 0 −0.809017 + 0.587785i 0 −1.15961 0 −0.141662 0.435992i 0 0.309017 0.951057i 0
157.3 0 −0.809017 + 0.587785i 0 3.17687 0 −1.48171 4.56022i 0 0.309017 0.951057i 0
349.1 0 0.309017 + 0.951057i 0 −2.52603 0 −2.54360 1.84803i 0 −0.809017 + 0.587785i 0
349.2 0 0.309017 + 0.951057i 0 0.391165 0 −0.183541 0.133351i 0 −0.809017 + 0.587785i 0
349.3 0 0.309017 + 0.951057i 0 3.75289 0 2.53616 + 1.84262i 0 −0.809017 + 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 372.2.j.c 12
3.b odd 2 1 1116.2.m.f 12
31.d even 5 1 inner 372.2.j.c 12
93.l odd 10 1 1116.2.m.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
372.2.j.c 12 1.a even 1 1 trivial
372.2.j.c 12 31.d even 5 1 inner
1116.2.m.f 12 3.b odd 2 1
1116.2.m.f 12 93.l odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - T_{5}^{5} - 19T_{5}^{4} + 3T_{5}^{3} + 99T_{5}^{2} + 54T_{5} - 36 \) acting on \(S_{2}^{\mathrm{new}}(372, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{6} - T^{5} - 19 T^{4} + \cdots - 36)^{2} \) Copy content Toggle raw display
$7$ \( T^{12} + 3 T^{11} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( T^{12} + 2 T^{11} + \cdots + 810000 \) Copy content Toggle raw display
$13$ \( T^{12} + 5 T^{11} + \cdots + 203401 \) Copy content Toggle raw display
$17$ \( T^{12} + T^{11} + \cdots + 810000 \) Copy content Toggle raw display
$19$ \( T^{12} + 8 T^{11} + \cdots + 21025 \) Copy content Toggle raw display
$23$ \( T^{12} - 3 T^{11} + \cdots + 104976 \) Copy content Toggle raw display
$29$ \( T^{12} + 55 T^{10} + \cdots + 20250000 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 887503681 \) Copy content Toggle raw display
$37$ \( (T^{6} + 5 T^{5} + \cdots + 3376)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 4902800400 \) Copy content Toggle raw display
$43$ \( T^{12} - 22 T^{11} + \cdots + 92756161 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 1881824400 \) Copy content Toggle raw display
$53$ \( T^{12} - 6 T^{11} + \cdots + 2509056 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 29549610000 \) Copy content Toggle raw display
$61$ \( (T^{6} - T^{5} - 84 T^{4} + \cdots + 319)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} + 37 T^{5} + \cdots - 46336)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + T^{11} + \cdots + 1296 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 223629681025 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 11727807025 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 314586374400 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 29847399696 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 424002834025 \) Copy content Toggle raw display
show more
show less